Secure Outsourcing of Multi-Armed Bandits


Séminaire AMAC: CASC

20/01/2022 - 09:30 Radu Ciucanu (INSA Centre Val de Loire / LIG) IMAG 106 / Aussi à distance :

We consider the problem of cumulative reward maximization in multi-armed bandits. We address the security concerns that occur when data and computations are outsourced to an honest-but-curious cloud i.e., that executes tasks dutifully, but tries to gain as much information as possible. We consider situations where data used in bandit algorithms is sensitive and has to be protected e.g., commercial or personal data. We rely on cryptographic schemes and propose UCB-DS, a distributed and secure protocol based on the UCB algorithm. We prove that UCB-DS computes the same cumulative reward as UCB while satisfying desirable security properties. In particular, cloud nodes cannot learn the cumulative reward or the sum of rewards for more than one arm. Moreover, by analyzing messages exchanged among cloud nodes, an external observer cannot learn the cumulative reward or the sum of rewards produced by some arm. We show that the overhead due to cryptographic primitives is linear in the size of the input. Our implementation confirms the linear-time behavior and the practical feasibility of our protocol, on both synthetic and real-world data. Finally, we discuss the challenges of building similar secure protocols, but in federated learning scenarios.