Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion


Séminaire Probabilités & Statistique

12/01/2017 - 14:00 Stéphane MENOZZI (Université d'Evry) Salle 106 - Batiment IMAG

We obtain non-asymptotic Gaussian concentration bounds for the difference between the invariant measure ν of an ergodic Brownian diffusion process and the empirical distribution of an approximating scheme with decreasing time step along a suitable class of (smooth enough) test functions f such that f − ν(f) is a coboundary of the infinitesimal generator. We show that these bounds can still be improved when the (squared) Fröbenius norm of the diffusion coefficient lies in this class. In some cases, we can even find the expected asymptotic optimal variance.
We apply these bounds to design computable non-asymptotic confidence intervals for the approximating scheme. As a theoretical application, we finally derive non-asymptotic deviation bounds for the almost sure Central Limit Theorem.