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A Fast Algorithm for Bidimensional EMD

Christophe Damerval, Sylvain Meignen and Valérie Perrier

Abstract

In this paper, we describe a new method for bidimensional empirical mode decomposition (EMD).

This decomposition is based on Delaunay triangulation and on piecewise cubic polynomial

interpolation. A particular attention is devoted to boundary conditions that are crucial for the feasibility

of the bidimensional EMD. The study of the behavior of the decomposition on different kind of images

shows its efficiency in terms of computational cost and the decomposition of Gaussian white noises

leads to bidimensional selective filter banks.
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I. INTRODUCTION

Empirical mode decomposition (EMD) was first introduced by Huang et al. [2] and provides a

powerful tool for adaptive multiscale analysis of nonstationary signals. As far as the one dimensional

case is concerned, studies were carried out to show the similarities of EMD with selective filter bank

decompositions [7]. Its efficiency for signal denoising was also shown in [8]. These interesting aspects

of the EMD motivate the extension of this method to bidimensional signals.

The basis of EMD (in 1D) is the construction of some intrinsic mode functions (IMFs) that are

constructed through a so-called ”sifting” process (SP). A one-dimensional SP is an iterative procedure

that depends both on an interpolation method and on a stopping criterion that ends the procedure. For

bidimensional EMD, these two elements are still crucial ; we propose to focus on their influence over

the construction of IMFs. As far as the interpolation is concerned, several techniques were proposed

using, for instance, radial basis functions such as thin-plate splines [3][4][5][6]. These methods require

the resolution of time consuming optimization problems which makes them hard to exploit especially in

a noisy context as we will see.

In this paper, we propose a new bidimensional EMD where the SP is based on Delaunay triangulation

and then cubic interpolation on triangles and also on a fixed number of iterations to build IMFs. The

two major advantages of the proposed interpolation method over existing ones [5][6][3][4] is that it takes

into account the geometry while preserving a low computational cost.

II. EMD BASIS

Here, we briefly describe the principle of EMD for a one-dimensional signal (f [n])n∈
� . It is based on

the characterization of f through its decomposition in intrinsic mode functions (IMF) that are defined as

follows [2]:

Definition 1: A function is an intrinsic mode function if the number of extrema equals the number of

zero-crossings and if it has a zero local mean.

With this definition, we can describe the principle of EMD as follows:

1) Initialization : r0 = f , k = 1

2) Computation of the kth IMF, dk (SP)

a) Initialization : h0 = rk−1, j = 1

b) Identify all the local extrema of hj−1

c) Interpolate the local minima (resp. maxima) to get Envmin,j−1 (resp Envmax,j−1)
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d) Compute the mean of these envelops:

Envmean,j−1(t) =
1

2
(Envmin,j−1(t) + Envmax,j−1(t))

e) hj [n] = hj−1[n]− Envmean,j−1(n)

f) If the stopping criterion is fulfilled then dk = hj else j = j + 1

3) rk[n] = rk−1[n] − dk[n]

4) if rk is not monotonic, go to step 2 otherwise the decomposition is complete.

When the decomposition is complete, we can write f as follows:

f [n] =
K

∑

k=1

dk[n] + rK[n], K ∈ N
∗

With this presentation, we notice that the key point of the algorithm is the SP entirely defined by an

interpolation method (usually cubic spline interpolation [7] [2]) and by a stopping criterion. Note that

to our knowledge, there is no mathematical proof of the convergence of the algorithm. The next section

explains how to adapt the algorithm to bidimensional signals.

III. BIDIMENSIONAL EMD: STATE OF THE ART AND NEW ALGORITHM

For bidimensional signals, a similar algorithm as that of section II can be written, the key points still

being: what interpolation technique to use in the SP and how many iterations to consider in the SP to

build the IMFs? When we will have defined the SP, we will give a definition of the bidimensional IMFs

we obtain and we will compare it to its 1D counterpart.

A. State of the Art

As far as interpolation is concerned, a natural extension of cubic spline to images is the thin-plate spline

[1] used in [3], which is a particular case of radial basis functions used as interpolators [5]. In these cases,

the envelop of the maxima (resp. minima) is the solution of a global optimization problem which requires

the inversion of a linear system of size q× q [1], where q is the number of maxima (resp. minima). Such

techniques are inappropriate for images that contain many extrema. Indeed, we numerically notice that

for a bidimensional Gaussian white noise approximately 10 % of the points corresponds to maxima (resp.

minima) ; if we assume that the size of the image is N 2, then these methods require the inversion of a

N2

10
× N2

10
system which is prohibitive for large N . Note that this remark also holds for noisy images. A

faster approach is proposed in [11] and uses tensor products to build the envelops. In spite of its rapidity,

this method is based on one-dimensional envelops (along the columns and the rows of the image) and
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do not take the geometry into account. Furthermore, in all these approaches, the construction of IMFs is

based on a stopping criterion in the SP.

B. New Bidimensional EMD

As explained earlier, we focus on the interpolation procedure and on the number of iterations that

define the SP. For the interpolation part, we use Delaunay triangulation and then cubic interpolation on

triangles and we replace the stopping criterion used to define IMFs [5][3] by a fixed number of iterations

in the SP.

We now assume that f [m, n] is a N × N image. We recall the definition of extrema we will use in

the following:

Definition 1: f [m, n] is a maximum (resp. minimum) if it is larger (resp. lower) than the value of f

at the eight nearest neighbors of [m, n].

Bidimensional Interpolation

We here assume that the values f [m, n] correspond to an approximation of a continuous function f̃ ,

defined on [0, 1]× [0, 1], at the points:

D =

{

(
m + 1

2

N
,
n + 1

2

N
), [m, n] ∈ {0, · · · , N − 1}2

}

.

The interpolation method we use to build the bidimensional IMFs is based on a Delaunay triangulation

of the subset Dmax (resp. Dmin) of D that corresponds to maxima (resp. minima) for f and then on

piecewise cubic interpolation on triangles as explained in [10]. We use Delaunay triangulation since it

is well adapted to the interpolation of scattered data of which the set Dmax (resp. Dmin) is a typical

example. As it is, the method is not satisfactory since the triangulation of the points of Dmax (resp.

Dmin) whose support is the convexhull of Dmax (resp. Dmin) may not contain D. To fulfill this condition,

we symmetrize the maxima points (resp. the minima points) with respect to the boundary of the support

of f̃ . So as to reduce the computational cost of the algorithm, we do not symmetrize the whole set of

maxima (resp. minima) points, which would result in a 9 times larger problem, but only the maxima

(resp. minima) points that are ”close” to the boundary of the support of f̃ . That is, we define the subset

of the maxima points to be symmetrized as follows:

Smax =

{

Ai ∈ Dmax, min
Bi∈B

‖Ai − Bi‖2 ≤

√

1

|Dmax|

}

(1)

where ‖.‖2 is the Euclidean norm and where B is the boundary of the support of f̃ . We similarly define a

set Smin. Note that the upper bound in (1) defines a band of length equal to the inverse of the density of
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the maxima since it can also be written as 1

N

√

N2

|Dmax|
. In other words, the higher the density of maxima

(resp. minima) is, the smaller the bandwidth is. Then, one remarks that the convexhull of the set of

points:

Dmax ∪ T (Smax), (2)

where T is the symmetry operator with respect to the boundary of the support of f̃ may still not contain

D ( the same conclusion holds for the set of points obtained with the minima). To ensure this condition,

we add four arbitrary points which are the corners of f̃ extended by a band of
√

1

|Dmax|
(resp.

√

1

|Dmin|
) in

each direction. We call Dext
max (resp. Dext

min
) the set of points thus defined, the triangulation built on Dext

max

(resp. Dext
min

) covers D. When symmetrizing the maxima (resp. minima) points, we also symmetrize the

corresponding values of f . We also assign at the four added corner points the value of f at the closest

point (in terms of the Euclidean norm) of the union defined by (2) (or the corresponding one for minima).

Such a choice prevents the propagation of numerical artifacts since the values at the added corner points

only depend on the local behavior of the decomposition.

The envelop of the maxima (resp. minima) used in the SP is then defined by the piecewise cubic

interpolation of f on the Delaunay triangulation of Dext
max (resp. Dext

min
), which we then restrict to the

support of f̃ . The envelop of the maxima (resp. minima) is denoted in the following by Envmax (resp.

Envmin).

On the Number of Iterations in the SP

Once we have defined the interpolation procedure we use in the SP, we determine the appropriate

number of iterations in the SP to build IMFs. This number appears to be independent from the kind

of image under consideration with the criterion we choose. To define our criterion, we investigate what

is on average the impact on the computation of the first IMF of the number of iterations in the SP.

We compute the median of |Envmean(x, y)| = 1

2
|Envmax(x, y)) + Envmin(x, y)| as a function of the

number of iterations in the SP, for the first IMF and for either a Gaussian white noise, the image of

Lenna or the image of Lenna corrupted by a Gaussian white noise. We display in Figure 1 (A)-(C) and

(F)-(G) the average median of |Envmean(x, y)| as a function of the number of iterations for the first

IMF and either for Gaussian white noises (image size 64 × 64) or for the image of Lenna corrupted by

a Gaussian white noise (image size 512 × 512). For Gaussian white noises, we take σ ∈ {0.1, 1, 10}

and for the image of Lenna corrupted by a Gaussian white noise we take σ ∈ {1, 10, 100}. In Figure

1 (D), we display the median of |Envmean(x, y)| as a function of the number of iterations for the first

IMF corresponding to the image of Lenna free of noise. Note that in the last four cases, the median of
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|Envmean(x, y)| after one iteration is not displayed because it is too large.

The average number of iterations necessary to obtain the first IMF is then given by the minimal

curvature of the curve defined by (j, g(j)) where g(j) = 1

P

P
∑

i=1

median(|Envi
mean,j(x, y)|) where P

is the number of realizations and Envi
mean,j is the mean envelop after j iterations in the SP and for

the ith realization. As illustrated in Figure 1, the average number of iterations given by our criterion is

independent from the kind of images: the appropriate number of iterations always equals 3. The criterion

we use to compute the number of iterations leads to a mean envelop with low amplitude and reduces

numerical artifacts that appear for large numbers of iterations. As the number of extrema diminishes

considerably when we substract the first IMF to the signal (see Table I for an illustration), the obtaining

of the successive IMFs will not require more than 3 iterations.
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Fig. 1. (A): Evolution of the average median(|Envmean(x, y)|) for the first 10 iterations for a 64× 64 Gaussian white noise

with σ = 0.1, (B): idem for σ = 1, (C): idem for σ = 10,(D): median(|Envmean(x,y)|) for the first 10 iterations for the

image of Lenna (512 × 512) free of noise,(E): idem as (A) but for the image of Lenna with Gaussian additive noise σ = 1,(F):

idem as (E) but for σ = 10,(G): idem as (E) but for σ = 100

On the Number of IMFs

The criterion to stop the decomposition (i.e. how many IMFs to consider) is then based on the property

that the number of extrema in the residual signal must decrease throughout the decomposition. When

the algorithm stops there are very few remaining extrema (see Table I) ; the increase in the number of

extrema is due to artifacts of low energy. We visualize the behavior of the algorithm on a bidimensional
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64 × 64 Gaussian white noise with σ = 1. The number of iterations in the SP equals 3, for each IMF.

This illustration also shows that there are very little boundary effects even for such small images: this is

due to the symmetrization procedure we use in our interpolation method.
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Fig. 2. From top to bottom and left to right: the signal to be analyzed and the first 6 IMFs that correspond to this signal

Bidimensional IMF Definition

The algorithm we detailed above give a possible construction for IMFs which are not given any

definition yet. The definition that corresponds the most to IMFs we obtain is the following:

Definition 2: an image is a bidimensional IMF, if it has a zero mean, if the maxima are positive and

the minima are negative and if the number of maxima equals the number of minima.
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The second property replaces the condition in one dimension that the number of zero-crossings equals

the number of extrema (modulo 1). To show the relevance of this definition, we display in Table I the

number of maxima, of positive maxima, of minima, of negative minima as well as the mean and the

standard deviation of IMFs either for a Gaussian white noise, for the image of Lenna or for the image of

Lenna corrupted by a Gaussian white noise (in both cases σ = 1). We notice that the first two conditions

of Definition 2 are satisfied while the number of minima are not exactly equal to the number of maxima

but they are quite close.

Now that we have defined our SP, we compare our method with existing methods in terms of com-

putational cost and we also investigate the modes decorrelation as well as the frequency responses of

IMFs.

IV. RESULTS AND COMPARISON WITH EXISTING METHODS

A. Computational Cost

We show the gain of computational cost with our bidimensional EMD compared with that proposed

in [3] that uses thin-plate splines, on a bidimensional Gaussian white noise. Note that the conclusions

we draw could be extended to any image that contain many extrema. We give an illustration of the

computational gain in Table II, where we display the computational cost of both algorithms as a function

of N and when IMFs are obtained after 3 iterations in the SP.

B. Bidimensional EMD as a Filter Bank and Modes Decorrelation

In this section, we put forward that the bidimensional EMD we propose creates a selective filter bank

when applied to bidimensional Gaussian white noises similarly as in the one dimensional case [7]. The

analysis of more complex noises such as Brownian or fractional Brownian noises will be the subject

of future developments. We consider the average Fourier transform of IMFs over 1000 realizations of

a bidimensional 64 × 64 Gaussian white noise (σ = 1). The results are displayed in Figure 3 for the

first 6 modes. As expected the first modes contain the highest frequencies while the others contain lower

frequencies. To stress this point, we compute the maximum amplitude of the Fourier Transform for

the first 5 modes taking into account the isotropy of the Fourier representation ; these are located at

‖ν‖ = 0.39, 0.15, 0.0075, 0.006, 0.003 respectively. We also notice that contrary to the one-dimensional

case the spectra of IMFs do not vanish in the vicinity of zero.

A last point we investigated involves modes decorrelation which we studied on a Gaussian white

noise. Our experiments show very little correlation between modes except for IMF1 and IMF2 where
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nb maxima nb minima nb maxima > 0 nb minima < 0 mean standard deviation

Noise 30645 30692 30645 30692 9.10−4 0.98

IMF1 Lenna 21776 21294 21776 21296 −4.10−2 11

Lenna+Noise 22846 22357 22846 22357 -0.07 10.59

Noise 8889 8910 8889 8910 −6.10−4 0.36

IMF2 Lenna 4236 4206 4236 4206 0.28 11.6

Lenna+Noise 4529 4600 4529 4600 0.18 11.4

Noise 3153 3198 3153 3198 −3.10−4 0.20

IMF3 Lenna 1420 1424 1420 1424 −0.26 12.2

Lenna+Noise 1533 1517 1533 1517 0.27 12.1

Noise 1486 1480 1486 1480 10−3 0.12

IMF4 Lenna 928 980 928 980 0.25 11.4

Lenna+Noise 961 931 961 931 0.22 11.9

Noise 836 896 836 896 −2.10−5 0.07

IMF5 Lenna 873 812 873 812 0.35 10.3

Lenna+Noise 741 765 741 765 0.55 11.4

Noise 656 652 656 652 10−4 0.05

IMF6 Lenna 676 712 676 712 -1.6 12

Lenna+Noise 706 680 706 680 1.02 10.4

Noise 576 562 576 562 5.10−3 0.03

IMF7 Lenna × × × × × ×

Lenna+Noise 706 718 706 718 -0.6 11.7

residual Noise 177 211 × × × ×

signal Lenna 169 161 × × × ×

Lenna+Noise 119 131 × × × ×

TABLE I

NUMBER OF MAXIMA, NUMBER OF POSITIVE MAXIMA, NUMBER OF MINIMA, NUMBER OF NEGATIVE MINIMA, MEAN AND

STANDARD DEVIATION OF IMFS AND OF THE RESIDUAL SIGNAL. THE NUMBER OF ITERATIONS IN THE SP EQUALS 3. THE

SYMBOL × MEANS WE DO NOT MAKE THE COMPUTATION. THE IMAGE SIZE IS 512 × 512

the correlation equals 0.2.

V. CONCLUSION

The scope of this paper was to introduce a new algorithm for bidimensional EMD that is efficient to

analyze images that contain many extrema. The fast method we propose is based on the definition of a
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PC TPS

N = 16 1 2

N = 32 2 6

N = 64 4 57

N = 128 10 ×

N = 256 43 ×

N = 512 185 ×

TABLE II

COMPUTATIONAL COST OF THE BIDIMENSIONAL EMD WITH RESPECT TO N FOR EITHER PIECEWISE CUBIC

INTERPOLATION (PC) OR THIN-PLATE SPLINE (TPS) INTERPOLATION, FOR 3 ITERATIONS OF THE SP FOR EACH MODE. THE

SYMBOL × MEANS WE DO NOT MAKE THE COMPUTATION

ν
1

ν 2

Mode 1

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5 0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

ν
1

ν 2
Mode 2

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

2

4

6

8

10

12

14
x 10

−3

ν
1

ν 2

Mode 3

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

2

4

6

8

10

12

14

x 10
−3

ν
1

ν 2

Mode 4

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

2

4

6

8

10

12

14
x 10

−3

ν
1

ν 2

Mode 5

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

2

4

6

8

10

12

14

x 10
−3

ν
1

ν 2

Mode 6

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

2

4

6

8

10

12

14
x 10

−3

Fig. 3. From top to bottom and left to right, the average Fourier Transform of IMFs obtained over 1000 realizations of a

64 × 64 bidimensional Gaussian white noise σ2 = 1

specific ”sifting” process (SP) that uses Delaunay triangulation and piecewise cubic interpolation, IMFs

being then obtained by a fixed number of iterations in the SP. We showed that the decomposition of a

May 2, 2005 DRAFT



110

Gaussian white noise leads to the creation of a selective filter bank. Future work will involve the study

of Brownian and fractional Brownian noises with this bidimensional EMD but also will deal with the

analysis of textures that are images containing many extrema and for which previous studies [5] have

shown promising results by use of EMD.
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