
Introduction to Cryptology

Generic attacks on Su�xMAC

2024-03

Grading

This TP is graded as the contrôle continu of this course. You must send a written report

(in a portable format) detailing your answers to the questions, and the corresponding

source code, including all tests, with compilation and execution instructions by

Friday April 5, 18:00 (2024-04-05T18:00+0200) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed but not mandatory. In that case only a single report

must be sent, with the two team members clearly identi�ed.

f

The use of dynamic-analysis sanitizers (through the options -fsanitize=address and

-fsanitize=undefined) is strongly encouraged during development phase.

The use of compiler optimizations (through the option -O3) is strongly encouraged when

running the more expensive attacks.

Using \arti�cial intelligence" software at any point during this work is strictly forbidden.

Apart from the standard C library, you are not allowed to rely on any external software

or library functions.

1 The SuffixMAC smht48

The Su�xMAC construction is a generic transformation of a hash function into a MAC.

Informally, given a hash function H, the associated Su�xMAC M is de�ned as:

M(k,m) = H(m||k)

where k (resp. m) is the key (resp. message) of M and ·||· denotes string concatenation.
In this lab, we will use a toy Su�xMAC smht48 based on a toy \narrow-pipe Merkle-

Damg�ard" hash function ht48. The hash function is already implemented and available

at https://membres-ljk.imag.fr/Pierre.Karpman/ht48_2.tar.bz2, but you need to

implement smht48 yourself.

1

mailto:pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/ht48_2.tar.bz2

https://membres-ljk.imag.fr/Pierre.Karpman/cry_intro2024_tp.pdf

Q.1: Implement the function smht48 of following signature and speci�cations:

/*

* Input k: a 48-bit key stored as an array of 6 bytes

* Input blen: the byte length of m, stored on 64 bits

* Input m: the message to be hashed, whose length is required to be an

integral number of bytes↪→

* Input h: placeholder for the 48-bit resulting tag, to be stored as an

array of 6 bytes. Must have been allocated by the caller.↪→

* Output: void, h is overwritten with the result ht48(m||k)

* Warning: the key bytes in k must be appended _in order_ (k[0] first)

*/

void smht48(const uint8_t k[static 6], uint64_t blen, const uint8_t

m[blen], uint8_t h[static 6]);↪→

Q.2: Verify your implementation of smht48 on the test vectors below. You may use the

(already provided) printhash function to print the value of the tag on standard output.

1. Key value: {0, 1, 2, 3, 4, 5}

Message value: {9, 8, 7, 6, 5, 4}

Tag value: EE75794547B8

2. Key value: {0xE4, 0x16, 0x9F, 0x12, 0xD3, 0xBA}

Message value: {9, 8, 7, 6, 5, 4}

Tag value: 5F265B72B5EC

2 Exhaustive search for a low-weight key

We now wish to �nd a key k such that for the message value {9, 8, 7, 6, 5, 4}, one

has a tag value 7D1DEFA0B8AD. By chance, we are aware of the useful fact that (one such

possible) k only has a (bit) weight of 7 (that is, it has exactly 7 bits set to one).�

Q.3:

1. Implement a function keyrec to search for k.

2. What value(s) did you �nd for k?

Advice: A reasonably-well-implemented version of this attack takes about 100 seconds

to run on an average laptop. You may �rst validate the correctness & e�ciency of your

implementation by searching for a key that you know, possibly of a smaller weight.

Q.4:

1. Explain how a key-recovery attack such as this one can be used as a preliminary step

for a universal forgery attack.

2. Is the converse always possible? That is: does a universal forgery attack always lead

to a key-recovery attack?
�This kind of information could possibly be learned from a side-channel physical attack, but assuming

that keys are sampled uniformly, we would still be lucky to have one of weight only 7!

2

https://membres-ljk.imag.fr/Pierre.Karpman/cry_intro2024_tp.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry_intro2024_tp.pdf

3 Existential forgeries from collisions

The design of Su�xMAC and the fact that smht48 is based on the narrow-pipe Merkle-

Damg�ard hash function ht48 allows to use collisions for the latter to obtain existential

forgeries for the former. In more details, let the compression function used in ht48 be the

function tcz48_dm of signature:

/*

* Input m: a 128-bit message block stored as an array of 16 bytes

* Input h: a 48-bit chaining value stored as an array of 6 bytes

* Output: void, h is overwritten with the result

*/

void tcz48_dm(const uint8_t m[static 16], uint8_t h[static 6]);

and IV denote the initial value used in ht48 (given in ht48.h). Then if the 16-byte messages

m1 and m2 are such that the values computed by tcz48_dm(m1, IV) and tcz48_dm(m2, IV)

are the same, one has that for all key k, the tags computed by smht48(k, 16, m1, h) and

smht48(k, 16, m2, h) are the same.

Q.5:

1. Explain why the above is true.

2. How can this property be used in an existential forgery attack for smht48?

Q.6:

1. Implement a function colsearch that computes a collision of the above form for the

(already implemented) tcz48_dm compression function.

2. Implement a function smht48ef that draws a 48-bit key k uniformly at random and

that uses the collision in tcz48_dm to obtain a collision in smht48 of the above form.

Advice: A reasonably-well-implemented version of the collision search takes about 4 sec-

onds to run on an average laptop. A possible strategy is to use an e�cient \search" data

structure, that can for instance be implemented with an ad hoc hash-table of 224 buckets.

3

https://membres-ljk.imag.fr/Pierre.Karpman/cry_intro2024_tp.pdf

	The SuffixMAC smht48
	Exhaustive search for a low-weight key
	Existential forgeries from collisions

