Introduction to cryptology TD\#3

2024-W10

Exercise 1: Bad authenticated encryption

We consider a symmetric encryption scheme Enc and a deterministic MAC M (that always maps a given (key,message) pair (k, m) to the same tag t).

Q.1:

1. Show that Enc $+M:\left(k^{\prime}, k, m\right) \mapsto \operatorname{Enc}\left(k^{\prime}, m\right) \| M(k, m)$ has weak security w.r.t. the IND-CPA definition, regardless of the IND-CPA security of Enc (and under very mild assumptions on the UP security of M).
2. Propose an alternative way of combining Enc with a MAC in order to get an "authenticated" encryption scheme, and informally justify its IND-CPA security and resistance to forgeries.

Exercise 2: MAC security definitions (Adapted from final exam ‘20)

We again consider a deterministic MAC M.
Q.1: Assume that you know an algorithm A_{M}^{U} that lets you win the universal forgery game for M with probability p_{M}^{U}, and let t_{M}^{U} and q_{M}^{U} respectively denote its running time and the number of queries it makes to its oracle.

1. Give a (possibly randomised) algorithm A_{M}^{E} computing existential forgeries for M and that uses A_{M}^{U} as a black box.
2. Give the cost t_{M}^{E} and q_{M}^{E} of your algorithm A_{M}^{E}, and its success probability p_{M}^{E}.
Q.2: We now assume the existence of A_{M}^{E} as above.
3. Give a PRF adversary for M that uses A_{M}^{E} as a black box, runs in time $t_{M}^{F} \approx t_{M}^{E}$ and makes $q_{M}^{F} \approx q_{M}^{E}$ queries to its oracle.
4. Deduce from that a lower-bound for $\boldsymbol{A d} \boldsymbol{v}_{\mathrm{M}}^{\mathrm{PRF}}\left(\mathrm{q}^{\mathrm{F}}, \mathrm{t}^{\mathrm{F}}\right)$.
5. Is the following (informally stated) scenario possible: " M is vulnerable to an existential forgery attack, yet is hard to distinguish from a random function"?
Q.3: We say that an assumption A_{1} is stronger than an assumption A_{2} if breaking A_{2} implies breaking A_{1} with a similar cost, but breaking A_{1} does not necessarily imply breaking A_{2} with a similar cost. Consider the three following (informally stated) assumptions: A_{1} : M is hard to distinguish from a random function; A_{2} : there is no efficient universal forgery attack on $M ; A_{3}$: there is no efficient existential forgery attack on M .
6. Order the assumptions A_{1}, A_{2}, A_{3} from weakest to strongest. Be careful to justify your answer.
7. Suppose that you need a MAC algorithm, and are magically given access to one that satisfies an assumption that you are free to choose; which of A_{1}, A_{2} or A_{3} would you pick (and why)?

RC4 is a stream cipher that can be used to (poorly) encrypt binary strings of arbitrary length in the following way:

1. Two communicating parties share a secret key k.
2. For each new plaintext p to be encrypted, one picks a unique initialisation vector v.
3. One runs a setup algorithm on the pair (k, v) that returns an initial state s (that depends on both k and v).
4. One runs the $R C 4$ keystream generator on s, producing a keystream z of the same length as p.
5. The encryption of p is returned as $c:=p \oplus z$, along with the initialisation vector v.

A designer suggests to use RC4 as the basis of a MAC algorithm. For simplicity, we assume that the input is at least 128 -bit long, or that it has otherwise been padded up to that length (or longer) using an appropriate injective padding scheme. To authenticate a message one runs RC4 encryption on the input and returns the last 128 bits of the ciphertext as a tag. In more details:

1. Two communicating parties share a secret key k.
2. One runs a setup algorithm on the pair $(k, 0)$ that returns an initial state s.
3. For each new input x to be authenticated, one runs the $R C 4$ keystream generator on s, producing a keystream z of the same length as x.
4. One encrypts x as $c:=x \oplus z$; the last 128 bits of c are returned as the authentication tag of x.

Q.4:

1. Give (and analyse) a very efficient attack on RC4-MAC with respect to either one of the three security notions studied in this exercise.

Exercise 3: tls-not-unique (Adapted from final exam '21)

A certain network protocol authenticates every packet of 384 bits using a MAC that has tags of bitlength 96. For every session of the protocol (what is a session is not important here, but in a typical day one expects much more than 2^{40} sessions to be created worldwide), an identifier that is expected to uniquely identify the session among all possible sessions (past and future) is taken to be the 96-bit tag of a designated packet that is part of the session.

1. Identify a problem in the above process.
2. Propose a simple solution to fix it.

Exercise 4: Birthdays and a random sequence (Adapted from final exam '17)

Let \mathcal{S} be a set of size N; let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence whose elements are drawn independently and uniformly at random from \mathcal{S}, i.e. for all \mathfrak{i}, $u_{i} \llbracket \mathcal{S}$. Suppose that you do not initially know $\mathcal{S},{ }^{1}$ nor N.

1. Give an algorithm that examines $\Theta(\sqrt{N})$ terms of $\left(u_{n}\right)$ and that returns an approximation of N (you do not need to quantify the quality of this approximation).
2. What is the time and memory cost of your algorithm (be careful to fully specify the data structures you may use)?
[^0]
[^0]: ${ }^{1} \mathrm{Be}$ careful that the elements of \mathcal{S} need not be integers. For instance \mathcal{S} could be equal to \{martes martes, martes foina, martes zibellina\}.

