Introduction to cryptology TD#3

2024-W10

Exercise 1: Bad authenticated encryption

We consider a symmetric encryption scheme Enc and a *deterministic* MAC M (that always maps a given (key,message) pair (k,m) to the same tag t).

Q.1:

- 1. Show that $Enc + M : (k', k, m) \mapsto Enc(k', m) || M(k, m)$ has weak security w.r.t. the IND-CPA definition, regardless of the IND-CPA security of Enc (and under very mild assumptions on the UP security of M).
- 2. Propose an alternative way of combining Enc with a MAC in order to get an "authenticated" encryption scheme, and informally justify its IND-CPA security and resistance to forgeries.

Exercise 2: MAC security definitions (Adapted from final exam '20)

We again consider a deterministic MAC M.

Q.1: Assume that you know an algorithm A_M^U that lets you win the universal forgery game for M with probability p_M^U , and let t_M^U and q_M^U respectively denote its running time and the number of queries it makes to its oracle.

- Give a (possibly randomised) algorithm A^E_M computing existential forgeries for M and that uses A^U_M as a black box.
- 2. Give the cost t_M^E and q_M^E of your algorithm A_M^E , and its success probability p_M^E .

Q.2: We now assume the existence of A_{M}^{E} as above.

- 1. Give a PRF adversary for M that uses A_M^E as a black box, runs in time $t_M^F \approx t_M^E$ and makes $q_M^F \approx q_M^E$ queries to its oracle.
- 2. Deduce from that a lower-bound for $Adv_{M}^{PRF}(q^{F},t^{F})$.
- 3. Is the following (informally stated) scenario possible: "M is vulnerable to an existential forgery attack, yet is hard to distinguish from a random function"?

Q.3: We say that an assumption A_1 is *stronger* than an assumption A_2 if breaking A_2 implies breaking A_1 with a similar cost, but breaking A_1 does not necessarily imply breaking A_2 with a similar cost. Consider the three following (informally stated) assumptions: A_1 : M is hard to distinguish from a random function; A_2 : there is no efficient universal forgery attack on M; A_3 : there is no efficient existential forgery attack on M.

- 1. Order the assumptions A_1 , A_2 , A_3 from weakest to strongest. Be careful to justify your answer.
- 2. Suppose that you need a MAC algorithm, and are magically given access to one that satisfies an assumption that you are free to choose; which of A₁, A₂ or A₃ would you pick (and why)?

RC4 is a stream cipher that can be used to (poorly) encrypt binary strings of arbitrary length in the following way:

- 1. Two communicating parties share a secret key k.
- 2. For each new plaintext p to be encrypted, one picks a unique initialisation vector v.
- 3. One runs a setup algorithm on the pair (k, v) that returns an initial state s (that depends on both k and v).
- 4. One runs the RC4 keystream generator on s, producing a keystream z of the same length as p.
- 5. The encryption of p is returned as $c := p \oplus z$, along with the initialisation vector v.

A designer suggests to use RC4 as the basis of a MAC algorithm. For simplicity, we assume that the input is at least 128-bit long, or that it has otherwise been padded up to that length (or longer) using an appropriate injective padding scheme. To authenticate a message one runs RC4 encryption on the input and returns the last 128 bits of the ciphertext as a tag. In more details:

- 1. Two communicating parties share a secret key k.
- 2. One runs a setup algorithm on the pair (k, 0) that returns an initial state s.
- 3. For each new input x to be authenticated, one runs the RC4 keystream generator on s, producing a keystream z of the same length as x.
- 4. One encrypts x as $c := x \oplus z$; the last 128 bits of c are returned as the authentication tag of x.

Q.4:

1. Give (and analyse) a very efficient attack on RC4-MAC with respect to either one of the three security notions studied in this exercise.

Exercise 3: tls-not-unique (Adapted from final exam '21)

A certain network protocol authenticates every packet of 384 bits using a MAC that has tags of bitlength 96. For every *session* of the protocol (what is a session is not important here, but in a typical day one expects much more than 2^{40} sessions to be created worldwide), an identifier that is expected to uniquely identify the session among all possible sessions (past and future) is taken to be the 96-bit tag of a designated packet that is part of the session.

- 1. Identify a problem in the above process.
- 2. Propose a simple solution to fix it.

Exercise 4: Birthdays and a random sequence (Adapted from final exam '17)

Let S be a set of size N; let $(u_n)_{n \in \mathbb{N}}$ be a sequence whose elements are drawn independently and uniformly at random from S, i.e. for all i, $u_i \leftarrow S$. Suppose that you do not initially know S,¹ nor N.

- 1. Give an algorithm that examines $\Theta(\sqrt{N})$ terms of (u_n) and that returns an approximation of N (you do not need to quantify the quality of this approximation).
- 2. What is the time and memory cost of your algorithm (be careful to fully specify the data structures you may use)?

¹Be careful that the elements of S need not be integers. For instance S could be equal to {martes martes, martes foina, martes zibellina}.