Introduction to cryptology TD#1

2024-W5

Exercise 1: One-time pad

Q.1: One considers two independent random variables X and Y over $\{0, 1\}$. X follows a uniform distribution, and Y is arbitrary; we let $p := \Pr[Y = 0]$.

Let $Z := X \oplus Y$ over $\{0, 1\}$ be given as the XOR of X and Y. Compute:

- 1. $\Pr[Z = 0]$
- 2. $\Pr[Z = 1]$
- 3. $\Pr[Z = 0 \land Y = 0]$; deduce that Z is independent from Y.
- 4. $\Pr[Z = 0 \land X = 0]$; deduce that Z is independent from X iff. p = 1/2.
- 5. $\Pr[Y = 0 : Z = 0]$

HINT. Use the formula of conditional probabilities:

$$\Pr[A:B] = \frac{\Pr[B:A]\Pr[A]}{\Pr[B]}$$

(for $\Pr[B] > 0$).

- 6. $\Pr[Y = 0 : Z = 0]$, now taking an arbitrary distribution for X, letting $q := \Pr[X = 0]$. Compare with the previous result.
- **Q.2:** Recall that n random variables X_0, \ldots, X_{n-1} of co-domain X_0, \ldots, X_{n-1} are *mutually independent* iff.:

$$\forall (x_i)_{0 \leqslant i < n} \in \mathfrak{X}_0 \times \cdots \times \mathfrak{X}_{n-1}, \ \Pr\left[\bigwedge_{0 \leqslant i < n} X_i = x_i\right] = \prod_{0 \leqslant i < n} \Pr[X_i = x_i]$$

or equivalently iff .:

$$\begin{aligned} \forall \, (x_i)_{0 \leqslant i < n} \in \mathfrak{X}_0 \times \cdots \times \mathfrak{X}_{n-1}, \ \forall \, j \in \llbracket 0, n-1 \rrbracket, \\ \Pr\left[X_j = x_j : \bigwedge_{0 \leqslant i \neq j < n} X_i = x_i \right] = \Pr[X_j = x_j] \end{aligned}$$

We consider a random variable $X = (X_i)_{0 \leq i < n} \in \{0, 1\}^n$.

1. Show that X is uniform over $\{0,1\}^n$ iff. the X_i's are mutually independent and uniform over $\{0,1\}$.

Q.3:

Deduce from the previous questions that if X and Y are two independent random variables over {0,1}ⁿ, X uniform, then Z := X ⊕ Y given by the bitwise XOR of X and Y is uniform over {0,1}ⁿ and independent from Y.

REMARK: More generally, one may show that the above holds over any finite quasigroup.

Figure 1: The coupon collector's problem: a Calvin & Hobbes illustration

Exercise 2: (multi-)collisions

In this exercise, we let S be an arbitrary finite set of size N, and we denote by $X \leftarrow S$ the process of drawing X from S uniformly at random, and independently of any other process.

Let $X \leftarrow S$, $Y \leftarrow S$, $Z \leftarrow S$.

- 1. Compute $\Pr[(X = x) \land (Y = y)]$ for any $x, y \in S$.
- 2. Compute $\Pr[X = Y]$.
- 3. Compute $\Pr[X = Y = Z]$.

Exercise 3: For my birthday I got a coupon for a pair of socks

Let again S be an arbitrary finite set of size N, which we sample repeatedly by drawing X_1, \ldots, X_q uniformly and independently. A (non-trivial) *collision* for those random variables is a pair $(X_i, X_{j \neq i} = X_i)$.

Q.1 (*Pigeonhole principle*, or *lemme des chaussettes*): How many samples q are necessary to ensure (with probability 1) that there is *at least one* collision among X_1, \ldots, X_q ?

Q.2 (Birthday paradox):

- 1. Compute the probability p_{unq}^{q} that there are *no* collisions among X_1, \ldots, X_q .
- 2. Using the union bound, give an upper bound for $p_{col}^q := 1 p_{unq}^q$, the probability that there *is* a collision. HINT: Introduce some new random variables $C_{i,j}$ that indicate if their corresponding pair (X_i, X_j) forms a collision.
- 3. Compute the expected number of collisions in function of q.

HINT: Use the linearity of expectations.

REMARK. By suitably upper-bounding p_{unq}^q , one may show that for small enough values of q, $p_{col}^q \ge q(q-1)/4N$, cf. https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto/BirthdayBounds.pdf.

Q.3* (Coupon collector's problem, cf. Figure 1):

1. For all $\alpha \in \mathbb{R}$, $\alpha > 1$, compute an upper-bound on the number of samples q necessary to ensure that the probability that there is some a in S s.t. none of the X_i's evaluated to a (i.e. the probability that not all coupons were collected) is less than $1/\alpha$.

HINT: Apply the union bound to suitable random variables, and use $(1-1/N)^{kN} \leq e^{-k}$ (for k > 1).

2. Compute the expected number of samples q needed to collect all coupons.

HINT: Use the linearity of expectations and the fact that the number of samples needed to pick a new coupon after k have been collected follows a geometric distribution of parameter $\frac{n-k}{n}$.