Introduction to cryptology TD\#1

2024-W5

Exercise 1: One-time pad

Q.1: One considers two independent random variables X and Y over $\{0,1\}$. X follows a uniform distribution, and Y is arbitrary; we let $\mathrm{p}:=\operatorname{Pr}[\mathrm{Y}=0]$.

Let $Z:=X \oplus Y$ over $\{0,1\}$ be given as the $X O R$ of X and Y. Compute:

1. $\operatorname{Pr}[\mathrm{Z}=0]$
2. $\operatorname{Pr}[Z=1]$
3. $\operatorname{Pr}[Z=0 \wedge Y=0]$; deduce that Z is independent from Y.
4. $\operatorname{Pr}[Z=0 \wedge X=0]$; deduce that Z is independent from X iff. $p=1 / 2$.
5. $\operatorname{Pr}[\mathrm{Y}=0: \mathrm{Z}=0]$

Hint. Use the formula of conditional probabilities:

$$
\operatorname{Pr}[\mathrm{A}: \mathrm{B}]=\frac{\operatorname{Pr}[\mathrm{B}: \mathrm{A}] \operatorname{Pr}[\mathrm{A}]}{\operatorname{Pr}[\mathrm{B}]}
$$

(for $\operatorname{Pr}[B]>0)$.
6. $\operatorname{Pr}[\mathrm{Y}=0: \mathrm{Z}=0]$, now taking an arbitrary distribution for X , letting $\mathrm{q}:=\operatorname{Pr}[\mathrm{X}=0]$. Compare with the previous result.
Q.2: Recall that n random variables X_{0}, \ldots, X_{n-1} of co-domain X_{0}, \ldots, X_{n-1} are mutually independent iff.:

$$
\forall\left(x_{i}\right)_{0 \leqslant i<n} \in X_{0} \times \cdots \times X_{n-1}, \operatorname{Pr}\left[\bigwedge_{0 \leqslant i<n} x_{i}=x_{i}\right]=\prod_{0 \leqslant i<n} \operatorname{Pr}\left[X_{i}=x_{i}\right]
$$

or equivalently iff.:

$$
\begin{aligned}
& \forall\left(x_{i}\right)_{0 \leqslant i<n} \in X_{0} \times \cdots \times X_{n-1}, \forall j \in \llbracket 0, n-1 \rrbracket \\
& \quad \operatorname{Pr}\left[x_{j}=x_{j}: \bigwedge_{0 \leqslant i \neq j<n} x_{i}=x_{i}\right]=\operatorname{Pr}\left[X_{j}=x_{j}\right]
\end{aligned}
$$

We consider a random variable $X=\left(X_{i}\right)_{0 \leqslant i<n} \in\{0,1\}^{n}$.

1. Show that X is uniform over $\{0,1\}^{n}$ iff. the X_{i} 's are mutually independent and uniform over $\{0,1\}$.
Q.3:
2. Deduce from the previous questions that if X and Y are two independent random variables over $\{0,1\}^{n}, X$ uniform, then $Z:=X \oplus Y$ given by the bitwise $X O R$ of X and Y is uniform over $\{0,1\}^{n}$ and independent from Y.

REmARK: More generally, one may show that the above holds over any finite quasigroup.

Figure 1: The coupon collector's problem: a Calvin \& Hobbes illustration

Exercise 2: (multi-)collisions

In this exercise, we let \mathcal{S} be an arbitrary finite set of size N, and we denote by $X \varangle \mathcal{S}$ the process of drawing X from \mathcal{S} uniformly at random, and independently of any other process.

Let $X \nleftarrow \mathcal{S}, Y \nleftarrow \mathcal{S}, Z \nleftarrow \mathcal{S}$.

1. Compute $\operatorname{Pr}[(X=x) \wedge(Y=y)]$ for any $x, y \in \mathcal{S}$.
2. Compute $\operatorname{Pr}[\mathrm{X}=\mathrm{Y}]$.
3. Compute $\operatorname{Pr}[\mathrm{X}=\mathrm{Y}=\mathrm{Z}]$.

Exercise 3: For my birthday I got a coupon for a pair of socks

Let again \mathcal{S} be an arbitrary finite set of size N , which we sample repeatedly by drawing X_{1}, \ldots, X_{q} uniformly and independently. A (non-trivial) collision for those random variables is a pair ($X_{i}, X_{j \neq i}=X_{i}$).
Q. 1 (Pigeonhole principle, or lemme des chaussettes): How many samples q are necessary to ensure (with probability 1) that there is at least one collision among $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{q}}$?

Q. 2 (Birthday paradox):

1. Compute the probability $p_{\text {unq }}^{q}$ that there are no collisions among X_{1}, \ldots, X_{q}.
2. Using the union bound, give an upper bound for $p_{\text {col }}^{q}:=1-p_{\text {unq }}^{q}$, the probability that there $i s$ a collision. Hint: Introduce some new random variables $C_{i, j}$ that indicate if their corresponding pair (X_{i}, X_{j}) forms a collision.
3. Compute the expected number of collisions in function of q.

Hint: Use the linearity of expectations.
REmARK. By suitably upper-bounding $p_{\text {unq }}^{q}$, one may show that for small enough values of $q, p_{\text {col }}^{q} \geqslant$ $q(q-1) / 4 N$, cf. https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto/BirthdayBounds.pdf.
Q. $3 \star$ (Coupon collector's problem, cf. Figure 1):

1. For all $\alpha \in \mathbb{R}, \alpha>1$, compute an upper-bound on the number of samples q necessary to ensure that the probability that there is some a in \mathcal{S} s.t. none of the X_{i} 's evaluated to a (i.e. the probability that not all coupons were collected) is less than $1 / \alpha$.
Hint: Apply the union bound to suitable random variables, and use $(1-1 / N)^{k N} \leqslant e^{-k}$ (for $k>1$).
2. Compute the expected number of samples q needed to collect all coupons.

Hint: Use the linearity of expectations and the fact that the number of samples needed to pick a new coupon after k have been collected follows a geometric distribution of parameter $\frac{n-k}{n}$.

