Introduction to cryptology (GBIN8U16) Password Hashing

Pierre Karpman

pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

2024-03-13

1/24

Password hashing as a case-study/illustration

What we have seen so far:

- The importance of (appropriately) modelling security objectives
 - Understanding what we want
 - Making the right assumptions
 - Using the right parameters
- The interest of modular designs

Password hashing has:

- similar needs from "regular" cryptographic hashing
- but in fact quite different!
- pretty different designs in the end when done right (tho may reuse some components)
- → Let's have a (rather informal) closer look!

Motivation: How to store a password?

A simple login/password interaction:

- \blacksquare User U wants to log on system S; sends password p
- 2 System S checks password associated with U in database $D = \{(U_i, p_i)\}$; grants access if equal to p

A simple total break:

- Adversary A steals database D (Quite realistic; happens a lot)
- ⇒ Passwords must never be stored in clear!

How to solve this? With Crypto!

A first attempt (aborted):

- ▶ Store *p* encrypted with, say, CTR[*E*]
- U, S Need to store/know the user-dependent secret key: not much is solved

A first attempt:

- Store p encrypted with a public encryption scheme (e.g. RSA-OAEP)
- U needs to know S's public key
- S has a single secret to store (but always used to decrypt; not ideal)

Hash functions to the rescue

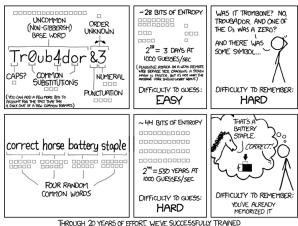
A second atttempt: go keyless!

- ► Store hashed passwords $\mathcal{H}(p) \rightsquigarrow D = \{(U_i, \mathcal{H}(p_i))\}$
- ▶ S checks that the received password hashes to the right value
- ▶ If \mathcal{H} is preimage-resistant, $\mathcal{H}(p) \nrightarrow p$?
- Basically sound, but the security analysis is not so simple

Passwords are not random

- Let $\mathcal{H}: \{0,1\}^* \to \{0,1\}^n$. For any explicit set \mathcal{S} , $\#\mathcal{S} \lesssim 2^{n/2}$, $x \in \mathcal{S}$ can be found in time $\leq \#\mathcal{S}$ given $\mathcal{H}(x)$ (Question: why? how?)
- If $\mathcal{H}(x)$ is used to identify x, any preimage works
- "Inverting" \mathcal{H} takes time $\approx \min(2^n, \#\mathcal{S})$ (Assuming $x \leftarrow \mathcal{S}$)
- Not a problem of hash functions specifically, just the absence of (other) secret

Password entropy: a global issue



IHROUGH 2D YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

https://xkcd.com/936/

So, What hash function to use?

Microsoft's LM hash? (1980's)

- Truncate p to 14 ASCII characters
- Convert it to uppercase
- \blacksquare Split it in two halves p_0 , p_1
- 4 LMHash $(p) = DES(p_0, c) || DES(p_1, c)$ for a fixed constant c
 - ▶ DES: $\{0,1\}^{56} \times \{0,1\}^{64} \to \{0,1\}^{64}$ is a block cipher

What's wrong with that?

- The two halves of the hash are processed separately
- Only 69⁷ ≤ 2⁴³ possible inputs per half
 - Only 2²⁰ seconds on one core of a typical laptop needed to exhaust them; time-memory tradeoffs are available
- Impossible to securely store a strong password

So, What hash function to use?

Microsoft's LM hash? (1980's)

- Truncate p to 14 ASCII characters
- Convert it to uppercase
- \blacksquare Split it in two halves p_0 , p_1
- 4 LMHash $(p) = DES(p_0, c) || DES(p_1, c)$ for a fixed constant c
 - ▶ DES: $\{0,1\}^{56} \times \{0,1\}^{64} \to \{0,1\}^{64}$ is a block cipher

What's wrong with that?

- The two halves of the hash are processed separately
- Only $69^7 \lesssim 2^{43}$ possible inputs per half
 - ▶ Only 2²⁰ seconds on one core of a typical laptop needed to exhaust them; time-memory tradeoffs are available
- Impossible to securely store a strong password

A better choice: an actual hash function

- A "modern" answer: just take ${\cal H}$ to be, say, SHA3-256
- Problem: multi-target attacks are (still) easy
 - ► An adversary may want to find one password among *N*
 - ▶ For every candidate p', check if $\mathcal{H}(p') \in D$
 - ▶ The work is decreased by a factor $\approx N$
 - N might be large (say, > 1000)
- ▶ One counter-measure: use different functions for every user
 - Simple to implement: every user U_i selects a large random number r_i (the "salt"); $D = \{(U_i, r_i, \mathcal{H}(r_i||p_i))\}$ (more generally, may use a "good MAC" with r_i as a key, but not necessary)
 - One has to check for every candidate p', for every user if p' is the right password \rightarrow no structural gain from multi-target

But hash functions are too fast!

- If a password is "random enough" (e.g. a 128-bit uniform string), (salted) hashing is fine
- But most/some might not be that
- Assume that one:
 - Has 2⁵⁰ password candidates for a user
 - Can compute 2²³ hashes/core/second
 - Has 128 available cores
 - ▶ ⇒ Only 2^{20} seconds (< two weeks) to find p (that's not enough)
- One counter-measure: make hash functions slower
 - Not slow enough to hinder the user
 - Slow enough to make exhaustive search too costly

First slow attempt: PBKDF2

- ▶ Instead of computing $\mathcal{H}(r||p)$ once, iterate many times!
- Example: PBKDF2
 - $h \approx \bigoplus_{i=0}^{c} h_i$; $h_i = \mathcal{H}(h_{i-1}||p)$; $h_0 = r$
 - ▶ Choose the iteration count *c* to be "large enough"
 - ▶ Typically $c \approx 1000$
- Say it takes 10ms to hash one password \Rightarrow 35 years on 10 000 cores to try 2⁵⁰ candidates for one user
- One problem:
 - ▶ The user *needs* to hash on a regular core
 - An adversary may try hashes on fast dedicated circuits

Selective slowness

A reasonable assumption:

- A PBKDF2 hash function can be computed 2²⁰ times faster than on a CPU core by using dedicated hardware with low amortized cost
- ▶ 10ms to hash one password on CPU \Rightarrow < 2^{-26} s on efficient hardware \Rightarrow < 2^{20} seconds on 10 machines to try 2^{50} passwords

How to solve this?

- Cannot make the user wait one day to check a password
- So use hashing that's slow everywhere

What's slow anyway?

An assumption: memory is similarly slow for everybody (CPU, GPU, FPGA, ASIC)

- So use a "memory-hard" hash function that needs a lot of memory to be computed
- A framework: the output must depend on "many" intermediate values, accessed many times → a (quadratic) tradeoff
 - Either store all intermediate values (costs memory)
 - Or recompute them as needed (costs time)
- Only increases memory consumption (not time) of hashing a password for a generic user
- Makes dedicated hardware not more efficient than regular CPU (hopefully)

One memory-hard example: scrypt

Scrypt (Percival, 2009), the (very rough) idea:

- Use the password and salt to generate a large buffer
- Access the buffer many times in an unpredictable way to generate the output

A bit more precisely:

- 1 $h_i = \mathcal{H}(h_{i-1}); h_0 = r || p$, for i up to n-1
- Return s_n

Scrypt comments

The intuitive tradeoff from two slides ago becomes:

- Either store all the h_i 's \rightsquigarrow time = memory $\approx n$ calls to $\mathcal{H}/\text{accesses}$
- ▶ Either recompute $h_{s_{i-1} \mod n}$ once s_{i-1} is known \rightsquigarrow constant memory, time $\approx n \times n/2$ calls to \mathcal{H}
- Any combination in between (e.g. store one tenth of the h_i 's, regularly spaced)
- \Rightarrow Only a few MB of generated values might be enough to defeat special-purpose hardware
 - One can in fact prove that the above tradeoff is roughly optimal (Alwen & al., 2016)

An alternative approach: "Halting puzzles"

HKDF (Boyen, 2007) uses a memory-hard function with an (optionally) *unknown* iteration count

- \blacksquare A user computes an iterated function on the password p
- 2 Interrupts the process when wanted; obtains a hash h of p and a verification string v
- The hash and the iteration count can be retrieved from p and v
 - The user may tune the iteration count on its own to its requirements
- · Without that knowledge, an adversary is less efficient

Password Hashing 2024-03-13 16/24

HKDF: How?

```
Preparation phase:
Input: p, r, t
Output: h, v, r
  1 z = \mathcal{H}(r||p)
  For i = 1, ..., t \triangleleft t may be user-defined
           y_i = z
            For * = 1, ..., q \triangleleft q controls the time/space ratio
  4
                 i = 1 + (z \mod i)
                 z = \mathcal{H}(z||y_i)
  6
     Return r; v = \mathcal{H}(y_1||z); h = \mathcal{H}(z||r)
```

HKDF: How? (bis)

```
Extraction phase:
Input: p, r, v
Output: h
 1 z = \mathcal{H}(r||p)
  2 For i = 1, \ldots, \infty
     y_i = z
  For * = 1, ..., q
                i = 1 + (z \mod i)
                z = \mathcal{H}(z||y_i)
  6
                If (\mathcal{H}(y_1||z) = v) Then Break
  Return h = \mathcal{H}(z||r)
```

HKDF, Scrypt comments

- Both functions use password-dependent memory accesses
- May leak information about the password (via side-channels)
- So (memory-hard) functions with password-independent accesses may sometimes be preferable
 - ▶ But then an adversary could set up good "dedicated" tradeoffs ~ careful in picking the access pattern
- For more on password hashing: https://password-hashing.net/

To finish: something a bit different

Password Hashing 2024-03-13 20/24

To finish: something a bit different

It may be useful to have a hash function that:

- Is slow to execute (i.e. it is slow to compute $y := \mathcal{H}(x)$ given x)
- Is fast to verify (i.e. it is fast to check that $y = \mathcal{H}(x)$ given x and y)
- → Verifiable delay functions (VDF)

An application:

Collaborative random-number generation

Public randomness

Randomness beacon

A Randomness beacon is a system that publishes (pseudo-)random numbers at regular interval

Example:

https://beacon.nist.gov/home

Some applications:

- Remote random consensus ("Shall we go to a pizzeria or a crêperie?")
- (Faster) challenge generation in authentication protocols
- Lotteries
- Jury/assembly selection
- Non-deterministic voting schemes

Collaborative beacons

One can distinguish:

- "Oracle" beacons (have to be trusted)
- "Collaborative" beacons (everyone can contribute)

A design strategy (Lenstra & Wesolowski, 2015):

- Use a slow hash function with fast verification that takes wall time $> \Delta$ to be computed (hopefully on the best platform)
- 2 Gather public seeds from time $t \Delta$ to t
- \blacksquare At time t, hash all collected seeds, then publish the hash
- Everyone can efficiently test the result and its dependence on the seeds
 - An adversary does not have time to precompute a hash and insert a seed that biases the result

A candidate slow hash function

Sloth: A slow hash function in a nutshell:

- ▶ If $p \equiv 3 \mod 4$ is a (large) prime, if $x \in \mathbb{F}_p^{\times}$ is a square mod p, the fastest know way to compute a square root of x is as $x^{(p+1)/4}$
- Exactly one of x or -x is a square (knowing which is easy) \Rightarrow one can map any number to a well-defined square root
- Computing a square root takes ≈ log(p) more time than "verifying" one

So (to make things more modular):

- Compute an iterative chain of square roots
- Interleaved with, say, block cipher applications to break the algebraic structure

Some comments

- Sloth is not memory-hard, but CPUs are good at big-number arithmetic
 - Dedicated hardware may not be a threat
 - (Some password-hashing functions are based on the same assumption (Pornin, 2014))
- A Twitter-accessible beacon (not really tweeting anymore): https://twitter.com/random_zoo
- The computation/verification gap in Sloth is not great asymptotically; better functions exist (cf. e.g. Wesolowski, 2019)