
Authentication & hashing 2024–02–21 1/35

Introduction to cryptology (GBIN8U16)
]

Authentication & hashing

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

2024–02–21

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html
https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

Authentication & hashing 2024–02–21 2/35

The goal: authentication

Current context:
I Two persons A & B wish to communicate (possibly
non-confidentially) over a reliable channel

I Facing active adversaries
 one option: using message authentication codes (MACs), to be
evaluated w.r.t. UP or PRF

How to do it if A & B :
I Know a small shared secret?

Authentication & hashing 2024–02–21 3/35

Authentication; small shared secret

Cryptographic hash functions

Hash function applications

Authentication & hashing 2024–02–21 4/35

Authentication: the idea

An active adversary over a channel may in all generality:
1 Block messages
2 Send messages

I So modify messages

Defending with crypto:
1 Impossible?
2 Detect the messages coming from the adversary (and reject

them)
I The non-rejected messages (should) “emulate” a channel w/

an (only) passive adversary
I Easy PoID (just say it)
I Confidentiality against an active adversary (just use passive

techno)

Authentication & hashing 2024–02–21 5/35

Authentication with MACs

Using a (small) shared secret:
1 A and B publicly agree on a MAC

F : {0, 1}κ × {0, 1}∗ → {0, 1}τ

2 A draws a uniform K ∈ {0, 1}κ and shares it with B

3 Every time A (resp. B) wishes to send a message m, he
sends (m, t := F(K ,m)) to B (resp. A)

4 Upon reception of a message (m, t), A (resp. B) computes
t ′ := F(K ,m) and rejects the message if t ′ 6= t

Vocabulary: t is a tag
Remarks:

I Doesn’t need to be randomised (but mind the interactions w/
encryption, cf. TD)

I Possible parameters: κ = τ = 128 (may vary)

Authentication & hashing 2024–02–21 6/35

MACs: security

What security properties for F?

Informally, we want that:
I The adversary cannot send a message that passes verification
I Even after having seen many valid (m, t) pairs

But:
I Not necessary for F to “hide” anything (if needed in the overall
system, must be done before on m)

I Not needed to detect “replay” (if needed —)

Authentication & hashing 2024–02–21 7/35

MACs: security (bis)

Typically, F is analysed w.r.t.:
I With oracle access to F(K � {0, 1}κ, ·)
I Universal unforgeability (UUF): given an arbitrary challenge m,

the adversary wins by returning a pair (m, t) s.t. t = F(K ,m)
I Existential unforgeability (EUF) (= UP): the adversary wins by

returning an unqueried pair (m, t) s.t. t = F(K ,m)

I PRF security
One may show (cf. TD) that a UUF attack ⇒ EUF attack ⇒ PRF
attack
 strongest assumption (most demanding): F is a PRF

Authentication & hashing 2024–02–21 8/35

MACs: what constructions?

Many options:
I With a mode for block cipher (PRP), e.g. CBC-MAC (mind
the details!)

I — (UP)
I With a statistical family of hash function + PRP/PRF
I With a mode for cryptographic hash functions ← let’s have a
look

Authentication & hashing 2024–02–21 9/35

Authentication; small shared secret

Cryptographic hash functions

Hash function applications

Authentication & hashing 2024–02–21 10/35

First definition

Hash function
A hash function is a mapping H :M→D

So it really is just a function...

Usually:
I M =

⋃
`<N{0, 1}`, D = {0, 1}n, N � n

I N is typically ≥ 264, n ∈ {////128, ////160, 224, 256, 384, 512}
Also popular now: extendable-output functions (XOFs): D =

⋃
`<N′{0, 1}`

N.B.: Hash functions are keyless

Authentication & hashing 2024–02–21 11/35

Security of hash functions

Ideal (non-standard) model:

Random oracle
A function H :M→D s.t. ∀x ∈M, H(x)� D

I Difficult/impossible to get in real life
I But a useful concept; what is “difficult” to do with a random
oracle should be difficult to do for a concrete hash function
(not always the case!)

I Equivalent to an Ideal block cipher (Coron et al., 2008; + later
patches)

Authentication & hashing 2024–02–21 12/35

Intermission: Ideal block ciphers

Ideal block cipher

Let Perms(M) be the set of the (#M)! permutations ofM; an
ideal block cipher E : K ×M→M is s.t. ∀k ∈ K,
E(k , ·)� Perms(M)

I All keys yield independent uniform permutations
I (∞ PRP security, if computed over the sampling of the IBC)
I Difficult/impossible to get in real life

Authentication & hashing 2024–02–21 13/35

Security of hash functions: classical definitions

One-way function:
I First preimage: given t = H($�M), find m s.t. H(m) = t

I Second preimage: given m, find m′ 6= m s.t. H(m) = H(m′)

I Collision: given ∅, find (m,m′ 6= m) s.t. H(m) = H(m′)

Success probability for a “generic” algorithm making q queries to a
random oracle over a (co-)domain of size N:
preimages: ≈ q/N
collisions: ≈ q2/N ← birthday paradox, again

Authentication & hashing 2024–02–21 14/35

Classical definitions (bis)

Reductions between definitions:
I (resisting) 2PRE ⇒ (resisting) PRE (Q: how to prove it?)
I (resisting) COL ⇒ (resisting) (2)PRE (WARNING:
exponential reduction!)

I Most (but not all!) applications of hash functions reduce to
resistance w.r.t. one or several of those definitions

Authentication & hashing 2024–02–21 15/35

Birthday paradox (again...)

Birthday paradox: collisions happen “quickly”
One way to phrase it:

Expected number of collisions in a list of uniform &
independent elements

Let L be a list of q elements xi � S, #S =: N,
C := #{(i , j > i) : xi = xj} the random variable that counts the
number of collisions in L, then E[C] = q(q − 1)/2N

Proof: cf. TD
I Need q ≈

√
N to get E[C] = 1

I cf. TD for variants

Authentication & hashing 2024–02–21 16/35

Hash function design

Bottom-up approach similar to encryption scheme design:
1 Design a “small” function (often a compression functions) of

fixed-size input (“like” a block cipher)
2 Design a “mode of operation” to handle arbitrary-size inputs
3 Reduce the security of the thusly-obtained function to the one

of the small function

Authentication & hashing 2024–02–21 17/35

Compression functions

Compression function

A compression function is a mapping
f : {0, 1}n × {0, 1}b → {0, 1}n

I A family of functions from n to n bits
I Not unlike a block cipher, only not (necessarily) invertible

Security defs. for compression functions:
I The same as for “full” hash functions, but with some additional
freedom from the “index” parameter

I Keyed definitions (again), e.g. PRF, with either input treated
as a key

Authentication & hashing 2024–02–21 18/35

Compression function design

Can do it from scratch, or as a “mode” for block ciphers:
1 Take a block cipher, decide what goes where
2 Optionally add feedforward to prevent invertibility

Examples:
“Davies-Meyer”: f (h,m) = E(m, h) + h (the “message” of f
becomes the “key” of E)
“BRSS/PGV–13”: f (h,m) = E(m, h)
“Matyas-Meyer-Oseas”: f (h,m) = E(h,m) +m

I Systematic analysis of simple BC-based constructions by
Preneel, Govaerts and Vandewalle (1993). “PGV”
constructions

I Then rigorous proofs in the ideal cipher model (Black et al.,
2002), (Black et al., 2010)

Authentication & hashing 2024–02–21 19/35

ICM PROOFS ARE NOT STANDARD

I Proofs in the ICM are NOT REDUCTION PROOFS ←
unlike e.g. reducing the IND-CPA security of CTR mode to
the PRF security of the primitive

I Only rule-out “generic” attacks that don’t exploit structural
properties of the BC

I Don’t give much guarantee about black-box instantiation

What does a security proof in the ICM say?
I Possibly a good basis for a construction
I But any instantiation needs a dedicated security analysis (e.g.
through cryptanalysis) same as for a primitive

Authentication & hashing 2024–02–21 20/35

Idealised models 6= standard model

Microsoft needed a hash function for ROM integrity check of the
XBOX

I Used TEA (Wheeler and Needham, 1994) in DM mode (Steil,
2005)

I Because of an earlier break of their RC4-CBC-MAC scheme (ibid.)
I Terrible idea, because of existence of equivalent keys for TEA
(Kelsey et al., 1996)!
I Keyspace is partitioned into (easy-to-define) classes of size 4

I For every k , it is easy to compute k̂ s.t. TEA(k ,m) =
TEA(k̂,m) ⇒ DM-TEA(h, k) = DM-TEA(h, k̂) ⇒ trivial
collisions!

The XBOX got hacked...
And yet, TEA is a “good” PRP (as far as we know)!

Authentication & hashing 2024–02–21 21/35

It doesn’t have to be bad, tho

I AES several PGV construction so far unbroken (see e.g. Sasaki
(2011))
I But small parameters‽

I Ditto, SHA-256’s compression function as a block cipher:
“SHACAL-2” (Handschuh and Naccache, 2001)
I Enormous keys, 512 bit!

Authentication & hashing 2024–02–21 22/35

Domain extension of compression functions

Assume a good f

I Main problem: fixed-size domain {0, 1}n × {0, 1}b

I Objective: domain extension to
⋃
`<N{0, 1}`

The classical answer: the Merkle-Damgård domain extender (1989)

Authentication & hashing 2024–02–21 23/35

MD: with a picture

pad(m) = m1 m2 m3 m4

fh0 = IV f
h1

f
h2

f
h3

h4 = H(m)

That is: H(m1||m2||m3|| . . .) = f (. . . f (f (f (IV,m1),m2),m3), . . .)

pad(m) ≈ m||1000 . . . 00〈length of m〉 ← strengthening

Authentication & hashing 2024–02–21 24/35

MD security proof (sketch)

Method: simple contrapositive arguments
I Attack {PRE, COL} on H ⇒ attack {PRE, COL} on f

First preimage case

If H(m1||m2|| . . . ||m`) = t, then f (H(m1||m2|| . . . ||m`−1),m`) = t

Collision case (sketch)

If H(m1||m2|| . . . ||m`) = H(m′1||m′2|| . . . ||m′`), show that ∃i s.t.
(hi := H(m1||m2|| . . . ||mi−1),mi) 6= (h′i :=
H(m′1||m′2|| . . . ||m′i−1),m′i) and f (hi ,mi) = f (h′i ,m

′
i)

I Proper message padding (such as (strengthening) necessary to
make it work!

Authentication & hashing 2024–02–21 25/35

What about 2PRE?

No proof (with optimal resistance), can’t have one:
I Generic attack on messages of 2k blocks for a cost
≈ k2n/2+1 + 2n−k+1 (Kelsey and Schneier, 2005)

I Idea: exploit internal collisions in the hi s
This is not nice, but:

I Requires (very) long messages to gain something
I At least as expensive as collision search
I Always going to be the case for a generic attack, since 2PRE

attack ⇒ COL attack (for which there is a reduction)
I If n is chosen s.t. generic collisions are out of reach, we’re
somewhat fine

 Didn’t make people give up MD hash functions (MD5, SHA-1,
SHA-2 family)

Authentication & hashing 2024–02–21 26/35

MD variants w/ optimal 2PRE resistance

Simple MD variants: Chop-MD/Wide-pipe MD (Coron et al., 2005)
and (Lucks, 2005)

I Build H from f : {0, 1}2n × {0, 1}b → {0, 1}2n, truncate
output to n bits (say)

I Collision in the output ; collision in the internal state
I Very strong provable guarantees (in an ideal model) (Coron et
al.)
I Secure domain extender for fixed-size RO (ideal compression

function)
I Concrete instantiations: SHA-512/224, SHA-512/256 (2015)

Authentication & hashing 2024–02–21 27/35

Careful with models (again)!

I Coron et al. prove very strong indifferentiability properties for
Chop-MD w/ an ideal CF

I But this in fact doesn’t guarantee things such as preservation
of collision-resistance (Bellare & Ristenpart, 2006)!
I One can do “stupid things” with a non-ideal compression

function
I Chop-MD with a (real) CR c.f. is not (necessarily) CR!
I (In essence, one needs strengthening in the padding)

Authentication & hashing 2024–02–21 28/35

Reduction proofs: what do they tell us? (MD case study)

I If one doesn’t have “efficient” attacks for COL/PRE security of
f underlying H, all is well

I Else, ...???
I Attacking the assumption (i.e. f) is a meaningful goal for
cryptographers ((semi-)freestart attacks)

I Don’t use an H with broken f
I Same as not using CTR[E] w/ a broken E (w.r.t. PRP security)

Authentication & hashing 2024–02–21 29/35

The MD5 failure

I MD5: designed by Rivest (1992)
I 1993: very efficient collision attack on the compression
function (den Boer and Bosselaers); mean time of 4 minutes
on a 33MHz 80386

I MD5 still massively used...
I 2005: very efficient collision attack on the hash function
(Wang and Yu)

I Still used...
I 2007: practically threatening collisions (Stevens et al.)
I Still used...
I 2009: even worse practical collision attacks (Stevens et al.)
I Hmm, maybe we should move on?

Authentication & hashing 2024–02–21 30/35

Was this avoidable?

Yes!
I Early signs of weaknesses move to alternatives ASAP!
I What were they (among others)?
I 1992: RIPEMD (RIPE); practically broken (collisions) 2005

(Wang et al.)
I 1993: SHA-0 (NSA); broken (collisions) 1998 (Chabaud and

Joux); practically broken 2005 (Biham et al.)
I 1995: SHA-1 (NSA); broken (collisions) 2005 (Wang et al.);

practically broken 2017 (Stevens et al. (and me!))
I 1996: RIPEMD-128 (Dobbertin et al.); broken (collisions)

2013 (Landelle and Peyrin)
I 1996: RIPEMD-160 (Dobbertin et al.); unbroken so far
I 2001: SHA-2 (NSA); —
I 2008: SHA-3 (Keccak team); —

Authentication & hashing 2024–02–21 31/35

Some remarks

I CRHF are (were) hard to design!
I “Theoretical” attacks (that are too expensive to run) are still
worrisome

I An attack that’s “too expensive” may become practical in the
future

I Don’t use broken algorithms
I Don’t start using SHA-1 in 2005, like Git did...

I Much “easier” to be secure w.r.t. (2)PRE, but COL resistance
usually needed
I Don’t use a hash function without understanding why!

Authentication & hashing 2024–02–21 32/35

Authentication; small shared secret

Cryptographic hash functions

Hash function applications

Authentication & hashing 2024–02–21 33/35

Hash functions: application to authentication

Let H :M→D, one may define:
I PrefixMACH : {0, 1}κ ×M→ D as
PrefixMACH(k,m) = H(k ||m)

I SuffixMACH : {0, 1}κ ×M→ D as
SuffixMACH(k,m) = H(m||k)

Remark : PrefixMACH ≈ SuffixMACH/ with H/ like H that reads its input

“backwards”

I Constructions generically secure (for a random oracle) but
without reduction to the traditional standard security
properties COL/PRE

I subtle to instantiate
I (For instance, okay with the “wide-pipe” SHA-512/256, but
not with the “narrow-pipe” SHA-512 or SHA-256!)

Authentication & hashing 2024–02–21 34/35

Authentication (bis)

Several hash-based MACs reduce their security to standard
properties of sub-components:

I SandwichMACH : {0, 1}κ ×M→ D ≈
SandwichMACH(k ,m) = H(k ||p||m||p′||k) (for appropriate
paddings p et p′) reduces its PRF security to PRF security of
compression functions of the MD hash function H
I Also probably reduces to COL resistance of H generically (but

TBC)
I Other popular MACs with the same kind of reduction: NMAC,
HMAC

Authentication & hashing 2024–02–21 35/35

Other applications

Hash functions (-based constructions) are useful in many settings,
e.g. for

I “Hash-and-sign” signatures (RSA signatures, (EC-)DSA...)
I Derandomization (e.g. FS transform)
I RSA padding (OAEP, PSS...)
I Hash-based signatures (rather expensive put PQ!)
I Key derivation
I Password hashing

WARNING: These require various security properties, sometimes
never met by “classical” hash functions (e.g. for password-hashing)
 sometimes hard to navigate

	Authentication; small shared secret
	Cryptographic hash functions
	Hash function applications

