Crypto Engineering (GBX9SY03)
Memoryless generic discrete logarithm computation in
an interval using kangaroos

2023-11-15

Grading

This TP is graded as part of the contréle continu. You must send a written report (in
a portable format) detailing your answers to the questions, and the corresponding source
code, wncluding all tests, with compilation and execution instructions by 2023-11-
24'T'18:00+40100) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed (but not mandatory), in which case only one report
needs to be sent, with the name of both students clearly mentioned.

Introduction

The goal of this exercise is to write a simple implementation of Pollard’s Kangaroo algo-
rithm to compute the discrete logarithm of a group element whose exponent is known to
lie in a “small” interval, without using (much) memory.

Let G = (g) be a finite group of order N, and h = g%, a € [0,W], W < N, be an
element for which we want to compute the discrete logarithm a. The algorithm is based on
the sequence of jumps of two kangaroos: a tame kangaroo, that always knows the discrete
logarithm of the element it lands on; and a w:ld kangaroo, that can only remember the
jumps from its starting point.

Both kangaroos jump deterministically and identically from one group element to
another; in other words, both use the same jump map J : G — G. They also regularly lay
traps to try to catch each other, and it is clear that if one jumps on an element already
visited by the other, the former will eventually get caught by a trap of the latter (in other
words, barring a full cycle in the entire group, a kangaroo cannot get caught as long as it
is leading (i.e. has the largest logarithm)). When this happens, one has in fact recovered
enough information to compute the discrete logarithm of h.

In more details one does the following, where k, u, d are parameters whose values are
to be determined later.

— Split G into k subsets 3; of approximately equal size; pick k exponents e; s.t. their
average 1/k Z};l ej ~ y; define J from the k partial maps J; : 85 — G, x — xg“.

1

mailto:pierre.karpman@univ-grenoble-alpes.fr

https://membres-1jk.imag.fr/Pierre.Karpman/cry_eng2023_tp_roos.pdf

— The tame kangaroo’s sequence (x,,) is defined as xy = g(W/ 2 (i.e. the middle of
the interval); xi+1 = J(xi). Notice that at any time the discrete logarithm b; of
xi = gt is known.

— The wild kangaroo’s sequence (Y,) is defined as yo = h; yir1 = J(yi). Notice that
at any time, one can write y; as hg®t where c; is known.

— Define D : G — {T, L} so that Pr[D(x) = 1: x « G] = d; we say that the elements
for which D returns T are distinguished.

— Anytime a tame (resp. wild) kangaroo lands on a distinguished element x; (resp.
Vi), it lays a trap by recording (xi, bi) (resp. (yi,ci)) in an efficient data structure
for sets. However, if a trap (yj,c;) (resp. (x;,bj)) was already present, it instead
gets trapped and returns the discrete logarithm [b; — c;| (resp. [bj — cil).

A heuristic analysis (cf. | , §14.5]) suggests that for k ~ log(W)/2, u =~ vW/2,
d ~ log(W)/vW, the time cost of this algorithm is O(v/W) group operations, and the
memory cost is “small”.

The objective is now for you to implement this algorithm to search for logarithms in

[0,25% — 1] in the subgroup G < FJ5,5 - of prime order:

089008925435205262577237396041921 ~ 2109-6

Preparatory work

The file https://membres-1jk.imag.fr/Pierre.Karpman/mul11585.h implements the
group law of F;115_85, where elements are represented as integers thanks to the union
type:

typedef union

{
unsigned __int128 s;
uint64_t t[2];

} num128;

A variable num128 x can be accessed either as an unsigned 128-bit integer (which, while
non-standard, is supported by the main C compilers) as x.s or as the two quadwords
x.t[0], x.t[1] it is made of (typically in little endian).

Question 1

Using an optimal algorithm for this problem, what would approximately be the cost (in
number of group operations) of a generic discrete logarithm computation in the full group
G (i.e. using an algorithm that does not exploit the group structure)? Would this be
feasible “in reasonable time” on a personal computer?

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_roos.pdf
https://membres-ljk.imag.fr/Pierre.Karpman/mul11585.h

https://membres-1jk.imag.fr/Pierre.Karpman/cry_eng2023_tp_roos.pdf

Question 2

Write a function num128 gexp(uint64_t x) that implements the exponentiation map
[0, 264—1]] — G, x — g* where g, represented by the integer 4398046511104, is a generator
of G.

You may test your function on the few following values:

— g% = 0x42F953471EDCO0840EE23EECF 13E4
— @l12123123412345 _ (x21F33CAEB45F4D8BC716B91D838CC

— 18014398509482143 — (x7A2A1DECO9D0325357DAACBF4868F

Question 3 (bonus)

Explain how the function mul11585 works.

Implementing kangaroos

Question 4

Propose an explicit parameterisation and a instantiation strategy of the kangaroo method
to solve the stated discrete logarithm problem. That is you must specifiy suitable values
for k, u, d, W and how to pick the exponents e; i, the sets 8; i and D.

Question 5

Write a function num128 dlog64(num128 target) that solves the stated discrete loga-
rithm problem using the kangaroo method. Use it to compute the discrete logarithm of
the element represented by 0x71AC72AF7B138B6263BF2908A7B09.

A good implementation should be able to solve this problem in a couple of minutes,
on average.

HINT: For best performance, don’t forget to use appropriate optimisation options
for your compiler, and don’t make needless recomputations in the critical steps of your
program.

Question 6
Analyse experimentally the behaviour of your implementation. How does it compare with
the heuristic?
Question 7

Tweak some of the parameters of the algorithm (e.g. k, the position of the starting point,
etc.) and analyse the impact this has on the experimental running time.

References

[Gall2] Steven D. Galbraith, Mathematics of Public Key Cryptography, Cam-
bridge University Press, 2012, Available at https://www.math.auckland.ac.
nz/"sgal018/crypto-book/crypto-book.html.

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_roos.pdf
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html

