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Exercise 1: A random sequence (M1 Exam ‘18)

Let S be a set of size N ; let (un)n∈N be a sequence whose elements are drawn independently
and uniformly at random from S, i.e. for all i, ui � S. Suppose that you do not initially
know S,∗ nor N .

1. Give an algorithm that takes as input a finite number of elements of (un) and that
returns an approximation of N (you do not need to rigorously prove your approxi-
mation).

2. What is the time and memory complexity of your algorithm (be careful to specify
the data structures you may use)?

Exercise 2: 18+

Recall that Berp denotes the probability distribution over {0, 1} s.t. the event ‘1’ oc-
curs with probability p. We also denote by BerQp the product (or vectorial) distribution
Berp⊗ · · · ⊗ Berp formed by Q independent distributions Berp.
Recall also that the total variation distance between two distributions D and D′ over a fi-
nite universe Ω is defined as 1/2

∑
ω∈Ω |D(ω)−D′(ω)|, or equivalently

∑
{ω:D(ω)>D′(ω)}D(ω)−

D′(ω).

1. Suppose (w.l.o.g.) that p = 1/2 + ε, for ε > 0; specify a (tentatively optimal)
distinguisher for Berp and Ber1/2 (i.e. the uniform distribution over {0, 1}), and
compute its advantage in function of ε.

2. Same question for Ber2
p and Ber2

1/2. What remark can you make about the growth
of the advantage compared to previous question?

3. Compute the total variation distance between Ber2
p and Ber2

1/2. Was your previous
distinguisher optimal?

4. Propose a general distinguishing strategy for an arbitrary Q.

Remark. It is possible to show that to distinguish BerQp and BerQ1/2 with constant ad-

vantage (in function of p), one needs Q = Ω(1/ε2).

Exercise 3: MTP, CTR[RF]

For the sake of simplicity and without loss of generality, we assume in this exercise that
all messages are of a fixed bitlength n.

We define the many-time pad encryption algorithm as follows: given a key k ∈ {0, 1}n
and a message m ∈ {0, 1}n, it computes MTP(k,m) as m⊕ k.

1. Give an efficient attack on MTP, w.r.t. the IND-CPA security definition

∗Be careful that the elements of S need not be integers. For instance S could be equal to
{martes martes,martes foina,martes zibellina}.
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We now define the Counter mode with random function encryption algorithm CTR[RF]
as follows. Let Func({0, 1}n) denote the set of all functions of {0, 1}n → {0, 1}n. Further
let c be a stateful “counter” in J0, 2n − 1K initialised to zero, and c++ the expression that
evaluates to the n-bit string representing c, and then has the side-effect of incrementing its
value by one, modulo 2n. Given a key F ∈ Func({0, 1}n) and a message m, CTR[RF](F ,m)
is then computed as F (c++)⊕m

2. Show that AdvIND-CPA
CTR[RF] (< 2n,∞) = 0

3. Show that AdvIND-CPA
CTR[RF] (2n,∞) = 1

Exercise 4: PRP ⇒ UP

Consider a block cipher E : K × {0, 1}n → {0, 1}n.

1. Show that AdvPRP
E (q + 1, t+ 1) ≥

∣∣∣InSecUP
E (q, t)− 1

2n−q

∣∣∣.
Hint: Show that any UP adversary may be used as a black box to derive a PRP
adversary.

2. Give a specification for E s.t.:

(a) InSecUP
E (q,∞) = 1/(2n−1 − q);

(b) AdvPRP
E (q,∞) ≥ 1/2.

3. Explain why one may be justified in saying that for block ciphers, “PRP security
implies UP security, but the converse is false” (or equivalently, that “UP security
reduces to PRP security, but not the converse”).

4. Is the reduction of the previous question tight, considering that for a “good” E with
K = {0, 1}n, one expects AdvPRP

E (1, 1) ≈ 1/2n/2 and InSecUP
E (1, 1) ≈ 1/2n?

Exercise 5: RKA-UP

Consider a block cipher E : {0, 1}n × {0, 1}n → {0, 1}n, and Φ a set of functions of
{0, 1}n → {0, 1}n. We define the related-key unpredictability “RKA-UP[Φ]” of E with pa-
rameter Φ (and its associated insecurity function), similarly as the usual unpredictability,
except that in addition to its oracle for E (k, ·), the adversary may now additionally query
related-key oracles E (φ(k), ·) for any φ ∈ Φ.

For ∆ ∈ {0, 1}n, let �∆ (resp. ⊕∆) denote the function: x 7→ x�∆ (resp. x 7→ x⊕∆).†

We first consider Φ�,⊕ := {�∆ : ∆ ∈ {0, 1}n} ∪ {⊕∆ : ∆ ∈ {0, 1}n}.

1. Show that for some q, t = Θ(n), one has InSec
RKA-UP[Φ�,⊕]
E (q, t) ≈ 1.

Hint: Use the related-key oracles to recover k (with overwhelming probability, possi-
bly up to equivalence) by exploiting the fact that the carry propagation rule implies
that x� 1 = x⊕ 1 iff. x has its least-significant bit set to zero.

We now restrict Φ⊕ to {⊕∆ : ∆ ∈ {0, 1}n}.

2. Show that for some q, t = Θ(2n/2), one has (under very mild assumptions on E )

InSec
RKA-UP[Φ⊕]
E (q, t) ≈ 1.

Hint: Use the related-key oracles to recover k (with overwhelming probability, under
very mild assumptions on E ) by exploiting collisions between the sets {k′ : k′ �
{0, 1}n} and {k ⊕∆′ : ∆′ � {0, 1}n}.

†Here ‘⊕’ is the usual notation for the bitwise XOR, and � the (somewhat less) usual notation for
addition modulo the string size (of the canonical embedding of the strings to the integers).
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3. As far as you can tell, is RKA-UP[Φ�,⊕] a meaningful security notion? Same question
for RKA-UP[Φ⊕].

Remark. One usually rather considers related-key PRP security (which is a bit lengthier
to define), for which the attacks studied in this exercise naturally carry over (cf. for
instance the previous exercise). In the case of Φ⊕, one may show that for black-box block
ciphers, the above attack is essentially optimal.

Exercise 6: Active ciphertext-only attack on raw CTR mode

We consider the following setup: two parties exchange messages of the form m0|| · · · ||m7,
where m0, . . . ,m6 are 8-bit strings representing 7-bit ASCII characters,‡ and m7 represents
the sum modulo 256 of m0, . . . ,m6 interpreted as integers.

The messages are encrypted in CTR mode, instantiated with a 64-bit block cipher E
which is assumed to be a “good” PRP. The ciphertexts of (one-block) messages are of
the form c||E (k, c) ⊕ m, where c is the (public) counter. The selection of the counter
is assumed to be well-implemented, either through a stateful mechanism or from a high-
quality random source.

Upon receiving a message, one decrypts it as m′0|| · · · ||m′7 (using the counter provided
in the first half of the ciphertext) and checks if m′7 is indeed equal to the modular sum of
m′0, . . . ,m

′
6; if not, it sends back an unencrypted error code “SENDAGN” asking to resend

the message.
We then consider an active ciphertext-only adversary that can read every message

exchanged between the two parties; intercept any of those messages (so that the receiver
does not receive anything); inject arbitrary messages (that the receiver will treat in the
same way as if they had been sent by the other party).

Finally, we say that the ordered pair (a, b) of two n-bit strings has a (one-bit) signed
difference +2i, 0 ≤ i < n if a � 2i = b (where � is defined similarly as in the previous
exercise). Equivalently, this means that a and b differ exactly in their ith bit, and that
this bit is equal to zero in a, or i = n − 1. We say symmetrically that (a, b) has signed
difference −2i if a = b� 2i (or, introducing the � operator, a� 2i = b).§

1. Let a, b, c = a � b be 8-bit strings. Further let a′ = a ⊕ 1, b′ = b ⊕ 1, c′ = a′ � b′

(where 1 denotes here the string with only its least-significant bit set to 1). Show
that c = c′ iff. the signed differences of (a, a′) and (b, b′) have different signs.

2. Show that the above is not true anymore for a′ = a⊕ 27 and b′ = b⊕ 27.

3. Design an attack that, given a ciphertext c||E (k, c) ⊕m, injects 7 × 7 ciphertexts,
intercepts at most 7× 7 error messages, and returns 27 possible candidates for m.

4. Implement a proof of concept of this attack.

5. Explain why a similar attack would not work if one had used a “XOR checksum”
instead of a modular one (or more generally, any F2-linear error-detection mecha-
nism).

‡This implies in particular that the most-significant of those 8 bits is always zero.
§These definitions also naturally extend to differences on more than one bit, but we will not need those

in the present exercise. (When using multibit signed differences, one should be aware that there may be
several possible differences for a given pair, since the signed representation of bit strings is redundant.)
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