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Exercise 1: (multi-)collisions

In all of this exercise we let S be an arbitrary finite set of size N , and we denote by
X � S the process of drawing a random variable X from S uniformly at random, and
independently of any other process.

Let X � S, Y � S, Z � S.

1. Compute Pr[(X = x) ∧ (Y = y)] for any fixed x, y ∈ S.

2. Compute Pr[X = Y ].

3. Compute Pr[X = Y = Z].

Exercise 2: (non-)uniform masks

Let X and Y be two independent random variables drawn from F2 with a uniform law for
X and an unknown arbitrary law for Y .

1. What is the distribution of X + Y ? (That is, compute Pr[X + Y = 0])

We now draw X and Y independently from a finite commutative group (G,+) of size
N .

2. What is (again) the distribution of X + Y ? (Note that the distribution of X + Y is
given here by the discrete convolution of the distributions of X and Y ).

Remark. The result shown in those two questions is essential in cryptography, and is
used to justify the security of many constructions.

We go back to X and Y being drawn independently over F2, but consider this time
arbitrary laws for both of them. We write cX the correlation bias of X defined as cX =
|2 Pr[X = 0]− 1|, and the same for cY .

3. Compute cX+Y , the correlation bias of X + Y .

4. By induction, give a formula for the correlation bias of the sum X1 + · · ·+XN of N
independent variables of correlation biases c1, . . . , cN .

Remark. This last result is known in (symmetric) cryptography as the piling-up lemma.

We go back to X and Y being uniform from a finite commutative group (and still take
them to be independent), and let Z := X + Y .

5. Show thatX and Z are independent, but thatX, Y , Z are not mutually independent.
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Remark. One may show the general result that if ~X is a vector of n mutually indepen-
dent uniform random variables over a finite field Fq, M ∈ Fk×n

q , k ≤ n, then the n random

variables in ~Y := ~XM are mutually independent iff. M is of full rank. This result is at
the core of the construction of linear secret sharing schemes.

Exercise 3: For my birthday I got a coupon for a pair of socks

Let again S be an arbitrary finite set of size N , which we sample repeatedly by draw-
ing X1, . . . , Xq uniformly and independently. A (non-trivial) collision for those random
variables is a pair (Xi, Xj 6=i = Xi).

Q.1 (Pigeonhole principle, or lemme des chaussettes): How many samples q
are necessary to ensure (with probability 1) that there is at least one collision among
X1, . . . , Xq ?

Q.2 (Birthday paradox):

1. Compute the probability pqunq that there are no collisions among X1, . . . , Xq.

2. Using the union bound, give an upper bound for pqcol := 1 − pqunq, the probability
that there is a collision.

Hint: Introduce some new random variables Ci,j that indicate if their corresponding
pair (Xi, Xj) forms a collision.

3. Compute the expected number of collisions in function of q.

Hint: Use the linearity of expectations.

Remark. By suitably upper-bounding pqunq, one may show that for small enough values
of q, pqcol ≥ q(q−1)/4N , cf. https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto/
BirthdayBounds.pdf.

Q.3 (Coupon collector’s problem, cf. Figure 1):

1. For all α ∈ R, α > 1, compute an upper-bound on the number of samples q necessary
to ensure that the probability that there is some a in S s.t. none of the Xi’s evaluated
to a (i.e. the probability that not all coupons were collected) is less than 1/α.

Hint: Apply the union bound to suitable random variables, and use (1− 1/N)kN ≤
e−k (for k > 1).

2. Compute the expected number of samples q needed to collect all coupons.

Hint: Use the linearity of expectations and the fact that the number of samples
needed to pick a new coupon after k have been collected follows a geometric distri-
bution of parameter n−k

n .

Exercise 4: (close-to) uniform permutations ?

We consider the following algorithm to generate a random permutation of J1, NK (or more
generally, of N arbitrary elements): 1) build a list of N pairs (ri, i), where ri � Z/qZ;
2) sort the list according to the first element of the pairs; 3) return the list of the second
element of the pairs in the sorted order.
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Figure 1: The coupon collector’s problem: a Calvin & Hobbes illustration

Q.1 : Compute the number of sorted lists of N elements of Z/qZ.
Hint: Map all such possible lists to paths from (0, 1) to (N, q) in the 2-dimensional

discrete grid, where only horizontal and vertical steps are allowed.

Q.2 :

1. For every possible permutation generated by the algorithm, compute a non-trivial
upper-bound for the number of drawings for (r1, . . . , rN ) that lead to it.

2. What is then an upper-bound for the probability of occurence of any permutation?

3. Express this probability as δ/N ! for δ of the form
∏N−1

i=1 (1 + xi/q).

4. For a fixed N , give an approximative criterion on q for δ to be close to 1 (for instance
using the approximation (for “large” x)

(
1 + 1

x

)x ≈ e).
We now consider a variant of the algorithm, where one is interested in drawing a

random combination of weight w. This is done as follows: 1) build a list of N pairs
(ri, [i ≤ w]), where ri � Z/qZ (and [i ≤ w] is 1 if i ≤ w, and 0 otherwise); 2) sort the list
according to the first element of the pairs; 3) return the list of the second element of the
pairs in the sorted order.

Q.3 :

1. For every possible combination generated by the algorithm, compute a non-trivial
upper-bound for the number of drawings for (r1, . . . , rN ) that lead to it.

Hint: For any fixed combination, count the number of permutations that lead to it.
(This can be counted as the number of permutations that leave a given combination
invariant.)

2. What is then an upper-bound for the probability of occurence of any combination?

3. Express this probability as δ/
(
N
w

)
for δ of the form

∏N−1
i=1 (1 + xi/q).

4. How could this have been found directly by using the result of Q.2?

Remark. Generating (close-to) uniform permutations and combinations is an important
step in code- and lattice-based cryptosystems. The quantity δ computed above corresponds
to a divergence between the uniform distribution and the one obtained with the above algo-
rithm. This exercise is based on: https://ntruprime.cr.yp.to/divergence-20180430.
pdf.
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