Crypto Engineering
 Discrete probability

2023-09-19

Exercise 1: (multi-)collisions

In all of this exercise we let \mathcal{S} be an arbitrary finite set of size N, and we denote by $X \leftrightarrow \mathcal{S}$ the process of drawing a random variable X from \mathcal{S} uniformly at random, and independently of any other process.

Let $X \leftrightarrow \mathcal{S}, Y \leftrightarrow \mathcal{S}, Z \varangle \mathcal{S}$.

1. Compute $\operatorname{Pr}[(X=x) \wedge(Y=y)]$ for any fixed $x, y \in \mathcal{S}$.
2. Compute $\operatorname{Pr}[X=Y]$.
3. Compute $\operatorname{Pr}[X=Y=Z]$.

Exercise 2: (non-)uniform masks

Let X and Y be two independent random variables drawn from \mathbb{F}_{2} with a uniform law for X and an unknown arbitrary law for Y.

1. What is the distribution of $X+Y$? (That is, compute $\operatorname{Pr}[X+Y=0]$)

We now draw X and Y independently from a finite commutative group $(\mathbb{G},+)$ of size N.
2. What is (again) the distribution of $X+Y$? (Note that the distribution of $X+Y$ is given here by the discrete convolution of the distributions of X and Y).

Remark. The result shown in those two questions is essential in cryptography, and is used to justify the security of many constructions.

We go back to X and Y being drawn independently over \mathbb{F}_{2}, but consider this time arbitrary laws for both of them. We write c_{X} the correlation bias of X defined as $c_{X}=$ $|2 \operatorname{Pr}[X=0]-1|$, and the same for c_{Y}.
3. Compute c_{X+Y}, the correlation bias of $X+Y$.
4. By induction, give a formula for the correlation bias of the sum $X_{1}+\cdots+X_{N}$ of N independent variables of correlation biases c_{1}, \ldots, c_{N}.

Remark. This last result is known in (symmetric) cryptography as the piling-up lemma.
We go back to X and Y being uniform from a finite commutative group (and still take them to be independent), and let $Z:=X+Y$.
5. Show that X and Z are independent, but that X, Y, Z are not mutually independent.

Remark. One may show the general result that if \vec{X} is a vector of n mutually independent uniform random variables over a finite field $\mathbb{F}_{q}, \boldsymbol{M} \in \mathbb{F}_{q}^{k \times n}, k \leq n$, then the n random variables in $\vec{Y}:=\vec{X} \boldsymbol{M}$ are mutually independent iff. \boldsymbol{M} is of full rank. This result is at the core of the construction of linear secret sharing schemes.

Exercise 3: For my birthday I got a coupon for a pair of socks

Let again \mathcal{S} be an arbitrary finite set of size N, which we sample repeatedly by drawing X_{1}, \ldots, X_{q} uniformly and independently. A (non-trivial) collision for those random variables is a pair $\left(X_{i}, X_{j \neq i}=X_{i}\right)$.
Q. 1 (Pigeonhole principle, or lemme des chaussettes): How many samples q are necessary to ensure (with probability 1) that there is at least one collision among X_{1}, \ldots, X_{q} ?

Q. 2 (Birthday paradox):

1. Compute the probability p_{unq}^{q} that there are no collisions among X_{1}, \ldots, X_{q}.
2. Using the union bound, give an upper bound for $p_{\mathrm{col}}^{q}:=1-p_{\mathrm{unq}}^{q}$, the probability that there is a collision.

Hint: Introduce some new random variables $C_{i, j}$ that indicate if their corresponding pair $\left(X_{i}, X_{j}\right)$ forms a collision.
3. Compute the expected number of collisions in function of q.

Hint: Use the linearity of expectations.

Remark. By suitably upper-bounding $p_{\text {unq }}^{q}$, one may show that for small enough values of $q, p_{\text {col }}^{q} \geq q(q-1) / 4 N$, cf. https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto/ BirthdayBounds.pdf.

Q. 3 (Coupon collector's problem, cf. Figure 1):

1. For all $\alpha \in \mathbb{R}, \alpha>1$, compute an upper-bound on the number of samples q necessary to ensure that the probability that there is some a in \mathcal{S} s.t. none of the X_{i} 's evaluated to a (i.e. the probability that not all coupons were collected) is less than $1 / \alpha$.
Hint: Apply the union bound to suitable random variables, and use $(1-1 / N)^{k N} \leq$ $e^{-k}($ for $k>1)$.
2. Compute the expected number of samples q needed to collect all coupons.

Hint: Use the linearity of expectations and the fact that the number of samples needed to pick a new coupon after k have been collected follows a geometric distribution of parameter $\frac{n-k}{n}$.

Exercise 4: (close-to) uniform permutations \star

We consider the following algorithm to generate a random permutation of $\llbracket 1, N \rrbracket$ (or more generally, of N arbitrary elements): 1) build a list of N pairs (r_{i}, i, where $r_{i} \leftrightarrow \mathbb{Z} / q \mathbb{Z}$; 2) sort the list according to the first element of the pairs; 3) return the list of the second element of the pairs in the sorted order.

Figure 1: The coupon collector's problem: a Calvin \& Hobbes illustration
Q. 1 : Compute the number of sorted lists of N elements of $\mathbb{Z} / q \mathbb{Z}$.

Hint: Map all such possible lists to paths from $(0,1)$ to (N, q) in the 2-dimensional discrete grid, where only horizontal and vertical steps are allowed.

Q. 2 :

1. For every possible permutation generated by the algorithm, compute a non-trivial upper-bound for the number of drawings for $\left(r_{1}, \ldots, r_{N}\right)$ that lead to it.
2. What is then an upper-bound for the probability of occurence of any permutation?
3. Express this probability as δ / N ! for δ of the form $\prod_{i=1}^{N-1}\left(1+x_{i} / q\right)$.
4. For a fixed N, give an approximative criterion on q for δ to be close to 1 (for instance using the approximation (for "large" $x)\left(1+\frac{1}{x}\right)^{x} \approx e$).

We now consider a variant of the algorithm, where one is interested in drawing a random combination of weight w. This is done as follows: 1) build a list of N pairs $\left(r_{i},[i \leq w]\right)$, where $r_{i} \nleftarrow \mathbb{Z} / q \mathbb{Z}$ (and $[i \leq w]$ is 1 if $i \leq w$, and 0 otherwise); 2) sort the list according to the first element of the pairs; 3) return the list of the second element of the pairs in the sorted order.

Q. 3 :

1. For every possible combination generated by the algorithm, compute a non-trivial upper-bound for the number of drawings for $\left(r_{1}, \ldots, r_{N}\right)$ that lead to it.
Hint: For any fixed combination, count the number of permutations that lead to it. (This can be counted as the number of permutations that leave a given combination invariant.)
2. What is then an upper-bound for the probability of occurence of any combination?
3. Express this probability as $\delta /\binom{N}{w}$ for δ of the form $\prod_{i=1}^{N-1}\left(1+x_{i} / q\right)$.
4. How could this have been found directly by using the result of Q.2?

Remark. Generating (close-to) uniform permutations and combinations is an important step in code- and lattice-based cryptosystems. The quantity δ computed above corresponds to a divergence between the uniform distribution and the one obtained with the above algorithm. This exercise is based on: https://ntruprime.cr.yp.to/divergence-20180430. pdf.

