
Password Hashing 2023–10–06 1/24

Crypto Engineering ’23
]

Password Hashing

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2023–10–06

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


Password Hashing 2023–10–06 2/24

Password hashing as a case-study/illustration

What we have seen so far:
▸ The importance of (appropriately) modelling security

objectives
▸ Understanding what we want
▸ Making the right assumptions
▸ Using the right parameters

▸ The interest of modular designs

Password hashing has:

▸ similar needs from “regular” cryptographic hashing

▸ but in fact quite different!

▸ ↝ pretty different designs in the end when done right (tho
may reuse some components)

↝ Let’s have a (rather informal) closer look!



Password Hashing 2023–10–06 3/24

Motivation: How to store a password?

A simple login/password interaction:

1 User U wants to log on system S ; sends password p

2 System S checks password associated with U in database
D = {(Ui ,pi)}; grants access if equal to p

A simple total break:

1 Adversary A steals database D (Quite realistic; happens a lot)

⇒ Passwords must never be stored in clear!



Password Hashing 2023–10–06 4/24

How to solve this? With Crypto!

A first attempt (aborted):

▸ Store p encrypted with, say, CTR[E ]

▸ U, S Need to store/know the user-dependent secret key:
nothing is solved

A first attempt:

▸ Store p encrypted with a public encryption scheme (e.g.
RSA-OAEP)

▸ U needs to know S ’s public key

▸ S has a single secret to store (but always used to decrypt; not
ideal)



Password Hashing 2023–10–06 5/24

Hash functions to the rescue

A second atttempt: go keyless!

▸ Store hashed passwords H(p) ↝ D = {(Ui ,H(pi)}
▸ S checks that the received password hashes to the right value

▸ If H is preimage-resistant, H(p)↛ p?

▸ Basically sound, but the security analysis is not so simple



Password Hashing 2023–10–06 6/24

Passwords are not random

▸ Let H ∶ {0,1}∗ → {0,1}n. For any explicit set S, #S ⪅ 2n/2,
x ∈ S can be found in time ≤ #S given H(x) (Question: why?
how?)

▸ If H(x) is used to identify x , any preimage works

▸ “Inverting” H takes time ≈ min(2n,#S) (Assuming x ↞ S)

▸ Not a problem of hash functions specifically, just the absence
of (other) secret



Password Hashing 2023–10–06 7/24

Password entropy: a global issue

https://xkcd.com/936/

https://xkcd.com/936/


Password Hashing 2023–10–06 8/24

So, What hash function to use?

Microsoft’s LM hash? (1980’s)

1 Truncate p to 14 ASCII characters

2 Convert it to uppercase

3 Split it in two halves p0, p1
4 LMHash(p) = DES(p0, c)∣∣DES(p1, c) for a fixed constant c

▸ DES ∶ {0,1}56 × {0,1}64 → {0,1}64 is a block cipher

What’s wrong with that?

▸ The two halves of the hash are processed separately
▸ Only 697 ⪅ 243 possible inputs per half

▸ Only 220 seconds on one core of a typical laptop needed to
exhaust them; time-memory tradeoffs are available

▸ Impossible to securely store a strong password



Password Hashing 2023–10–06 8/24

So, What hash function to use?

Microsoft’s LM hash? (1980’s)

1 Truncate p to 14 ASCII characters

2 Convert it to uppercase

3 Split it in two halves p0, p1
4 LMHash(p) = DES(p0, c)∣∣DES(p1, c) for a fixed constant c

▸ DES ∶ {0,1}56 × {0,1}64 → {0,1}64 is a block cipher

What’s wrong with that?

▸ The two halves of the hash are processed separately
▸ Only 697 ⪅ 243 possible inputs per half

▸ Only 220 seconds on one core of a typical laptop needed to
exhaust them; time-memory tradeoffs are available

▸ Impossible to securely store a strong password



Password Hashing 2023–10–06 9/24

A better choice: an actual hash function

▸ A “modern” answer: just take H to be, say, SHA3-256
▸ Problem: multi-target attacks are (still) easy

▸ An adversary may want to find one password among N
▸ For every candidate p′, check if H(p′) ∈ D
▸ The work is decreased by a factor ≈ N
▸ N might be large (say, > 1000)

▸ One counter-measure: use different functions for every user
▸ Simple to implement: every user Ui selects a large random

number ri (the “salt”); D = {(Ui , ri ,H(ri ∣∣pi))} (or e.g.
HMAC-H)

▸ One has to check for every candidate p′, for every user if p′ is
the right password ↝ no gain from multi-target



Password Hashing 2023–10–06 10/24

But hash functions are too fast!

▸ If a password is “random enough”, (salted) hashing is fine

▸ But most/some might not be that
▸ Assume that one:

▸ Has 250 password candidates for a user
▸ Can compute 223 hashes/core/second
▸ Has 128 available cores
▸ ⇒ Only 220 seconds (< two weeks) to find p (that’s not

enough)

▸ One counter-measure: make hash functions slower
▸ Not slow enough to hinder the user
▸ Slow enough to make exhaustive search too costly



Password Hashing 2023–10–06 11/24

First slow attempt: PBKDF2

▸ Instead of computing H(r ∣∣p) once, iterate many times!
▸ Example: PBKDF2

▸ h ≈⊕c
i=0 hi ; hi =H(hi−1∣∣p); h0 = r

▸ Choose the iteration count c to be “large enough”
▸ Typically c ≈ 1000

▸ Say it takes 10ms to hash one password ⇒ 35 years on 10 000
cores to try 250 candidates for one user

▸ One problem:
▸ The user needs to hash on a regular core
▸ An adversary may try hashes on fast dedicated circuits



Password Hashing 2023–10–06 12/24

Selective slowness

A reasonable assumption:

▸ A PBKDF2 hash function can be computed 220 times faster
than on a CPU core by using dedicated hardware with low
amortized cost

▸ 10ms to hash one password on CPU ⇒ < 2−26s on efficient
hardware ⇒ < 220 seconds on 10 machines to try 250

passwords

How to solve this?

▸ Cannot make the user wait one day to check a password

▸ So use hashing that’s slow everywhere



Password Hashing 2023–10–06 13/24

What’s slow anyway?

An assumption: memory is similarly slow for everybody (CPU,
GPU, FPGA, ASIC)

▸ So use a “memory-hard” hash function that needs a lot of
memory to be computed

▸ A framework: the output must depend on “many”
intermediate values, accessed many times ↝ a (quadratic)
tradeoff
▸ Either store all intermediate values (costs memory)
▸ Or recompute them as needed (costs time)

▸ Only increases memory consumption (not time) of hashing a
password for a generic user

▸ Makes dedicated hardware not more efficient than regular
CPU (hopefully)



Password Hashing 2023–10–06 14/24

One memory-hard example: scrypt

Scrypt (Percival, 2009), the (very rough) idea:

▸ Use the password and salt to generate a large buffer

▸ Access the buffer many times in an unpredictable way to
generate the output

A bit more precisely:

1 hi =H(hi−1); h0 = r ∣∣p, for i up to n − 1

2 si =H(si−1 ⊕ hsi−1 mod n), s0 =H(hn−1), for i up to n

3 Return sn



Password Hashing 2023–10–06 15/24

Scrypt comments

The intuitive tradeoff from two slides ago becomes:

▸ Either store all the hi ’s ↝ time = memory ≈ n calls to
H/accesses

▸ Either recompute hsi−1 mod n once si−1 is known ↝ constant
memory, time ≈ n × n/2 calls to H

▸ Any combination in between (e.g. store one tenth of the hi ’s,
regularly spaced)

⇒ Only a few MB of generated values might be enough to defeat
special-purpose hardware

▸ One can in fact prove that the above tradeoff is roughly
optimal (Alwen & al., 2016)



Password Hashing 2023–10–06 16/24

An alternative approach: “Halting puzzles”

HKDF (Boyen, 2007) uses a memory-hard function with an
(optionally) unknown iteration count

1 A user computes an iterated function on the password p

2 Interrupts the process when wanted; obtains a hash h of p and
a verification string v

3 The hash and the iteration count can be retrieved from p and
v

▸ The user may tune the iteration count on its own to its
requirements

▸ Without that knowledge, an adversary is less efficient



Password Hashing 2023–10–06 17/24

HKDF: How?

Preparation phase:
Input: p, r , t
Output: h, v , r

1 z =H(r ∣∣p)
2 For i = 1, . . . , t ◁ t may be user-defined

3 yi = z

4 For ∗ = 1, . . . ,q ◁ q controls the time/space ratio

5 j = 1 + (z mod i)
6 z =H(z ∣∣yj)
7 Return r ; v =H(y1∣∣z); h =H(z ∣∣r)



Password Hashing 2023–10–06 18/24

HKDF: How? (bis)

Extraction phase:
Input: p, r , v
Output: h

1 z =H(r ∣∣p)
2 For i = 1, . . . ,∞
3 yi = z

4 For ∗ = 1, . . . ,q

5 j = 1 + (z mod i)
6 z =H(z ∣∣yj)
7 If (H(y1∣∣z) = v) Then Break

8 Return h =H(z ∣∣r)



Password Hashing 2023–10–06 19/24

HKDF, Scrypt comments

▸ Both functions use password-dependent memory accesses

▸ May leak information about the password (via side-channels)
▸ So (memory-hard) functions with password-independent

accesses may sometimes be preferable
▸ But then an adversary could set up good “dedicated” tradeoffs
↝ careful in picking the access pattern

▸ For more on password hashing:
https://password-hashing.net/

https://password-hashing.net/


Password Hashing 2023–10–06 20/24

To finish: something a bit different



Password Hashing 2023–10–06 20/24

To finish: something a bit different

It may be useful to have a hash function that:

▸ Is slow to execute (i.e. it is slow to compute y ∶=H(x) given
x)

▸ Is fast to verify (i.e. it is fast to check that y =H(x) given x
and y)

▸ ↝ Verifiable delay functions (VDF)

An application:

▸ Collaborative random-number generation



Password Hashing 2023–10–06 21/24

Public randomness

Randomness beacon

A Randomness beacon is a system that publishes (pseudo-)random
numbers at regular interval

Example:

▸ https://beacon.nist.gov/home

Some applications:

▸ Remote random consensus (“Shall we go to a pizzeria or a
crêperie?”)

▸ (Faster) challenge generation in authentication protocols

▸ Lotteries

▸ Jury/assembly selection

▸ Non-deterministic voting schemes

https://beacon.nist.gov/home


Password Hashing 2023–10–06 22/24

Collaborative beacons

One can distinguish:

▸ “Oracle” beacons (have to be trusted)

▸ “Collaborative” beacons (everyone can contribute)

A design strategy (Lenstra & Wesolowski, 2015):

1 Use a slow hash function with fast verification that takes wall
time > ∆ to be computed (hopefully on the best platform)

2 Gather public seeds from time t −∆ to t

3 At time t, hash all collected seeds, then publish the hash

4 Everyone can efficiently test the result and its dependence on
the seeds

▸ An adversary does not have time to precompute a hash and
insert a seed that biases the result



Password Hashing 2023–10–06 23/24

A candidate slow hash function

Sloth: A slow hash function in a nutshell:

▸ If p ≡ 3 mod 4 is a (large) prime, if x ∈ F×p is a square mod p,
the fastest know way to compute a square root of x is as
x(p+1)/4

▸ Exactly one of x or −x is a square (knowing which is easy) ⇒
one can map any number to a well-defined square root

▸ Computing a square root takes ≈ log(p) more time than
“verifying” one

So (to make things more modular):

▸ Compute an iterative chain of square roots

▸ Interleaved with, say, block cipher applications to break the
algebraic structure



Password Hashing 2023–10–06 24/24

Some comments

▸ Sloth is not memory-hard, but CPUs are good at big-number
arithmetic
▸ Dedicated hardware may not be a threat
▸ (Some password-hashing functions are based on the same

assumption (Pornin, 2014))

▸ A Twitter-accessible beacon (not really tweeting anymore):
https://twitter.com/random_zoo

▸ The computation/verification gap in Sloth is not great
asymptotically; better functions exist (cf. e.g. Wesolowski,
2019)

https://twitter.com/random_zoo

