
Hash functions 2023–09–29 1/23

Crypto Engineering ’23
]

Hash functions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2023–09–29

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


Hash functions 2023–09–29 2/23

Hash functions: why

Hash functions are versatile primitive, good complement of block
ciphers. Some possible applications:

▸ Hash-and-sign (RSA signatures, (EC)DSA, ...)

▸ Padding schemes (e.g. for RSA) (OAEP, FDH, PSS...)

▸ Message-authentication codes (NMAC, HMAC,
SandwichMAC...)

▸ Password hashing (with a grain of salt)

▸ Hash-based signatures (not very efficient but PQ)

▸ Symmetric encryption

▸ As generic one-way functions (OWF)



Hash functions 2023–09–29 3/23

First definition

Hash function

A hash function is a mapping H ∶M→ D

So it really is just a function...

Usually:

▸ M= ⋃`<N{0,1}`, D = {0,1}n, N ≫ n

▸ N is typically ≥ 264, n ∈ {////128, ////160, 224, 256, 384, 512}

Also popular now: extendable-output functions (XOFs): D = ⋃`<N′{0,1}`

N.B.: Hash functions are keyless



Hash functions 2023–09–29 4/23

Hash function security

Proceed as for block ciphers

▸ Define ideal hash functions (not standard model security)

▸ Derive search-based definitions

▸ (((Derive decision-based definitions)))



Hash functions 2023–09–29 5/23

Idealized hash functions: Random oracles

Random oracle

A function H ∶M→ D s.t. ∀x ∈ M, H(x) ↞ D

▸ Equivalent to an ideal BC (Coron et al., 2008; + later
patches)



Hash functions 2023–09–29 6/23

Search-based security definitions

What is hard for a RO should be hard for a “good” HF
↝

1 First preimage: given t, find m s.t. H(m) = t

2 Second preimage: given m, find m′ ≠ m s.t. H(m) = H(m′)
3 Collision: find (m,m′ ≠ m) s.t. H(m) = H(m′)

Generic complexity (for a constant success probability):
1), 2): Θ(N);
3): Θ(

√
N)



Hash functions 2023–09–29 7/23

Decision-based security definitions

▸ Hard to do for single hash functions: no non-trivial distribution
over it ↝ pseudorandomness defs. not implementable

▸ Can somewhat be done for families of functions, but doesn’t
match typical usage



Hash functions 2023–09–29 8/23

Hash function design

Bottom-up approach similar to encryption scheme design from BC

▸ Define a subprimitive that you know how to build (e.g.
compression functions; permutations)

▸ Find ways to build hash functions from (any black-box
instance of) this primitive

▸ Prove appropriate security reductions
(“collision/preimage-resistance of the compression function ⇒
— of the hash function”)



Hash functions 2023–09–29 9/23

Compression functions

Compression function

A compression function is a mapping f ∶ {0,1}n × {0,1}b → {0,1}n

▸ A family of functions from n to n bits

▸ Not unlike a block cipher, only not (necessarily) invertible

Security defs. for compression functions:

▸ The same as for “full” hash functions

▸ But with some additional freedom from the “index” parameter



Hash functions 2023–09–29 10/23

Compression function design

Can do it from scratch, or as a “mode” for block ciphers:

1 Take a block cipher, decide what goes where

2 Optionally add feedforward to prevent invertibility

Examples:
“Davies-Meyer”: f (h,m) = Em(h) + h
“BRSS/PGV–13”: f (h,m) = Em(h)
“Matyas-Meyer-Oseas”: f (h,m) = Eh(m) +m

▸ Systematic analysis of simple BC-based constructions by
Preneel, Govaerts and Vandewalle (1993). “PGV”
constructions

▸ Then rigorous proofs in the ideal cipher model (Black et al.,
2002), (Black et al., 2010)



Hash functions 2023–09–29 11/23

ICM PROOFS ARE NOT STANDARD

▸ Proofs in the ICM are NOT REDUCTION PROOFS

▸ Only rule-out “generic” attacks that don’t exploit structural
properties of the BC

▸ ↝ Don’t give much guarantee about black-box instantiation

What does a security proof in the ICM say?

▸ Possibly a good basis for a construction

▸ But any instantiation needs a dedicated security analysis (e.g.
through cryptanalysis)



Hash functions 2023–09–29 12/23

Idealised models ≠ standard model

Microsoft needed a hash function for ROM integrity check of the
XBOX

▸ Used TEA (Wheeler and Needham, 1994) in DM mode (Steil,
2005)

▸ Because of an earlier break of their RC4-CBC-MAC scheme (ibid.)

▸ Terrible idea, because of existence of equivalent keys for TEA
(Kelsey et al., 1996)!
▸ Keyspace is partitioned into (easy-to-define) classes of size 4

▸ For every k , it is easy to compute k̂ s.t. TEA(k ,m) =
TEA(k̂ ,m) ⇒ DM-TEA(h, k) = DM-TEA(h, k̂) ⇒ trivial
collisions!

The XBOX got hacked...

And yet, TEA is a “good” PRP (as far as we know)!



Hash functions 2023–09–29 13/23

It doesn’t have to be bad, tho

▸ AES in a PGV construction so far unbroken (see e.g. Sasaki
(2011))
▸ But small parameters‽

▸ Ditto, SHA-256’s compression function as a block cipher:
“SHACAL-2” (Handschuh and Naccache, 2001)
▸ Enormous keys, 512 bit!



Hash functions 2023–09–29 14/23

Domain extension of compression functions

Assume a good f

▸ Main problem: fixed-size domain {0,1}n × {0,1}b

▸ Objective: domain extension to ⋃`<N{0,1}`

The classical answer: the Merkle-Damg̊ard domain extender (1989)



Hash functions 2023–09–29 15/23

MD: with a picture

pad(m) = m1 m2 m3 m4

fh0 = IV f
h1

f
h2

f
h3

h4 = H(m)

That is: H(m1∣∣m2∣∣m3∣∣ . . .) = f (. . . f (f (f (IV,m1),m2),m3), . . .)

pad(m) ≈ m∣∣1000 . . .00⟨length of m⟩ ← strengthening



Hash functions 2023–09–29 16/23

MD security proof (sktech)

Method: simple contrapositive arguments

▸ Attack {1stpreim., coll.} on H⇒ attack {1stpreim., coll.} on f

First preimage case

If H(m1∣∣m2∣∣ . . . ∣∣m`) = t, then f (H(m1∣∣m2∣∣ . . . ∣∣m`−1),m`) = t

Collision case (sketch)

If H(m1∣∣m2∣∣ . . . ∣∣m`) = H(m
′
1∣∣m

′
2∣∣ . . . ∣∣m

′
`), show that ∃i s.t.

(hi ∶= H(m1∣∣m2∣∣ . . . ∣∣mi−1),mi) ≠ (h
′
i ∶= H(m

′
1∣∣m

′
2∣∣ . . . ∣∣m

′
i−1),m

′
i)

and f (hi ,mi) = f (h′i ,m
′
i)

▸ Proper message padding (such as stenghtening) necessary to
make it work!



Hash functions 2023–09–29 17/23

What about 2nd preimages??

No proof (with optimal resistance), can’t have one:

▸ Generic attack on messages of 2k blocks for a cost
≈ k2n/2+1 + 2n−k+1 (Kelsey and Schneier, 2005)

▸ Idea: exploit internal collisions in the hi s

This is not nice, but:

▸ Requires (very) long messages to gain something
▸ At least as expensive as collision search

▸ Always going to be the case, as preimage ⇒ collision

▸ If n is chosen s.t. generic collisions are out of reach, we’re
somewhat fine

⇒ Didn’t make people give up MD hash functions (MD5, SHA-1,
SHA-2 family)



Hash functions 2023–09–29 18/23

MD variants w/ optimal 2nd preimage resistance

Simple MD variants: Chop-MD/Wide-pipe MD (Coron et al.,
2005) and (Lucks, 2005)

▸ Build H from f ∶ {0,1}2n × {0,1}b → {0,1}2n, truncate output
to n bits (say)

▸ Collision in the output ⇏ collision in the internal state
▸ Very strong provable guarantees (in an ideal model) (Coron et

al.)
▸ Secure domain extender for fixed-size RO (ideal compression

function)

▸ Concrete instantiations: SHA-512/224, SHA-512/256 (2015)



Hash functions 2023–09–29 19/23

Careful with models (again)!

▸ Coron et al. prove very strong indifferentiability properties for
Chop-MD w/ an ideal CF

▸ But this in fact doesn’t guarantee things such as preservation
of collision-resistance (Bellare & Ristenpart, 2006)!
▸ One can do “stupid things” with a non-ideal compression

function
▸ ↝ Chop-MD with a (real) CR c.f. is not (necessarily) CR!
▸ (In essence, one needs strengthening in the padding)



Hash functions 2023–09–29 20/23

Proofs: what do they tell us? (An MD exegesis)

▸ If one can’t attack collision/preimage security of f underlying
H, all is well

▸ Else, ...???

▸ ↝ Attacking f is a meaningful goal for cryptographers (≈
(semi-)freestart attacks)

▸ Don’t use a H with broken f
▸ Same as not using CTR[E ] w/ a broken E (w.r.t. PRP security)



Hash functions 2023–09–29 21/23

The MD5 failure

▸ MD5: designed by Rivest (1992)

▸ 1993: very efficient collision attack on the compression
function (den Boer and Bosselaers); mean time of 4 minutes
on a 33 MHz 80386

▸ MD5 still massively used...

▸ 2005: very efficient collision attack on the hash function
(Wang and Yu)

▸ Still used...

▸ 2007: practically threatening collisions (Stevens et al.)

▸ Still used...

▸ 2009: even worse practical collision attacks (Stevens et al.)

▸ Hmm, maybe we should move on?



Hash functions 2023–09–29 22/23

Was this avoidable?

Yes!

▸ Early signs of weaknesses ↝ move to alernatives ASAP!
▸ What were they (among others)?

▸ 1992: RIPEMD (RIPE); practically broken (collisions) 2005
(Wang et al.)

▸ 1993: SHA-0 (NSA); broken (collisions) 1998 (Chabaud and
Joux); practically broken 2005 (Biham et al.)

▸ 1995: SHA-1 (NSA); broken (collisions) 2005 (Wang et al.);
practically broken 2017 (Stevens et al. (and me!))

▸ 1996: RIPEMD-128 (Dobbertin et al.); broken (collisions)
2013 (Landelle and Peyrin)

▸ 1996: RIPEMD-160 (Dobbertin et al.); unbroken so far
▸ 2001: SHA-2 (NSA); unbroken so far



Hash functions 2023–09–29 23/23

Lesson to learn?

▸ Don’t use broken algorithms

▸ Care about “theoretical” attacks

▸ An attack that’s “too expensive” may become practical in the
future

Perfect bad example: Git

▸ Don’t use SHA-1 in 2005!

▸ Don’t hide/misunderstand needed security properties!

Also:

▸ Don’t use MD5, SHA-1..., even if you just care about
preimage attacks


