Crypto Engineering '23 ↔ Symmetric encryption (1)

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2023-09-26

Symmetric encryption (1)

^{2023–09–26} 1/50

Symmetric encryption: context

For now assume:

- A shared secret ("symmetric")
- Passive adversaries (wholly unrealistic??)
- Blackbox adversaries

→ (binary) (Symmetric) encryption scheme:

 $\mathsf{Enc}: \{0,1\}^\kappa \times \{0,1\}^* \to \{0,1\}^*$

s.t. $\forall k \in \{0,1\}^{\kappa}$, $Enc(k, \cdot)$ is invertible

N.B. Such schemes usually take additional parameters, hidden here

Definition for passive confidentiality

Block ciphers

Modes of operation for block ciphers

Definition for active confidentiality

Appendix: BC evolution

Symmetric encryption (1)

^{2023–09–26} **3/50**

Informal minimal security requirement: "Enc must be able to hide one bit, once"

Possible formalisation: require:

```
\mathsf{Enc}(\$,0)\approx\mathsf{Enc}(\$,1)
```

where $\mathsf{Enc}(\$,b)$ is the distribution of encryptions of b over uniform keys

But what if we:

- Only care about computationally-bounded adversaries?
- Want to encrypt more than one bit?

Let $\mathfrak{D}_b = \text{Enc}(\$, b)$, computational indistinguishability of \mathfrak{D}_0 and \mathfrak{D}_1 may be expressed from:

$$\mathsf{Adv}^{\mathfrak{D}_0,\mathfrak{D}_1}(1,t)$$

by requiring for instance that for "small" t, $Adv^{\mathfrak{D}_0,\mathfrak{D}_1}(1,t)$ is "small" (cf. previous discussion on orders of magnitude) \rightsquigarrow it's all (somewhat) relative, no definitive meaning The idea:

- give knowledge of prior encryptions of 0's and 1's
- ${}^{\scriptscriptstyle \triangleright}$ Enc(\$,0) and Enc(\$,1) must still be indist. conditioned on this knowledge
- (For instance, this completely fails if Enc with a fixed key is deterministic)

More generally:

- encrypt more than one bit
- let the adversary choose (adaptively) the messages encrypted before
- $\scriptstyle \triangleright$ look at the advantage in function of $\# {\sf known}$ encryption

 $\rightsquigarrow \mathsf{IND}(\mathsf{istinguishability})\mathsf{-}\mathsf{C}(\mathsf{hosen})\mathsf{P}(\mathsf{laintext})\mathsf{A}(\mathsf{ttack}) \text{ security}$

IND-CPA game (for symmetric encryption)

IND-CPA security for Enc: try to distinguish $\text{Enc}(k, m_0)$ from $\text{Enc}(k, m_1)$ for chosen equal-length messages m_0 , m_1 when given oracle access to an oracle for $\text{Enc}(k, \cdot)$, with unknown $k \leftarrow \{0, 1\}^{\kappa}$:

- **1** The "Challenger" chooses a key $k \leftarrow \{0,1\}^{\kappa}$
- 2 The Adversary may repeatedly submit queries x_i to the Challenger
- **3** The Challenger answers a query with $Enc(k, x_i)$
- **4** The Adversary now submits m_0 , m_1 of equal length
- **5** The Challenger draws $b \leftarrow \{0, 1\}$, answers with $Enc(k, m_b)$

6 The Adversary may again submit queries, and tries to guess $b \rightarrow \mathbf{Adv}_{Enc}^{IND-CPA}(q, t)$: the advantage associated to the winning probability for adversaries running in time t, making q queries

Exercise:

Let Enc be a deterministic encryption scheme. Give a very efficient attack against Enc w.r.t. IND-CPA security.

- Very easy to build very inefficient "perfect" IND-CPA encryption from a uniform random source (cf. TD)
- Very easy to build very efficient "'anti-perfect"" IND-CPA encryption from nothing (cf. here)
- ▶ Not easy to build "efficient" "good" IND-CPA encryption

Possible ways to build efficient good Enc:

- From scratch
- From a smaller *primitive*, used appropriately ← the most common approach; let's have a closer look

- The "I want something that works" part
 - Define a primitive that you know how to build (e.g. *block ciphers*)
 - Find ways to build encryption schemes from (any black-box instance of) this primitive
- The "I want some proofs" part
 - Find expressive security definitions syntactically compatible with this primitive (e.g. PRP, PRF security)
 - Prove appropriate security reductions ("good PRP-security of the block cipher => good IND-CPA security of the derived encryption scheme")

Definition for passive confidentiality

Block ciphers

Modes of operation for block ciphers

Definition for active confidentiality

Appendix: BC evolution

Block ciphers: what

Block cipher

A block cipher is a mapping $\mathcal{E} : \mathcal{K} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot)$ is invertible

In practice, most of the time:

- ▶ Keys $\mathcal{K} = \{0, 1\}^{\kappa}$, with $\kappa \in \{\emptyset \not \!\!/, \emptyset \not \!\!0, \not \!\!0 \not \!\!0, \frac{112}{12}, 128, 192, 256\}$
- ▶ Plaintexts/ciphertexts $\mathcal{M} = \mathcal{M}' = \{0, 1\}^n$, with $n \in \{64, 128, 256\}$
- \Rightarrow BCs are *families of permutations* over binary domains
 - Exception (non-binary): Format Preserving Encryption (FPE)

Block ciphers are:

- "Natural"; "simple"
- "Easy" to design
- Expressive (can be used to build many things)
- The weight of history

(Nonetheless, alternatives exist)

How to define "security" of a BC ? (Intuition: it should "hide stuff")

- ideal definition?
- search-based definition?
- decision-based definition?

Ideal block ciphers

Ideal block cipher

Let $\operatorname{Perm}(\mathcal{M})$ be the set of the $(\#\mathcal{M})!$ permutations of \mathcal{M} ; an *ideal block cipher* $\mathcal{E} : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ is s.t. $\mathcal{E}(\$, \cdot) \approx \mathfrak{P}$

 $\mathfrak{P}:$ shorthand for $\mathfrak{U}(\mathsf{Perm}(\mathcal{M})),$ itself the the uniform distribution over $\mathsf{Perm}(\mathcal{M})$

- "Maximally random"
- All keys yield truly random and independent permutations
- Quite costly to implement
 - ▶ Say $\mathcal{M} = \{0,1\}^{32} \rightsquigarrow (2^{32})^{2^{31}} < 2^{32}! < (2^{32})^{2^{32}}$ permutations
 - So about $32 \times 2^{32} = 2^{37}$ bits to describe one (\leftarrow key size)

 \rightsquigarrow Not very practical

IBC (cont.)

Why is an ideal block cipher ideal?

- The idea: for all fixed k the full knowledge of $\mathcal{E}(\mathcal{K} \setminus k, \mathcal{M})$ and $\mathcal{E}(k, S)$ gives *no information* on $\mathcal{E}(k, \overline{S})$ except that it is disjoint from $\overline{\mathcal{E}(k, S)}$ (as functionally required)
- ¿Being an ideal cipher is a postulate, not (really) something measurable (tho some things still are possible) ~> can't reduce to it ?
- i(Proofs in the *ideal cipher model* are a bit tricky to use (cf. the hash function lecture). Not in the *standard model*) ?
- i(You can't readily instantiate an ideal cipher) ?

Two approaches:

- "Search based": look at things hard to do for an IBC, ask the same, in some context
- "Decision based": measure how close you're from ideal, in some context

To attack the *unpredictability* of a BC $\mathcal{E} : \{0,1\}^{\kappa} \to \mathcal{M}$, define:

 $\mathsf{Game}\ \mathsf{Forge}^{\mathcal{E}}$

Give the adversary oracle access to $\mathbb{O} = \mathcal{E}(k, \cdot)$ for $k \leftarrow \{0, 1\}^{\kappa}$ The adversary wins iff. it returns a couple (x, y) s.t.:

1 x was not queried to \mathbb{O}

$$\mathcal{E}(k,x) = y$$

 $\sim \rightarrow$

$$\begin{split} \mathbf{InSec}^{\mathsf{UP}} \\ \mathbf{InSec}^{\mathsf{UP}}_{\mathcal{E}}(q,t) = \max_{\mathcal{A}_{q,t}} \mathsf{Pr}[\mathcal{A}^{\mathbb{O}}_{q,t}() \text{ wins Forge}^{\mathcal{E}}] \end{split}$$

Where $A_{q,t}$ run in time t and make q queries to its oracle

Symmetric encryption (1)

- ▶ The *full* $\mathcal{E}(k, x)$ needs to be predicted; predicting all bits minus one is not enough
 - "good" UP doesn't guarantee unpredictability of individual bits
 - (Security notion appropriate for e.g. authentication, not so much for encryption)
- ightarrow For an IBC, $\mathsf{InSec}^{\mathsf{UP}}(q,\infty) = 1/(\#\mathcal{M}-q)$

To attack the *pseudorandomness* of a BC $\mathcal{E} : \{0,1\}^{\kappa} \to \mathcal{M}$, define:

Game $\mathsf{PRP}^{\mathcal{E}}$

Pick the *real* or *ideal* world, w/ equal prob. Give the adversary oracle access to \mathbb{O} where:

- Fin the ideal world, $\mathbb{O} \leftarrow \mathsf{Perm}(\mathcal{M})$ (or $\mathbb{O} \sim \mathfrak{P}$))
- $\textbf{``in the real world, } \mathbb{O} = \mathcal{E}(k, \cdot) \text{ for } k \twoheadleftarrow \{0, 1\}^{\kappa} \text{ (or } \mathbb{O} \sim \mathcal{E}(\$, \cdot))$

The adversary wins iff. it correctly decides which world it lives in

PRP (cont.)

 $\sim \rightarrow$

 $\begin{aligned} \mathbf{Adv}^{\mathsf{PRP}} \\ \mathbf{Adv}_{\mathcal{E}}^{\mathsf{PRP}}(q,t) = \\ & \max_{A_{q,t}} |\Pr[A_{q,t}^{\mathbb{O}}() = 1 : \mathbb{O} \sim \mathfrak{P}] \\ & -\Pr[A_{q,t}^{\mathbb{O}}() = 1 : \mathbb{O} \sim \mathcal{E}(\$,\cdot)]| \end{aligned}$

Symmetric encryption (1)

^{2023–09–26} **21/50**

- It's fair to rely one only one bit to distinguish
 - "good" PRP guarantees indistinguishability of individual bits
 - (Security notion appropriate for e.g. encryption)
- \blacktriangleright PRP \Rightarrow UP (cf. TD), but not the converse
- For an IBC, $\mathbf{Adv}^{\mathsf{PRP}}(\infty, \infty) = 0$ (given how we've defined IBCs; for some variant definitions, this isn't true any more)

- Both UP and PRP admit *super* (or *strong*) variants where the adversary is also given oracle access to ⁰C^{−1}
- Both UP and PRP (in the real world) pick a *uniform, secret* member of the family defined by *E* (i.e. sample *E*(\$, ·)) → definitions *not appropriate* for different contexts (e.g. block cipher-based hash function design)

- Block ciphers are (families of) permutations → natural to compare them to random permutations
- ... But not the only way; anything that's syntactically similar could make sense
- ... For instance random functions (not necessarily invertible)
 - sometimes the definition you actually want to use (even if you yourself happen to be invertible)

For $\mathcal{F}:\mathcal{K}\times\mathcal{M}\to\mathcal{M}'$ a family of functions:

 $\begin{aligned} \mathsf{Adv}^{\mathsf{PRF}} \\ \mathsf{Adv}_{\mathcal{F}}^{\mathsf{PRF}}(q,t) = \\ & \max_{A_{q,t}} |\Pr[A_{q,t}^{\mathbb{O}}() = 1 : \mathbb{O} \sim \mathfrak{F}] \\ & -\Pr[A_{q,t}^{\mathbb{O}}() = 1 : \mathbb{O} \sim \mathcal{F}(\$,\cdot)]| \end{aligned}$

 $\mathfrak{F}:$ uniform distribution over all functions $\mathcal{M} \to \mathcal{M}'$

Symmetric encryption (1)

"Every good PRP is a good PRF" (over the same function space), up to the birthday bound Let \mathcal{E} be a BC over a domain of size N:

$$\mathsf{Adv}^{\mathsf{PRF}}_{\mathcal{E}}(q,t) \leqslant \mathsf{Adv}^{\mathsf{PRP}}_{\mathcal{E}}(q,t) + q(q-1)/2N$$

Proof: cf. "advanced crypto" course

Definition for passive confidentiality

Block ciphers

Modes of operation for block ciphers

Definition for active confidentiality

Appendix: BC evolution

Symmetric encryption (1)

^{2023–09–26} **27/50**

- A mode of operation transforms a block cipher into a symmetric encryption scheme
- $\mathbb{P} \approx \mathcal{E} \rightsquigarrow \mathsf{Enc} : \{0,1\}^{\kappa} \times \{0,1\}^{r} \times \{0,1\}^{*} \rightarrow \{0,1\}^{*}$
- For all $k \in \{0,1\}^{\kappa}$, $r \in \{0,1\}^r$, $\operatorname{Enc}(k,r,\cdot)$ is invertible
- ({0,1}^r, r ≥ 0 is used to make encryption non-deterministic; made explicit here for emphasis)

 ${\scriptstyle \blacktriangleright}$ ECB: just concatenate independent calls to ${\cal E}$

Electronic Code Book mode

 $m_1||m_2||\ldots \mapsto \mathcal{E}(k,m_1)||\mathcal{E}(k,m_2)||\ldots$

- No IND-CPA security
- (Even worse than "just" being deterministic)
 - Exercise: give a simple attack on ECB for the IND-CPA security notion w/ q = 0 and advantage 1

Second (actual) mode example: CBC

Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

 $r \times m_1 ||m_2|| \dots \mapsto c_0 := r||c_1 := \mathcal{E}(k, m_1 \oplus c_0)||c_2 := \mathcal{E}(k, m_2 \oplus c_1)|| \dots$

- Output block *i* (ciphertext) added (XORed) w/ input block
 i + 1 (plaintext)
- For first (m_1) block: use random IV r
- Okay security in theory ~>> okay security in practice if used properly

CBC IVs

CBC has bad IND-CPA security if the IVs are not random

- Consider an IND-CPA adversary who asks an oracle query CBC-ENC(m), gets $r, c = \mathcal{E}(k, m \oplus r)$ (where \mathcal{E} is the cipher used in CBC-ENC)
- Assume the adversary knows that for the next IV r', $\Pr[r' = x]$ is "large"
- Sends two challenges $m_0 = m \oplus r \oplus x$, $m_1 = m_0 \oplus 1$
- Gets $c_b = \text{CBC-ENC}(m_b)$, $b \leftarrow \{0, 1\}$

• If
$$c_b = c$$
, guess $b = 0$, else $b = 1$

Generic CBC collision attack

Even with random IVs, CBC's security degrades with # encryptions An observation:

- For a fixed k, $\mathcal{E}(k, \cdot)$ is a permutation so $\mathcal{E}(k, x) = \mathcal{E}(k, y) \Leftrightarrow x = y$
- In CBC, inputs to *E* are of the form *x* ⊕ *y* where *x* is a message block and *y* an IV or a ciphertext block

So
$$\mathcal{E}(k, x \oplus y) = \mathcal{E}(k, x' \oplus y') \Leftrightarrow x \oplus y = x' \oplus y'$$

A consequence:

• If
$$c_i = \mathcal{E}(k, m_i \oplus c_{i-1}) = c'_j = \mathcal{E}(k, m'_j \oplus c'_{j-1})$$
, then $m_i \oplus c_{i-1} = m'_j \oplus c'_{j-1}$, and then $c_{i-1} \oplus c'_{j-1} = m_i \oplus m'_j$

- ~~> knowing identical ciphertext blocks reveals information about the message blocks
- $ightarrow \Rightarrow$ breaks IND-CPA security
- Regardless of the security of \mathcal{E} (i.e. even if it is ideal)!

How soon does a collision happen?

- Assumption: the distribution of the $(x \oplus y)$ is \approx uniform
 - If y is an IV it has to be (close to) uniformly random, otherwise we have an attack (two slides ago)
 - If $y = \mathcal{E}(k, z)$ is a ciphertext block, ditto for y knowing z, otherwise we have an attack on \mathcal{E}
- ▶ ⇒ A collision occurs w/ prob. $\approx q^2/2^n, q \leqslant 2^{n/2}$ (q: #blocks)

Some CBC recap

A decent mode, but

- Must use uniformly random IVs
- Must change key much before encrypting 2^{n/2} blocks when using an n-bit block cipher
- And this regardless of the key size κ
- Only birthday-bound security: this is a common restriction for modes of operation (cf. next slide)

Counter mode

 $m_1||m_2||\ldots \mapsto c_0 := s||c_1 := \mathcal{E}(k,s) \oplus m_1||c_2 := \mathcal{E}(k,s+1) \oplus m_2||\ldots$

- The counter s may be (appropriately incremented and) kept from one message to another, or picked freshly (uniformly at random) every time (last option: not a significant security issue if *E* is a block cipher (why?))
- Encrypts a public counter ~> pseudo-random keystream ~> one-time-pad approximation (i.e. a stream cipher)
- Like CBC, must change key *much* before encrypting 2^{n/2} blocks when using an *n*-bit block cipher

For \mathcal{E} of domain \mathcal{M} of size N:

$$\mathsf{Adv}_{\mathsf{CTR}[\mathcal{E}]}^{\mathsf{IND-CPA}}(q,t) \leqslant \mathsf{Adv}_{\mathcal{E}}^{\mathsf{PRP}}(q',t) + q'(q'-1)/2N$$

where q' is the total number of queries to ${\mathcal E}$ implied by the q queries to ${\rm CTR}[{\mathcal E}]$

Proof sketch:

- I For $\mathcal{F} \sim \mathfrak{F}$, $\mathbf{Adv}_{\mathsf{CTR}[\mathcal{F}]}^{\mathsf{IND-CPA}} (\leq N, \infty) = 0$ (for the stateful variant; cf. TD)
- 2 $\mathbf{Adv}_{\mathsf{CTR}[\mathcal{E}]}^{\mathsf{IND-CPA}}(q,t) \leq \mathbf{Adv}_{\mathcal{E}}^{\mathsf{PRF}}(q',t)$ (any IND-CPA attack can be used as a PRF one)
- Use PRP/PRF switching

Definition for passive confidentiality

Block ciphers

Modes of operation for block ciphers

Definition for active confidentiality

Appendix: BC evolution

Symmetric encryption (1)

²⁰²³⁻⁰⁹⁻²⁶ **37/50**

Now assume:

- A shared secret ("symmetric") (again)
- Active adversaries (much more realistic)
- Blackbox adversaries

Active adversaries \approx may modify/inject messages over the channel

Q: Are active adversaries a threat for *confidentiality* (even if integrity is of no concern)?A: Yes :(

Ciphertext-only decryption attacks!

- The padding oracle attacks on CBC (Vaudenay, 2002)
- ~→ (for instance) Attacking the IPsec Standards in Encryption-only Configurations (Degabriele & Paterson, 2007)

Typically, an active attack works when:

- 1 The adversary's actions have an impact on the future
- 2 The different future leaks information
- 3 The adversary can observe the difference

- A target system sends control messages to a lo-power device with raw CTR mode
- Messages are all one-block 64-bit seven-letter ASCII-7 text, and use a byte-wise (modular) sum complement checksum for error detection
- If the checksum verification fails, the device sends a special "SENDAGN" code in clear

What could we do?? \rightsquigarrow TD

IND-CCA game:

- Same as the IND-CPA one, except that the adversary may now make oracle queries to Dec(k, ·)
- \blacktriangleright But it looses if it queries ${\rm Dec}(k,\cdot)$ on answer to its challenge query

 \rightsquigarrow captures the ability of the adversary to modify & inject messages, and to "see what happens"

 $\ensuremath{\mathsf{IND}}\xspace{-}\ensuremath{\mathsf{CCA}}\xspace$ security is then defined from the $\ensuremath{\mathsf{IND}}\xspace{-}\xs$

N.B. Here we have defined what is sometimes called IND-CCA2 security, where the second 'A' emphasises the *adaptive* nature of the attacks

Exercise: show that $\mathbf{Adv}_{CTR[\mathcal{E}]}^{IND-CCA}(1,1) = 1$ (¿Like previous examples, this attacks the *mode*, regardless of how good \mathcal{E} is?) Exercise: show that $\textbf{Adv}_{\textit{CTR}[\mathcal{E}]}^{\textit{IND-CCA}}(1,1) = 1$

(¿Like previous examples, this attacks the *mode*, regardless of how good \mathcal{E} is?)

- **1** Make a challenge query (m_0, m_1) , get c_b
- 2 Make a decryption query $c_b \oplus 1$, get m'_b

3 Return
$$[m'_b \oplus 1 = m_1]$$

The idea:

- If IND-CPA ⇒ IND-CCA because of active attacks, simply make those inoperative?
- ... by adding some detection mechanism?

 \rightsquigarrow

$IND-CPA + INT-CTXT \Rightarrow IND-CCA$

 \rightsquigarrow "Modern" view: what you want isn't an encryption scheme, but an *Authenticated* Encryption scheme (with Additional Data) (cf. a next lecture)

Definition for passive confidentiality

Block ciphers

Modes of operation for block ciphers

Definition for active confidentiality

Appendix: BC evolution

Block ciphers are very versatile, \rightsquigarrow

- Symmetric encryption
- Authentication
- Hashing
- (More exotic constructions)

But not the only candidate primitives for the above

Two possible variations:

- Add one parameter (*tweakable* block ciphers)
- Remove one parameter (*permutations*)

Tweakable block cipher

A tweakable block cipher is a mapping $\widetilde{\mathcal{E}} : \mathcal{K} \times \mathcal{T} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, t \in \mathcal{T}, \widetilde{\mathcal{E}}(k, t, \cdot)$ is invertible

The tweak t:

- Acts like a key in how it parameterizes a permutation
- Is public (known to any adversary)
- Could even be chosen by anyone (in the stronger security models)

Why TBCs?

Tweakable block ciphers are nice:

- Simplify the design/proofs of higher-level constructions: they're an expressive abstraction for when we add some non-determinism "close" to the BC
- Help a lot in getting beyond-birthday-bound (BBB) security

An intuition of usefulness:

- $\,\,$ Never reuse a tweak \Rightarrow always use independent permutations
- Becomes quite harder to attack/distinguish

Tweakable block ciphers may be built either:

- As high-level constructions, typically from a regular BC
 - ▶ Example: $\widetilde{\mathcal{E}}(k, t, \cdot) = \mathcal{E}(k \oplus t, \cdot)$ (adequate if \mathcal{E} is secure against XOR related-key attacks)
- As dedicated designs (like a regular BC)
 - Example: KIASU-BC

Permutations

Permutation

A permutation is an invertible mapping $\mathcal{P}:\mathcal{M}\to\mathcal{M}$

- No key anymore!
 - One consequence: no notion similar to PRP to formalize sec.
- Easy to build as $\mathcal{E}(0,\cdot)$

Rationale:

- In BCs, it may be wasteful to process the key and plaintext separately
- Inverting a permutation is often not necessary in constructions; usages like $\mathcal{P}(k||m)$ are okay

Permutation uses

Hash functions:

- SHA-3 (Keccak)
- ► JH
- Grøstl
- Etc.

Authenticated encryption:

- River/Lake/Sea/Ocean/Lunar Keyak
- Ascon
- ► Etc.