
Definitions 2023–09–26 1/19

Crypto Engineering ’23
]

Definitions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2023–09–26

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


Definitions 2023–09–26 2/19

The “symmetric” part of this course (with me)

▸ 5 CMs; 3 TDs; 2*(2*2) = 8 TPs

▸ (Mostly) about symmetric encryption, authentication,
(password) hashing

▸ Goal 1: understanding the models ↝ What can we/do we try
to achieve?

▸ Goal 2: looking a bit at some design(s): the why and hows

▸ Goal 3: getting a few ideas of what can go terribly wrong :(



Definitions 2023–09–26 3/19

The practical part of the “asymmetric” part of this course
(with me)

▸ 1*(2*2) = 4 TPs

▸ Kangaroos for memory-efficient discrete logarithms
computation



Definitions 2023–09–26 4/19

Crypto : what and what and what?

Crypto : “securing communication (and more) in the presence of
adversaries”

▸ What kind of adversaries (what attack model)?

▸ Securing what (what kind of functionality)?

↝ formal security definitions
Examples:

▸ Passive (blackbox) adversaries + authenticating stuff ↝
EUF-CMA security

▸ Active (blackbox) adversaries + hiding stuff ↝ IND-CCA2
security



Definitions 2023–09–26 5/19

Why do we care so much about definitions?

Formal definitions allow to:

▸ State clearly (...) and unambiguously what we want to achieve

▸ Define attacks (at a fine granularity: incl. cost, success rate)

▸ Express relations between different objects ↝ modularity of
designs, (reduction) proofs of security



Definitions 2023–09–26 6/19

Everything is about definitions

Figure: From Calvin & Hobbes, Watterson



Definitions 2023–09–26 7/19

Designing a definition

Two challenges (among others):

▸ What does it mean to (say) keep something secret? How do
you formalise (the absence of) learning?

▸ How do you formalise hardness? A “security level”?

Typical approaches:

▸ Try something (taking inspiration from an ideal world?), hope
for the best?

▸ Use probabilities + complexity-based models (for a start)



Definitions 2023–09–26 8/19

Lack of confidentiality: an XKCD illustration

Figure: XKCD #257



Definitions 2023–09–26 9/19

↝ Security is never absolute

Security always depends on the context ↝ make assumptions on
the adversary’s limitations, e.g.:

▸ doesn’t know a certain value

▸ only has access to one encrypted message

▸ only has access to 3 out of 7 communication channels

▸ is limited to a 1GW power source

usually, everything trivially collapses if some assumptions don’t hold
↝ important to always clearly state your assumptions



Definitions 2023–09–26 10/19

Bad definitions are useless; so are badly-used good ones

Knowing what definition to use depends on:

▸ the objective (more or less obvious)

▸ assumptions on the adversary, cf. above; below (somewhat
less obvious)

↑ Typical crypto engineering

Again:

▸ a completely sound design may be completely broken for any
practical usage

▸ provable security is relative



Definitions 2023–09–26 11/19

Typical panorama

Typical adversaries’ capabilities (or not):

▸ passive (“eavesdropper”) or active (“man in the middle”)
▸ blackbox or with some physical access (↝ side-channel

attacks; fault attacks...)
▸ Protecting coms is also about restricting physical access

▸ with limited time/memory (“computational”) or not
(“information theoretic”)

▸ with limited data

Typical objectives:

▸ keeping a message secret (“encryption”)

▸ proving an identity

▸ certifying a document (“authentication” or “signing”)

▸ computing in a malicious environment / over encrypted data
(“MPC”; “Homomorphic encryption”)



Definitions 2023–09–26 12/19

Security definitions: typical high-level structure

▸ Adversary: algorithm with access to some oracle(s), trying to
win some probabilistic game

▸ oracle: captures interaction with a system of interest, with
some capability (nature of the oracle; allowed queries...);
usually randomised, and dependent on the system

▸ algorithm’s running time, #queries: how efficient is it (for a
given result)?

▸ algorithm’s winning probability, or advantage (over a dumb
adversary) of winning the game (for a given cost): how good
is it?



Definitions 2023–09–26 13/19

Security definition: typical games

Two main families:
▸ Decision games: try to distinguish two outcomes (is this

oracle sampled from this or that distribution? is this the left
or right choice?). Examples: IND-CCA2; PRP
▸ “confidentiality” oriented
▸ Measure of success: the advantage (over a random choice)

▸ Search games: try to find something that satisfies some
property (passes some verification). Examples: EUF-CMA;
second preimage
▸ “authentication” oriented
▸ Measure of success: success probability (...)



Definitions 2023–09–26 14/19

Advantage

Typical setting:

▸ [O] a list of oracles, sampled either from D0 in world 0 or D1

in world 1, each with probability 1/2; W an indicator variable
for the two worlds

▸ A[O] an algorithm with access to [O] that returns one bit and
tries to decide if W is 0 or 1

Déf.: A wins if its return value equals the one of W ↝

pwinA ∶= Pr[A() = 1 ∶W = 1] + Pr[A() = 0 ∶W = 0] ↝ extremely
trivial to get a “large” (say, 1/2) pwin (how?)

Déf.: Distinguishing advantage:
AdvD0,D1

A ∶= ∣Pr[A() = 1 ∶W = 1] − Pr[A() = 1 ∶W = 0]∣ ↝ not
trivial anymore



Definitions 2023–09–26 15/19

Advantage of a problem; advantage function

One may define the advantage of:

▸ a specific algorithm (cf. above)
▸ a “full problem”, as the max advantage of any algorithm

▸ usually under some constraints, e.g. #queries
(information-theoretical) or running time ((and memory))
(computational)

▸ ↝ advantage function: AdvD0,D1
(q, t) = maxAq,t AdvD0,D1

A
(Aq,t : set of all algorithms that make q queries to their oracle
and run in time t)

▸ (non-uniform/circuit approach)



Definitions 2023–09–26 16/19

Adversarial power: some orders of magnitude

For what kind of t’s does it make sense to compute Adv(⋅, t)?

Say t counts how many times a cheap function is computed. Look
at the time/energy/infrastructure to count up to 2t for t = ⋯

▸ ≈ 40 ↝ doable w/ a small Raspberry Pi cluster
▸ ≈ 60 ↝ doable w/ a large CPU/GPU cluster

▸ Already done (equivalently) several times in the academia:
▸ Ex. RSA-768 (Kleinjung et al., 2010), 2000 core-years (≡ 267

bit operations)
▸ Ex. DL-768 (Kleinjung et al., 2016), 5300 core-years
▸ Ex. SHA-1 collision (Stevens et al., and me!, 2017), 6500

core-years + 100 GPU-year (≡ 263 hash computations)

▸ ≈ 80 ↝ doable w/ an ASIC cluster (cf. Bitcoin mining)



Definitions 2023–09–26 17/19

Order of magnitude (cont.)

What about 128?

Objective: run a function 2128 times within 34 years (≈ 230

seconds), assuming:

▸ Hardware at 250 iterations/s (that’s pretty good)

▸ Trivially parallelizable

▸ 1000 W per device, no overhead (that’s pretty good)

⇒

▸ 2128−50−30 ≈ 248 machines needed
▸ ≈ 280 000 000 GW ’round the clock

▸ ≈ 34 000 000 EPR nuclear power plants (assuming 5
reactors/plant)

Looks hard enough...
�It’s not because you have a 128-bit parameter that one will need
2128 evaluations to break your system ‽



Definitions 2023–09–26 18/19

Advantage: interpretation guide

▸ Advantage is (by default) “terminal”: only evaluated when
the adversary is done

▸ (But one may sometimes still amplify the advantage of an
adversary by using it as a sub-routine)

▸ The “security level” associated with advantage 2−κ/2 may
reasonably be defined as “κ bits” (cf. below)



Definitions 2023–09–26 19/19

Bit security

AdvD0,D1 is a function; not always easy to summarise the
“security” it defines/assumes. Two natural options to define “‘bit
security”:

▸ (The most common) As κ ∶= log(t) for the minimal t s.t.
AdvD0,D1

(⋅, t) ≥ c for a constant c (e.g. 2/3)

▸ As κ′ ∶= − log(AdvD0,D1
(⋅,1))

Usually do not match for (generic) decision problems:
(conjecturally) κ = 2κ′ (cf. Watanabe & Yasunaga, 2021), but do
match for (a suitable adaptation of the Adv def. to) search
problems


