Crypto Engineering '20
&
Finite fields / extension fields

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-1jk.imag.fr/membres/Pierre.Karpman/tea.html

2020-09-22

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Why do we care?

Extension fields (esp. of the form Fan) are useful to:

> Build polynomial MACs
» Define matrices “over bytes” or nibbles (4-bit values)
» Used e.g. in the AES

» Etc.
Those of the form sz, IFpe, ... often underly the arithmetic done

in elliptic curve cryptography or when using pairings

Generally useful when working over (binary) discrete data ~~
they're the “right” abstraction

Finite field extensions APG=22 Q)

Roadmap

Linear-Feedback Shift Registers

Finite fields extensions

Implementation of FF arithmetic

Finite field extensions

2020-09-22

3/27

Linear-Feedback Shift Registers

Finite field extensions AR Aok

Linear-Feedback Shift Registers

LFSR (type 1, “Galois")
An LFSR of length n over a field K is a map

L:[sn-1,5-2;---,%)]
[Sn—2 + Sn—1rn—1,Sn—3 + Sn—1n—2y-++,50 + Sn—1/1, Sn—10] Where
the s;, rr e K

LFSR (type 2, “Fibonacci”)
An LFSR of length n over a field K is a map

/43 [Sn717 Sn—2y« .- 550] =
[Sn—2ySn—3y-+-550,Sn—1rn—1 + Sn—2rn—2 + ... + Soro] where the s;,
ri € K

Theorem: The two above definitions are “equivalent”

Finite field extensions APG=22 Gy

Characterization

An LFSR is fully determined by:
> Its base field K
> Its state size n
> Its feedback function (r, 1,7, 2,...,)

An LFSR may be used to generate an infinite sequence (Up,)
(valued in K):

Choose an initial state S = [s, 1,...,50]
U=S[n—1] =51

Ur = L(S)[n—1]

Us = L2(S)[n — 1], etc.

Finite field extensions APG=22 Gy

Some properties

In all of the following we assume that K has a finite number of
elements

» The sequence generated by an LFSR is periodic (Q: Why?)

» Some LFSRs map non-zero initial states to the all-zero one
(Q: Give an example?)

» Some LFSRs generate a sequence of maximal period when
initialised to any non-zero state (Q: What is it?)

> It is very easy to recover the feedback function of an LFSR
from (enough outputs of) its generated sequence (Q: How
many? How?)

Finite field extensions APG=22 775

A simple case: binary LFSRs

Let's focus on:
» LFSRs of type 1
» Over [

L becomes:

Shift bits to the left
If the (previous) msb was 1

Add (XOR) 1 to some state positions (given by the feedback
function)

Finite field extensions P22 @5k

Some formalism

The feedback function of an LFSR can be written as a polynomial:
s Py 2y 0) = Q= X"+ 1, X' lh 4+ X+
Same for the state:
v (Sn_1,Sn-2y.-,5) =S =5, 1 X" ...+ 5 X+ 5
L corresponds to the map § x X mod Q
Example:

» Take L of length 4 over F, and feedback polynomial
X+ X+1

» = L:(s3,5,51,5) — (S2,51,5 + 53, 53)

Finite field extensions 2020-09-22 /27

Why should | care about those?

> Useful as a basis for PRNGs / stream ciphers (in the olden
times, mostly)
> One way to define/compute with extension fields

» It's beautiful?

Finite field extensions 222 1(§) 7%y

Finite fields extensions

Finite field extensions A2 1171 5%y

Finite fields: prime fields recap

» Motivation: a rich field structure over a finite set
> Idea: take the integers and reduce modulo N
> Operations work “as usual”
> Over a finite set
» Problem: have to ensure invertibility of all elements
> Necessary condition N has to be prime
> (Otherwise, N = pg = p x g =0 mod N = neither is
invertible)
> In fact also sufficient: Z/pZ is a field (also noted F,) iff. p is
prime

Finite field extensions AG=22 11515

Fields = polynomials

> One can define the polynomials F,[X] over a finite field

- One can divide polynomials (e.g. (X?+ X)/(X +1) = X)

- = notion of remainder (e.g. (X2 + X +1)/(X +1)=(X,1)
» = can define multiplication in F,[X] modulo a polynomial Q

> If deg(Q) = n, operands are restricted to a finite set of poly.
of deg < n

Finite field extensions AP=G=22 13y

Finite fields with polynomials

» Fp[X]/Q is a finite set of polynomials

» With addition, multiplication working as usual (again) ~~ get
a ring
» To make it a field: have to ensure invertibility of all elements
> Necessary condition: Q is irreducible, i.e. has no non-constant
factors (Q is “prime")
> In fact also sufficient: F,[X]/Q is a field iff. Q is irreducible
over I, (constructive proof: use the extended Euclid
algorithm)
> Theorem: irreducible polynomials of all degrees exist over any
given finite field

Finite field extensions APG=22 15

Quick questions

> How many elements does a field built as F,[X]/Q have, when
deg(Q) = n?

» Describe the cardinality of finite fields that you know how to
build

» Let v e Fg = Fp[X]/Q. what is the result of
o + o + ...+ « (addition of p copies of «)?

Finite field extensions APG=22 T1Gj

Characteristic

Characteristic of a field

The characteristic of a field K, noted char(K), is the min. ne N
st. ¥xeK, D7 x =0, or 0if no such n exists

» Prime fields IF, have characteristic p
» Extension fields e have characteristic p

> In characteristic two (“even characteristic”), + = —
We may say that the characteristic of a field [F is:

» “small”, ife.g. =2,3,...

- “medium” if e.g. g = pb, p*?,. ..

- “large” if e.g. g = p, p?

Finite field extensions APG=22 T1Gyjay

Quick remarks

» Two finite fields of equal cardinality are unique up to
isomorphism

» But different choices for @ may be possible = different
representations ~» important for (explicit) implementations

» One can build extension towers: extensions over fields that

were already extension fields, iterating the same process as for
a single extension

Finite field extensions AP=G=22 T\77 /)5

Implementation of FF arithmetic

Finite field extensions A2 {15k

How to implement finite field operations?

Some options (not the only ones):

> Fp:
> Addition: add modulo
> Multiplication: multiply modulo
> Inverse: use the extended Euclid algorithm or the little Fermat
Theorem

> Represent elements as polynomials, then

> Addition: add modulo, coefficient-wise

> Multiplication: multiply polynomials modulo (w.r.t. polynomial
division) ~~ can use LFSRs

> Inverse: use the extended Euclid algorithm (for polynomials)

Finite field extensions 2020-09-22 19/27

Multiplication in [Fn

We now focus on characteristic two for simplicity
» o € Fon = F5[X]/Q is “a polynomial over Fy of deg < n”
s Soa =0, X"+ X+ o
» So we can multiply o by X = a, 1 X" + ... 4+ a1 X% + oo X
» But this may be of deg = n, so “not in Fan"

» So we reduce the result modulo
-1
QR=X"+ X"+ o X+ ao,

the defining polynomial of Fan

Finite field extensions APG=22 i)y

Reduction: two cases

Case 1: deg(aX) < n
» There's nothing to do
Case 2: deg(aX)=n:aX =X"+...+ apX
> Then deg(aX — Q) <n
» And aaX — Q is precisely the remainder of a X ~ Q
> (Think how if a€]N,2N[, a mod N = a— N)

Finite field extensions A2 0| 5%y

Multiplication + reduction: alternative view

(p1y...,0,000) x X mod (7., e Q1, Qo) =

> (Oén_g, Lo, O, 0) if Ap_1 = 0

>(O¢n,2— yeee, X1 — , 00 — s —)if()én,1=].

> (or (po+ oo,y o o0+ 0, 00) as we're in
characteristic two)

> or
(anf2 + Qp_1,...,01 + oop_1,00 + 11, anfl)
= the result of one step of LFSR with feedback polynomial
equal to (—)Q!

Finite field extensions 222 50 15%7

Summary

> An element of Fon = F,[X]/Q is a polynomial

>

>

>

>

...is the state of an LFSR with feedback polynomial Q

Multiplication by X is done mod @
...is the result of clocking the LFSR once

Multiplication by X? is done by clocking the LFSR twice, etc.
» Multiplication by 3, 1 X" 1 + ... 4+ 3:X + (B is done “the

obvious way", using distributivity

Finite field extensions

2020-09-22 23/27

A note on representation

It is convenient to write o« = v, 1 X" 4+ ...+ a1 X + o as the
integer a = v, 12" 1+ ... 4+ 12 + ap

- Example: X4 + X3 + X +1"=" 27 = 0x1B

Finite field extensions A2 Gy 5%y

Examples in Fps = Fo[X[/ X8 + X* + X3+ X + 1

Example 1:
~ o= X5+ X3 + X (0x21), B = X2 +1 (0x05)
s o+ B =X+ X3+ X%+ X +1 (0x2F)
s af = X2a+a =X+ X5+ X3 (0xA8) + X®+ X3+ X =
X7+ X (0x82)

Finite field extensions AR 005 5%

Examples in Fps = Fo[X[/ X8 + X* + X3+ X + 1

Example 2:
o= X0+ X3+ X, = X+ X (0x12)
s oy = Xta + Xa
> Xt = X(X(XT + X5+ X3))
P X(XT+ X2+ X3) =
(XE+XC+ XM+ (XB+ X+ X34+ X+1) =X+ X3+ X +1
PXXO XX+ 1) =X+ X+ X2+ X
» = XT 4+ X* 4+ X% 4+ X (0x96) + XO + X* + X2 (0x54) =
X7 + X% + X (0xC2)

Finite field extensions EUCal a2 6V 21T}

Other implementation possibilities

>

>

Precompute the full multiplication table ~ O(g?) space

(quickly impractical)

Precompute a log table (e.g. using Zech's representation)

~+ O(q) space (reasonable for small q)

Use efficient polynomial arithmetic + reduction, for instance:

> pclmulqdq for extensions of Fy

> Kronecker substitution in other small characteristics

Sometimes, only implementation by a constant matters

Finite field extensions

2020-09-22

27/27

	Linear-Feedback Shift Registers
	Finite fields extensions
	Implementation of FF arithmetic

