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1 Statistical distinguishers

A distinguisher for two discrete∗ probability distributions U and R over a finite set S is
a (possibly randomised) algorithm A whose input is a random variable X sampled either
from U or R, each with probability one half, and whose output is a unique bit. The
advantage of A in distinguishing U from R is defined as:

AdvU,R
A := |Pr[A(X) = 1 : X ∼ U]− Pr[A(X) = 1 : X ∼ R]| (1)

where the probabilities are computed over the sampling of X and the coins of A (if any).
The total variation distance (sometimes called “the” statistical distance) dtv (U,R)

between U and R is defined as:

dtv (U,R) =
1

2

∑
x∈S
|U(x)−R(x)| (2)

where for D a probability distribution we use the notation D(x) := Pr[X = x : X ∼ D]. If
we denote by S+ (resp. S−) the subset of S for which U(x) > R(x) (resp. U(x) ≤ R(x)),
then we have an alternative definition for dtv as:

dtv (U,R) =
∑
x∈S+

U(x)−R(x) (3)

This simply follows from:∑
x∈S
|U(x)−R(x)| =

∑
x∈S+

U(x)−R(x) +
∑
x∈S−

R(x)− U(x)

=
∑
x∈S+

U(x)−

1−
∑
x∈S+

U(x)

+

1−
∑
x∈S+

R(x)

− ∑
x∈S+

R(x)

= 2
∑
x∈S+

U(x)−R(x)

We then have:

Theorem 1. Let U, R be two probability distributions over a finite set S and A a distin-
guisher for U and R, then:

AdvU,R
A ≤ dtv (U,R)

∗This qualifier will from now on be implicit, since all the distributions we will encounter are discrete.
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Proof. For any distinguisher A, let α : S → [0, 1] be its “decision” function defined from
α(x) = Pr[A(x) = 1]. Then by definition AdvU,R

A =
∣∣∑

x∈S α(x)U(x)−
∑

x∈S α(x)R(x)
∣∣.

Reusing the above notation for S+, S−, we can rearrange the terms of these sums as:∣∣∣∣∣∣
∑
x∈S+

α(x)(U(x)−R(x)) +
∑
x∈S−

α(x)(U(x)−R(x))

∣∣∣∣∣∣
Then since all the terms of the left (resp. right) sum are non-negative (resp. negative), the
overall value is maximised when α(x) is 1 for x ∈ S+ and 0 for x ∈ S− (or the converse, by
symmetry). In that case the expression simplifies to

∑
x∈S+ U(x)−R(x) = dtv (U,R).

Remark that this proof is constructive, since we have shown in passing that the distin-
guisher that answers 1 on input x if and only if U(x) > R(x) reaches the upper-bound.†

However this requires a complete knowledge of the two distributions, which will seldom
be the case in our applications (additionally, the running time and memory cost of this
distinguisher may also be exponential in the size of the elements of S).

A major interest of Theorem 1 in the context of cryptography is that it allows to prove
the security of a construction (usually under some assumptions) or to craft a security
reduction by upper-bounding the advantage of any distinguisher thanks to a bound on the
total variation distance between two well-chosen (families of) distributions. Such a bound
that only relies on statistical properties of the construction and ignores the actual (possibly
high) time and memory cost of a distinguisher is often said to be in the “information theory
model”.‡

The main steps to implement this strategy are: 1) defining the distributions in a
way that makes them “compatible” with a relevant security definition (say, PRP); 2)
computing a non-trivial upper-bound. While the first point is usually easy, the second
often requires some (hard) work. Several frameworks have been developed to help with
this, and we will give a short introduction to one of them: the “H-coefficient” technique
of Patarin [Pat08] (see also Chen and Steinberger’s exposition, on which our presentation
is heavily based [CS14]).

Our starting point is to rewrite Equation (3) as dtv (U,R) =
∑

x∈S+ U(x)(1−R(x)/U(x)).
For any partition of S+ into k pairwise-disjoint subsets S+1 , . . . ,S

+
k , this can be further

rewritten as:
k∑
i=1

∑
x∈S+i

U(x)(1−R(x)/U(x)) (4)

Now if one knows ε1, . . . , εk, all in [0, 1] s.t. for all 1 ≤ i ≤ k, x ∈ S+i ⇒ R(x)/U(x) ≥ 1−εi,
then we immediately get the upper-bound:

(4) ≤
k∑
i=1

∑
x∈S+i

U(x)εi =
k∑
i=1

Pr[X ∈ S+i : X ∼ U]εi. (5)

This method can still be applied even if one does not know a partition of S+ exactly,
since “augmenting” the subsets S+i with some elements of S− can only increase the bound
(and in that case R(x)/U(x) > 1 so the lower bound by 1 − εi trivially holds); similarly,
an overlap between some of the S+i ’s may only increase the bound.§ We formalise this as
the following:

†One may also answer 1 for any x s.t. U(x) = R(x) without changing the advantage.
‡Note that an information-theoretic bound may sometimes still be used to reason about computational

security definitions.
§It is also worth noting that everything here is symmetric, which is useful if it is rather a good partition

of S− that is known.
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Lemma 2 (H-coefficients bound). Let U, R be two probability distributions over a finite
set S, S+ = {x ∈ S : U(x) ≥ R(x)}, S1, . . .Sk be k subsets of S s.t. ∪ki=1Si ⊇ S+,
ε1, . . . , εk ∈ [0, 1] be s.t. for all 1 ≤ i ≤ k, x ∈ Si ⇒ R(x)/U(x) ≥ 1 − εi. Then
dtv (U,R) ≤

∑k
i=1 Pr[X ∈ Si : X ∼ U]εi.

Lemma 2 is often used in a “simple” case where there are only two subsets in the
partition: one set S1 that includes the “good” cases for which ε1 is “small”, meaning that
U and R are roughly identical for the outcomes x ∈ S1, and one set S2 of “bad” cases
where ε2 may be much closer to 1. In this case one may simplify the bound from Lemma 2
without “losing too much” as:

dtv (U,R) ≤ Pr[X ∈ S1 : U]ε1 + Pr[X ∈ S2 : U]ε2 ≤ ε1 + Pr[X ∈ S2 : U] (6)

It may be useful to informally think of this last variant of the bound as a way of being
“nice” to the distinguishers: by upper-bounding Pr[X ∈ S2 : U]ε2 by Pr[X ∈ S2 : U], we
assume that there is a distinguisher that is always able to tell the difference between U
and R whenever x is “bad”. Said otherwise, we “give up pretending that R is U” on bad
events. This interpretation may sometimes help the process of constructing S1 and S2.

Remark 3. Equation (6) may still be useful even if one only knows an upper bound on
Pr[X ∈ S2 : U] (this is possible without change since Pr[X ∈ S1 : U] has already been
simplified away as ‘1’) and if S1 or S2 are not subsets of S+ (since again in this case we
only “add to” Equation (3)). This latter case in fact often occurs in practice, since one
usually uses a partition of S rather than S+ in applications of Lemma 2.

Remark 4. In applications of Equation (6), one usually determines S1, S2 and the dis-
tribution for which to compute pbad := Pr[X ∈ S2] independently. This may lead to
somewhat degenerate cases where either ε1 or pbad is equal to zero (both will happen in
our later examples). The approximations that lead to Equation (6) are still valid in this
case, but one may then also directly derive the bound as following.

If ε1 = 0, this means that x ∈ S1 ⇒ R(x) ≥ U(x), so S+ ⊆ S2 and PrU[X ∈ S2] =∑
x∈S2 U(x) ≥

∑
x∈S+ U(x) ≥

∑
x∈S+ U(x)−R(x) = dtv (U,R).

If pbad = 0, this means that S+ ⊆ S1, and one is then in fact applying Lemma 2 on a
trivial covering of S+, and the result thus remains valid.

2 Oracles and transcripts

This section is partially based on Chen and Steinberger’s presentation of the H-coefficients
method [CS14].

2.1 Definitions and first results

Our application to cryptography of the results from the previous section will be for distri-
butions induced by algorithms interacting with one or several oracles. A key notion in the
analysis will be the one of transcripts, and so we devolve this section to defining oracles,
transcripts, and proving some useful results about them.

Definition 5 (Random oracle). Let F be a space of functions from a finite set S to a
finite set S ′. A random oracle for F with distribution D is the realisation of a random
variable X ∼ D, where D is a distribution over F .

Concrete instantiations of (the rather abstract) Definition 5 often have F either the per-
mutations over S (written Perms(S)) or all the functions from S to S ′ (written Funcs(S,S ′),
or simply Funcs(S) when the two sets are equal), with a uniform distribution.
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Let [O]i denote an ordered list of oracles indexed by i (index that we will freely drop
from our notation when not needed), and [O]i � [D]i the fact that they are the realisation
of random variables sampled from the distributions in the similarly-defined [D]i; we further
write A[O]i for an algorithm that has oracle access to [O]i.

From now on, our typical setting will be an algorithm A[O] that tries to distinguish
the two cases [O]i � [D]i and [O]i � [D′]i, where each case happens with probability one
half. This is similar to the scenario from the previous section, except now that A may
make an arbitrary number of arbitrary queries to its oracles, and so there may be many
distributions to consider. We consequently modify our definition of advantage to:

Adv
[D],[D′]

A
[O]
q1,...,qn

:=
∣∣∣Pr
[
A[O]
q1,...,qn = 1 : [O] � [D]

]
− Pr

[
A[O]
q1,...,qn = 1 : [O] � [D′]

]∣∣∣ (7)

where we assume n ≥ 1 oracles, A
[O]
q1,...,qn denotes an algorithm that makes qi queries to Oi,

and the probabilities are computed over the samplings of the oracle and the randomness
of A (if any). It is worth noting that even though the oracles are randomly sampled from
distributions that depend from an initial uniform bit, they are “fixed” once at the begin-
ning of the experiment, and so from the perspective of A they behave deterministically;
in the following we will refer to this by saying that the oracles are deterministic.

As previously, given some [D], [D′], our main objective will be to find upper-bounds for
the advantage of any distinguisher, usually in function of q1, . . . , qn. To that end and as a
first simplification, we will from now on restrict ourselves to deterministic distinguishers
that do not make repeated queries. The latter is clearly without loss of generality, since
we do not restrict the running time or the memory (and so there is no benefit in making
twice the same query to the same oracle (which we recall is deterministic from the point
of view of the distinguisher)). To argue that the former is also w.l.o.g., we observe that
any terminating randomised algorithm with bounded input size (both conditions being
fulfilled in our case since we force the algorithm to terminate and have just forbidden
repeated queries) can be made deterministic by fixing a value for all its (finite number of)
coins. Hence, for any such randomised algorithm A, there is a deterministic algorithm A′

that performs as well as A (in our case, meaning that it has maximum advantage among
the ones reachable by A).

Now in order to handle the many possible distributions induced by A’s queries to its
oracles, we define the central notion of transcript.

Definition 6 (Transcript). Let A[O] be an algorithm with oracle access to [O]. The
transcript τ produced by A[O] is the ordered list [(j, xi,Oj(xi))]i of all the (ordered) queries

made by A[O] to its oracles, along with their answers.¶

For deterministic distinguishers and oracles, for a fixed distinguisher, the transcript
produced by A[O] is fully determined by the values of the oracles [O]; in other words, there
is a well-defined function T : A[O] 7→ τ , where τ is the transcript produced by A[O]. Since
the output of A[O] is obviously a deterministic function of the transcript it produces, we
also have that once a distinguisher is fixed, its output A[O] is fully determined by [O].

Even though we have just defined transcripts as being ordered, we will soon show
the important fact that for deterministic distinguishers and oracles, the best advantage
achievable for a given transcript τ does not depend on the order in which the queries have
been made, but solely on the set of queried values and their answers. To prepare for that,
we give:

¶Here we emphasise the identity “j” of the oracle to which the ith query is addressed, but may again
freely drop this information when it is clear from the context.
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Definition 7 (Transcript compatibility). Let τ be a transcript, the oracles for [F ] com-
patible with τ , written C[F ](τ), is the set of all ordered lists [O] of oracles defined for [F ]

s.t. (j, xi, yi) ∈ τ ⇒ Oj(xi) = yi.
‖

Example 8. Let τ = [(1, 0, 0)], then:

— For X := [Perms(J0, N − 1K)], CX (τ) is the set of the (N − 1)! permutations over
J0, N − 1K that have 0 as a fixed point.

— For X := [Funcs(J0, N − 1K)], CX (τ) is the set of the NN−1 functions over J0, N − 1K
that have 0 as a fixed point.

— For X := [Perms(J0, N − 1K),Perms(J0, N − 1K)], CX (τ) is the set of the (N − 1)!N !
pairs of permutations over J0, N − 1K s.t. the first has 0 as a fixed point.

— For X := [Der(J0, N − 1K)], where Der(S) is the set of derangements over S, CX (τ)
is empty.

— For X := [Perms(J1, NK)], CX (τ) is empty.

An immediate consequence of Definition 7 and the discussion preceding it is that for
deterministic distinguishers and oracles, we have:(

T
(

A[O]
)

= τ
)
⇒
(
∀[F ], ∀[O′] ∈ C[F ](τ),T

(
A[O′]

)
= τ

)
(8)

Here we voluntarily do not specify the defining set of [F ] to convey the fact that [F ]
may be “arbitrarily” different from the function spaces over which [O] is defined, and that
from the perspective of A this does not matter.

We introduce yet another notation on transcripts: by Q(τ), we denote the (unordered)
set of queries that appear in τ (i.e., we forget about the answers to the oracles’ queries
and the order in which they were made), and we similarly write Q(A[O]) for the queries
appearing in the transcript T (A[O]) produced by A[O]. If we wish to remember the order
of the queries (only forgetting the answers), we write e.g. Q[A[O]]. We are now ready to
prove:

Lemma 9. Let τ be a transcript, A a deterministic distinguisher, and [D] a list of uniform
distributions] over a list of function spaces [F ]. If ∃ [O′] ∈ [F ] s.t. T (A[O′]) = τ , then:

Pr
[
T
(

A[O]
)

= τ : [O] � [D]
]

=
# C[F ](τ)

#[F ]

Proof. We write [O | Q(τ)] ≡ τ as a shorthand to denote the fact that the values of the
oracles in [O] on the points appearing in Q(τ) are the same as the corresponding answers
in τ . By definition ([O | Q(τ)] ≡ τ) ⇔ ([O] ∈ C[F ](τ)), and so Pr[[O | Q(τ)] ≡ τ ] =
# C[F ](τ)/#[F ] (we drop the mention of the underlying probability space for conciseness).

Then again by definition, Pr[T (A[O]) = τ ] = Pr[Q[A[O]] = Q[τ ] ∧ [O | Q(τ)] ≡ τ ], which in
turn is equal to Pr[Q[A[O]] = Q[τ ] : [O | Q(τ)] ≡ τ ]×Pr[[O | Q(τ)] ≡ τ ]. Now from the fact
that there exists some [O′] s.t. T (A[O′]) = τ and that A is deterministic, it follows from
Equation (8) that Pr[Q[A[O]] = Q[τ ] : [O | Q(τ)] ≡ τ ] = 1, which allows to conclude.

In natural language, this means that the probability that a deterministic distinguisher
produces a given transcript is either zero, or the probability that its oracles are compatible
with this transcript. Crucially, this latter probability does not depend on the order of the

‖ We assume here that the size of the lists are at least as big as the number of different oracles queried
in τ .

]The generalisation to arbitrary distributions is obvious.
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queries in the transcript; this for instance means that if two distinguishers with the same
oracle distributions produce (with non-zero probability) transcripts with the same set of
queries and answers, possibly made in a different order, then they do so with the same
probability. In particular, this means that one does not need (at this point) to “think
about” the possible adaptivity of the distinguishers (by which we mean the fact that they
may define their ith query in function of the answer to the i− 1 previous ones), since only
the set of queries eventually matters, and not the internal process leading to it.

We conclude this section by drawing a link between Lemmas 2 and 9 and our main
objective of upper-bounding distinguishing advantages. We will first do so for non-adaptive
distinguishers, and then address the (usually harder) case of adaptive ones.

2.2 Upper-bounding the advantage of non-adaptive distinguishers

We (informally) say that a distinguisher is non-adaptive if it always makes the same queries
to its oracles. From the above (and in particular Lemma 9), the probability of a transcript
being produced does not depend on the order of the queries, so we may assume w.l.o.g. that
a non-adaptive distinguisher always makes its queries in the same order.[ Conceptually,
a (deterministic) non-adaptive distinguisher may then be thought of as fixing a set R of
queries, sending all of those together to its oracles, receiving all of the answers together,
and making its decision based on these.

Let now [F ], [F ′] be two lists of n function spaces with corresponding uniform dis-
tributions [D] and [D′]. Fix a set R of queries to the n oracles, and let T R (or simply
T if R is clear from the context) be the set of all possible transcripts that can be pro-
duced in either world [D] or [D′] when querying the oracles on R, and where the order
of the queries has been removed from the transcripts. Each distribution [D] and [D′] in-

duces a transcript distribution over T as Pr[D][X = τ ] = # C[F ](τ)/#[F ] =: p
[D]
τ and

Pr[D′][X = τ ] = # C[F ′](τ)/#[F ′] =: p
[D′]
τ respectively. We can check that those are indeed

distributions, since (say)
∑

τ∈T # C[F ](τ) = #[F ] (all oracles produce some transcript,\

and since we have fixed the queries and forgotten about their order, no [O] may be com-
patible with two distinct transcripts).

Now if T R can be partitioned into two disjoint sets T Rgood and T Rbad s.t. τ ∈ T Rgood ⇒
p
[D]
τ /p

[D′]
τ ≥ 1−ε, then by Lemma 2 an upper-bound on the distance between the transcript

distributions over T R is dtv (T RD , T R
D′

) ≤ ε+ Pr[D′][X ∈ T Rbad].
On the other hand, by definition, a non-adaptive distinguisher with queries R samples

its transcripts from T RD or T R
D′

. In other words, if it produces the transcript τ with non-zero

probability, it follows from Lemma 9 that this probability is either p
[D]
τ or p

[D′]
τ depending

on the world it is interacting with. Consequently, the advantage of a distinguisher that
makes the queries R to its oracles is upper-bounded by dtv (T RD , T R

D′
). It then follows that

for non-adaptive distinguishers A:

Adv
[D],[D′]

A
[O]
q1,...,qn

≤ max
R∈〈q1,...,qn〉

dtv (T RD , T RD′ ) (9)

(where 〈q1, . . . , qn〉 denotes the set of queries containing qi queries for its ith oracle).
The sudden apparition of a “max” term in Equation (9) may seem worrisome if one

is to compute an actual bound, and indeed one cannot remove it in general.• However,

[In fact, in the deterministic case, it would often be hard to define a distinguisher that always makes
the same set of queries but in potentially different orders in function of the realisation of its oracles.

\If necessary, one may augment each function’s domain to “everything” and its co-domain with a special
failure symbol ‘⊥’ that may be returned on an input outside of the original domain.
•Think for instance of two worlds where O(0) = 0 in one world and O(0) = 1 in the other, but all other

points follow the same distribution in both worlds. It is clear that the two worlds can be distinguished
with advantage 1 if the queries include 0, and zero otherwise (regardless of their number).

6

https://membres-ljk.imag.fr/Pierre.Karpman/cry_adv2023_provsec.pdf


https://membres-ljk.imag.fr/Pierre.Karpman/cry_adv2023_provsec.pdf

in many cases the oracles will be highly “symmetric”, and so dtv (T RD , T R
D′

) will only be a
function of the number of queries to each oracle.

2.3 Upper-bounding the advantage of adaptive distinguishers

In the more general case of adaptive distinguishers, nothing prevents one to make different
queries depending on the previous answers from the oracles. In that case, there may not
be any single set R any more s.t. the transcript distributions implied by a distinguisher
are over T R. Said otherwise, Equation (9) is not valid any more when considering such
adaptive distinguishers. We illustrate this with the following:

Example 10. Consider a single oracle O over {0, 1, 2} → {0, 1} which in the “ideal” world
is sampled uniformly from all the 23 possible functions, and in the other “real” world is
sampled uniformly from the reduced set that maps 0, 1, 2 (in that order) to either of 0,
0, 1; 0, 1, 1; 1, 1, 0; 1, 1, 1. The “absolute” distance between the two oracle distributions
may be computed from the transcript distributions T R with R = {0, 1, 2}, and it is equal
to 1/2. One may also compute the distance for any fixed R of size 2, which is 1/4 in all
the three cases.

Now consider the adaptive two-query distinguisher that first queries y0 := O(0), and
then y1 := O(2) if y0 = 0 and y1 := O(1) if y0 = 1.∗∗ The transcripts that may be
produced in the real world are [(0, 0), (2, 1)] and [(0, 1), (1, 1)], each with probability 1/2.
On the other hand, the ideal world produces these transcripts with probability only 1/4,
and may additionally produce the transcripts [(0, 0), (2, 0)] and [(0, 1), (1, 0)], again with
probability 1/4. It follows that the distance between the two transcripts distributions is
1/2, which is better than what can be achieved with fixed queries.

In order to handle adaptive distinguishers, one may (partially) rely on the fact that
from Lemma 9, if a distinguisher produces a transcript τ with non-zero probability in at

least one world, (using notation from Section 2.2) it does so with probability p
[D]
τ (resp.

p
[D′]
τ ) in the world [D] (resp. [D′]).†† Crucially, we insist again on the fact that these

probabilities do not depend on the order in which the queries appear in τ , and also do not
depend on the other transcripts that may be produced by this same distinguisher. Said
otherwise, if we write T q1,...,qn the set of all possible unordered transcripts that may be
produced in either world by any distinguisher that makes q1, . . . qn queries to its n oracles,
it follows that the set T A ⊆ T q1,...,qn of transcripts produced by a distinguisher A needs

to satisfy the two conditions: 1)
∑

τ∈T A p
[D]
τ =

∑
τ∈T A p

[D′]
τ = 1; 2) if τ is produced by

A with non-zero probability in at least one world, then it is produced with probability

p
[D]
τ and p

[D′]
τ respectively in the two worlds. We may then remark that by definition

(and using again notation from Section 2.2), A is non-adaptive if and only if there is no
R ∈ 〈q1, . . . , qn〉 s.t. T A = T R.

Now an important observation is that if one partitions T q1,...,qn into two disjoint subsets

T q1,...,qngood and T q1,...,qnbad with the property that there is an ε s.t. τ ∈ T q1,...,qngood ⇒ p
[D]
τ /p

[D′]
τ ≥

1−ε, then defining T A
good as T A∩T q1,...,qngood , one again has that τ ∈ T A

good ⇒ p
[D]
τ /p

[D′]
τ ≥ 1−ε

with the same ε. In other words, the partition into “good” and “bad” sets and the
computation of εmay be done “once” for T q1,...,qn (which does not depend on any particular
distinguisher) and still be used for any distinguisher even if one “does not know” T A.
Similarly defining T A

bad as T A ∩ T q1,...,qnbad , T A
good and T A

bad then form a partition of T A,
and if one is able to compute an upper-bound on the probability pbad that a transcript

∗∗We may further specify the distinguisher by defining its answer to be 1 if y1 = 1, and 0 otherwise.
However this does not really matter for our purpose, which is only concerned with the transcripts produced
by the distinguisher (hence its “potential” advantage), and not its actual advantage.
††Note that one of those two probabilities may be zero, but not both.
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produced by A in the world D′ belongs to T A
bad, then by Lemma 2 the advantage of A will

be upper-bounded by ε+pbad. Since pbad now does (in principle) depend on T A, it follows
that our ability to upper-bound the advantage of any adaptive distinguisher will directly
depend on our ability to upper-bound this probability independently of A. (This will be
the case for our two examples of application developped in the next sections.)

3 PRP/PRF switching

We will now illustrate the techniques presented in the previous sections by proving a nice
(and useful) result, viz. the PRP/PRF switching lemma.

We first recall the definitions of PRP and PRF advantage in distinguishing a family of
mappings E : K ×M→M from a uniform permutation and function respectively:

Definition 11 (PRP advantage). The PRP advantage of E : K×M→M is defined as:

AdvPRP
E (q, t) := max

Aq,t

∣∣∣Pr
[
AO
q,t(·) = 1 : O � Perms(M)

]
−

Pr
[
AO
q,t(·) = 1 : O = E (K, ·),K � K

] ∣∣∣
Definition 12 (PRF advantage). The PRF advantage of E : K×M→M is defined as:

AdvPRF
E (q, t) := max

Aq,t

∣∣∣Pr
[
AO
q,t(·) = 1 : O � Funcs(M)

]
−

Pr
[
AO
q,t(·) = 1 : O = E (K, ·),K � K

] ∣∣∣
Here AO

q,t denotes a (deterministic, which is w.l.o.g. as per the previous section) algo-
rithm that makes q pairwise-distinct queries to its oracle O, runs in time t (something that
we will mostly ignore, given our information-theoretic proof), and returns a unique bit,
and Perms(S) (resp. Funcs(S)) denotes the set of all permutations over the finite set S
(resp. functions from S to itself). The “PRP/PRF switching problem” can then be stated
as asking to upper-bound the PRF advantage of E in function of its PRP advantage.

Let AE
q,t, AP

q,t, AF
q,t be shorthands for AO

q,t when O is respectively E (k, ·) with a uniform
k, a uniform permutation and a uniform function. Then from the triangular inequality:∣∣∣Pr

[
AF
q,t() = 1

]
− Pr

[
AE
q,t() = 1

] ∣∣∣ =∣∣∣Pr
[
AF
q,t() = 1

]
− Pr

[
AP
q,t() = 1

]
+ Pr

[
AP
q,t() = 1

]
− Pr

[
AE
q,t() = 1

] ∣∣∣ ≤∣∣∣Pr
[
AF
q,t() = 1

]
− Pr

[
AP
q,t() = 1

] ∣∣∣+
∣∣∣Pr

[
AP
q,t() = 1

]
− Pr

[
AE
q,t() = 1

] ∣∣∣
Consequently, letting AdvFP(q, t) := maxAq,t

∣∣∣Pr
[
AF
q,t() = 1

]
− Pr

[
AP
q,t() = 1

] ∣∣∣, we get:

AdvPRF
E (q, t) ≤ AdvPRP

E (q, t) + AdvFP(q, t) (10)

which has the form that we are looking for. Informally, what we have done here
is “paying” AdvPRP

E to pass E as a uniform permutation, so that we can then use an
E -independent term for the advantage in distinguishing a uniform permutation from a
uniform function. Remark that this approach is in part made possible by the fact that
Definitions 11 and 12 use exactly the same definition for the “real” oracle E , and by the
fact that they are expressed in terms of a “distance” between the two oracles.

We now address the main task of computing (an upper-bound on) AdvFP(q, t). Fol-
lowing Sections 1 and 2, we will do so by computing an upper-bound (function of q) on the
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total variation distance between the transcript distributions induced by an oracle access
to P and F respectively. We write T q for the set of all possible (unordered, w.l.o.g.)
transcripts with q queries to either of P or F . Then following Section 2.3, we wish to
define a partition of T q into “good” and “bad” subsets and find the corresponding terms
ε and pbad, where we are “free” to choose the distribution w.r.t. which computing the
upper-bound for pbad (that following Section 2.3, we would like to be independent from
any distinguisher).

The good set should contain all the transcripts that have a roughly equal probability
to be obtained when making q queries to P or F , while the bad set should contain the
(hopefully few) ones that are much likelier to occur in one of the two cases. Since it
is clear that collisions are only possible for F , an obvious possibility for the bad set is
to define it as Tcol, the set of transcripts for which ∃ i, j 6= i s.t. yi = yj ; the set of
good transcripts Tunq is then simply taken to be the complementary T q\Tcol. Now we
immediately have that for any τ ∈ Tcol, pPτ = 0 (where by an abuse of notation we use ‘P ’
and ‘F ’ to denote the uniform distribution over Perms(M) and Funcs(M) respectively),
so in particular for any A, τ ∈ T A

col ⇒ pPτ = 0, and it follows that if computed w.r.t. P ,
pbad is simply zero. It remains to compute ε s.t. for all τ ∈ Tunq, 1 − ε ≤ pFτ /p

P
τ =: p,

or equivalently 1 − p ≤ ε. If we let N = #M, we have by definition of the oracles that
p = (1/N q)/(1/

∏q−1
i=0 (N− i)) =

∏q−1
i=0 (N− i)/N q, and it becomes clear that p is also equal

to the probability that there is no collision in q queries to F ; equivalently 1 − p is the
probability that there is at least one collision, which we can upper-bound by q(q−1)/2N .‡‡

Taking this bound for ε then finally leads to AdvFP(q, t) ≤ ε+ pbad = q(q− 1)/2N §§ and:

Lemma 13 (PRP/PRF switching). Let E : K ×M→M, N = #M, then:

AdvPRF
E (q, t) ≤ AdvPRP

E (q, t) + q(q − 1)/2N

Remark 14. A more direct approach in upper-bounding AdvFP(q, t) is to remark from the
above that pPτ > pFτ iff. τ ∈ Tunq, i.e. “S+” is equal to Tunq. From the proof of Theorem 1,
the advantage of an optimal distinguisher is then 1 − p. Note that this also provides us
with an explicit optimal distinguisher and proves that our expression for AdvFP(q, t) is
only an approximation in so far as we approximate 1− p.

We conclude this section by sketching a direct application of PRP/PRF switching to
the analysis of the IND-CPA security of a block cipher E in counter mode. It is clear
that the IND-CPA advantage of the counter mode instantiated with a uniform function is
zero, and since the IND-CPA and PRF definitions are “compatible” in their usage of E ,
we simply have AdvIND-CPA

CTR[E ] (q, t) = AdvPRF
E (q′, t) ≤ AdvPRP

E (q′, t) + q′(q′ − 1)/2N (where

q′ is the total number of queries to E implied by the q queries made by the adversary in
the IND-CPA game).

4 A provably-secure SPRP

In this section, we present a block cipher construction from Even and Mansour [EM91,
EM97] and prove in an “ideal” (“non-standard”) model that “it is an SPRP up to the
birthday bound”.

Let P : M → M be a public (i.e. not secret) permutation, then one simply defines
the “Even-Mansour cipher” built from P as E = (k1||k2,m) 7→ P(m ⊕ k1) ⊕ k2 (here we
assume thatM can be endowed with a group operation ‘⊕’¶¶). We will also actually focus

‡‡This can be obtained e.g. from the union bound applied to the q(q − 1)/2 pairs (yi, yj) that all have
probability 1/N of forming a collision.
§§As promised, this bound does not depend on t.
¶¶In practice one usually takes M = {0, 1}n for some n and ⊕ the bitwise XOR (this corresponds to

Even and Mansour’s original description).
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on the “single-key” variant that takes k1 = k2, since (up to a few nuances) its security is
in fact the same as the two-key original version; we hereafter denote this construction by
“SEM ”.

The “ideal” model in which we will study the security of SEM considers that P �
Perms(M) and that one may only do oracle (or “black-box”) accesses to it and its in-
verse. This will allow to show that AdvSPRP

SEM (q, t) ≤ 2qt/#M, where q denotes as usual
the number of queries to the block cipher under investigation (here, SEM ) or its inverse
(since we aim for SPRP security) and t now denotes the number of oracle accesses to
P or P−1 (written P± for short).‖ ‖ Informally such a proof (only) captures “generic”
attacks, in that it guarantees that for a SEM instantiation with a “concrete” explicit
permutation for P , any attack that does better than the bound must exploit some “struc-
tural” properties of this permutation. While this is a common feature of security proofs
in cryptography, the fact that it is done here in an ideal model has for consequence
that there is no explicit term to account for the non-idealness of P (which, since not
defined, will then obviously be hard to evaluate‽). This is to be contrasted with proofs
that reduce the security of a construction to a “standard” security definition (not im-
plemented through oracle accesses); for instance we showed in the previous section that
AdvIND-CPA

CTR[E ] ≤ some structural term + some generic term, and any candidate E for the
instantiation may be evaluated independently w.r.t. the structural term (here, PRP secu-
rity).

Upper-bounding the distinguishing advantage

We now wish to upper-bound AdvSPRP
SEM , i.e. we want to upper-bound the advantage of

any distinguisher which is given oracle access to P± and E±, where in both worlds P �
Perms(M), in the ideal world E � Perms(M) and in the real world E = x 7→ P(x⊕k)⊕k,
k �M. In order to simplify notation, we will also assume here that ⊕ is s.t. a⊕ a = 0.

Similarly as in Section 3, we start by defining transcripts that summarise the infor-
mation obtained by a distinguisher from its interaction with its oracles. We will then
use Lemma 2 to derive an upper-bound on the total variation distance between the tran-
script distributions from the real and the ideal world in function of the number of queries
made to each oracle, which will allow us to conclude. A slight difference from Section 3
is that the two worlds differ not only by the definition of their oracles but also by the
presence or not of one variable, viz. k; to make the computation of an upper-bound
easier, we will include this variable k in the real-world transcript and a similar k � M
(that does not really correspond to anything) in the ideal world one. We may conceptu-
alise this as giving away k to the distinguisher once it has made all the oracle queries it
wanted, and clearly this cannot lower the advantage of an optimal distinguisher. We also
assume that the distinguisher does not make repeated queries or a query to P−1 (resp.
E−1) on an answer from a previous query to P (resp. E ), and vice-versa; again this is
w.l.o.g. w.r.t. optimal distinguishers. To summarise, a transcript is then an ordered list
[(xi,P(xi))i, (x

′
i,P
−1(x′i))i, (x

′′
i ,E (x′′i ))i, (x

′′′
i ,E

−1(x′′′i ))i, k].

Now that we have defined our transcripts, the objective is to upper-bound the distance
between real-world and ideal-world transcript distributions for adaptive distinguishers,
which we will again do by following the approach described in Section 2.3.

Given T q,t the set of (unordered, w.l.o.g.) transcripts that may be produced in either
world when making q queries to E± and t queries to P±, the first step is to define a
partition of this set into “good” and “bad” transcripts. To do so, we may follow the
intuition that it is unlikely that the ideal-world oracle E satisfies E (x) = P(x⊕ k)⊕ k on

‖ ‖ Notice that in line with a previous remark, this means that this “information theoretic” bound “does
not care any more” about the physical time cost or the memory of a distinguisher.
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a random x,]] and so any transcript that allows us to “check” if this equality holds will
provide us with a strong distinguishing advantage. We thus define the bad transcripts Tbad
as the ones that define both P(x) (either because the query x appears for P , or because x
is the answer to a query to P−1) and E (x⊕ k)[[ (again, either because x⊕ k was queried
for E , or because it was returned as an answer to a query to E−1), along with the ones
that define both P−1(x) and E−1(x ⊕ k). Indeed, those are all the queries that allow
“easy” consistency checks between P and E that are guaranteed to pass in the real world,
and unlikely to do so in the ideal world.

Alternatively, one may interpret those bad transcripts as being the ones s.t. in the
real world, either P is “overconstrained”, or the transcript has zero probability. The
overconstrained case comes from the observation that in this world, a query to P± (resp.
E±) defines a point for P except if it has already been defined by another query to E±

(resp. P±); thus the number of points of P defined in a transcript is ≤ t + q, and bad
transcripts with non-zero probability are exactly the ones for which this inequality is strict
(this contrasts with the ideal world where t + q queries always define t + q points of the
oracles P and E in total). We limit our discussion of the zero-probability case to an
example, viz. a transcript s.t. P(0) = 0, E (0) = 1, k = 0.

Let now T Aq,t

SEM and T Aq,t

I respectively denote the transcript distributions from the
real (“SEM ”) and ideal world, w.r.t. the transcripts produced by an arbitrary (possibly
adaptive) distinguisher A that makes q queries to E± and t queries to P±. Our goal

is to compute un upper-bound on pbad := Pr[X ∈ Tbad : X ∼ T Aq,t

I ] valid for any
Aq,t,

\\ and ε s.t. for all τ ∈ Tgood, pSEMτ /pIτ ≥ 1 − ε (where we switch notation and
drop the mention of Aq,t to emphasise the fact that this bound will be computed directly
from the “full” T q,t and the structure of the oracles). From there Lemma 2 will give us

dtv (T Aq,t

SEM , T
Aq,t

I ) ≤ ε+ pbad, which is also an upper-bound for AdvSPRP
SEM (q, t).

Upper-bounding pbad

We start by observing that as far as oracle compatibility is concerned, it does not matter
that a point P(x) = y has been defined through a query x to P with answer y, or a query
y to P−1 with answer x (and the same obviously goes for E ). It is thus enough to think
about a transcript in terms of the points (α, β) (resp. (α′, β′)) that have been defined
for P (resp. E ). Now a point (α, β) for (say) P leads to a transcript being bad iff. this
latter includes a point (α′, β′) for E s.t. α′ = α ⊕ k or β′ = β ⊕ k. Since k is drawn
uniformly fromM and independently from P and E , the probability (over any transcript
distribution) that this happens for a fixed couple of points (α, β) and (α′, β′) is ≤ 2/#M
(by the union bound applied to the two possible events); by the union bound again, the
probability that (α, β) leads to badness is ≤ 2q/#M (since q is the number of queries to
E± in the transcript); finally by the union bound again, the probability that a transcript
is bad is ≤ 2qt/#M (since t is the number of queries to P±). Note that as required, this
upper-bound is the same for any distinguisher Aq,t: indeed, “badness” may only result
from the outcome of the sampling of k, which is not controlled by the distinguisher.

]]The expected number of points x on which the equality holds is equal to the expected number of fixed
points for a uniform permutation, which is 1.

[[Remember that k is part of the transcript, so this is a well-defined condition.
\\Following Remark 4, the choice of the distribution for which to compute pbad is here determined by

the one for which it is easiest; indeed, the independence of P , E and k in the ideal world will make this
much more straightforward than in the real one.
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Computing ε

To compute ε, we will explicitly compute pSEMτ and pIτ for good transcripts τ , and show
that pSEMτ ≥ pIτ ; this will immediately lead to ε = 0.••

To compute pIτ , it is enough to count the number of oracles compatible with τ in the
ideal world, that is the number of oracles that agree with τ on: the t P± queries; the q
E± queries; k (where we may call k an oracle by a slight abuse of definition). Letting
N = #M, these probabilities are respectively equal to (N − t)!, (N − q)! and 1, and so
pIτ = ((N − t)!× (N − q)!)/(N !×N !×N).

By definition of the real world, there is now a single permutation involved, and the
number of oracles compatible with a transcript is given by how many agree with all the
points defined through queries to P± and E±. If the transcript is good, no point is defined
more than once, and so there are t+ q of them and (N − t− q)! compatible oracles. From
the independence of the sampling of k, it follows that pSEMτ = (N − t− q)!/(N ×N !).

Now it only remains to show that pSEMτ /pIτ ≥ 1. This ratio is equal to ((N − t −
q)! × N !)/((N − t)!(N − q)!), and letting u = q and d (which we assume w.l.o.g. to be
non-negative) s.t. t = u − d, it rewrites as ((N − 2u + d)! × N !)/(N − u + d)!(N − u)!.
Letting (a)b for b < a denoting the falling factorial a!/(a − b)!, the ratio further rewrites
as (N)u/(N − u+ d)u, which is indeed at least 1. We conclude with the remark that the
equality case is for d = u, meaning that the transcript only includes queries to E (in the
present case, w.l.o.g.). This is consistent with the fact that in this case the two worlds
behave exactly the same (as is clear by the oracles’ definitions).

To conclude, all of the above gives us:

Theorem 15 (SPRP security of the SEM construction in the ideal permutation model).
Using the above notation, one has:

AdvSPRP
SEM (q, t) ≤ 2qt/#M
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