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Chapter 1

Stochastic processes and Brownian
motion

In this chapter we give general definitions on stochastic processes, Markov processes and continuous time
martingales. We then focus on the example of Brownian motion.

1.1 Stochastic processes: general definitions and properties

In the following definitions, a probability space (2, F,P) is given.

Definition 1.1.1. A stochastic process (or random process) X = (Xy)oco with values in E (F is
equipped with a o-field £), is a family of E-valued random variables Xy defined on (92, F,P) (i.e. Xy :
) — F is a measurable mapping for any 6 € ©), indexed by 6 € © where O is a set.

If © is finite or countable (e.g. © = N,Z,...) we say that X = (Xp)geco is a discrete time process.

If © is not countable(e.g. © =R, ,R,R? ...) we say that X is a continuous time process.

The space F is called the state space of the process X.

Remark 1.1.1. There are (at least) two other ways to consider a stochastic process.

1) One may see X as a bivariate mapping:

X: 6xQ — F
(0,w) — Xg(w)

Note that the measurability of this bivariate mapping from © x 2 to E is not clear. We will turn back
to this aspect in Definition 1.1.4.

2) One may see X as a mapping from €2 to the functional space E® (the set of mappings from ©
to E):
X:Q — E°
w = Xw: 6 — E
0 — Xy ((.d)

Note that it is always possible to equip E® with a o-field s.t. X : @ — E® is measurable (see [4]
Section 2.2), so that in fact X is seen as a E®-valued random variable.
For w € § the function X.(w) € E® is called a path (or trajectory) of the stochastic process X (it is
the path associated to the randomness w). The space E® is called the paths space of the process X.
This point of view is very rich and widely used in some branches of stochastic calculus: for example
it allows to construct Brownian motion in a canonical manner (see [4], again Section 2.2; here we will
not go further in this direction, and introduce another construction in the forthcoming Section 1.4).

From now on we consider that © = R and that the indices t € R represent time.

Definition 1.1.2. A filtration (F3)¢>0 is an increasing family of sub-o-fields of F (i.e. Vs < t, Fs C
Fi CF).



Example 1.1.1. Let X = (X;);>0 be a continuous time stochastic process and let us consider its
"natural filtration” (F;X)¢>o defined by

FX=0(X,,s<t), Vt>0
(note that we denote o(Xs, s < t) the smallest sub-o-field of F s.t. each X, s < t is measurable w.r.t.
this o-field).

We claim that the family (F;X) is indeed a filtration: let s < t; any X,,, u < s is measurable w.r.t.
F¥ (asu < t), thus FX C Fi¥ (as F2X is the smallest o-field that makes the X,,’s measurable for u < s).

Definition 1.1.3. A process X = (X;);>0 is said to be adapted to a filtration (F;);>¢ if for any ¢ > 0,
the random variable X; is F;-measurable.

Example 1.1.2. Of course a process X is adapted to its natural filtration (F;¥) ! Indeed X; is F;¥-
measurable by definition of /X (for any ¢ > 0; see Example 1.1.1).

Definition 1.1.4. Let (F;);>0 a filtration. A R-valued process X = (X;);>0 is progressively measurable
if for any ¢ > 0 the mapping
0,¢]xQ — R
(s,w) — X (w)
is B([0,t]) ® Fi-measurable (here B([0,t]) denotes the Borel o-field of [0, t]).

Definition 1.1.5. A process X is said to be almost surely (a.s.) continuous (resp. left continuous (l.c.),
resp. right continuous (r.c.)) if there exists g € F, with P(€y) = 1 and such that for any w € g, the
path X (w) is continous (resp. l.c., resp. r.c.).

In other words, if X is a.s. continuous, the elements w in 2 s.t. X .(w) is not continuous are included
in N € F, with P(N) = 0 (taking N = Qf in the above definition).
Proposition 1.1.1. Let (F;)i>0 be a filtration. Let X = (X;)i>0 be an adapted process. Assume X is
a.s. r.c. or l.c. Then X is progressively measurable.

Proof. Cf [4], Proposition 1.1.13. O

We will use Proposition 1.1.1 later on (Chapter 3), to ensure that the stochastic integral is an adapted
process.
Definition 1.1.6. Let (F;);>0 a filtration. A random variable T" with values in R} U {+o0} is said to be
a stopping time with respect to the filtration (F;) (or an (F;)-stopping time) if for any ¢ > 0 the event
{T <t}isin Fi.
Example 1.1.3. Let X = (X;):>0 be an a.s. continuous process, with values in a metric space E, and
(F7X) its natural filtration. Let A a closed subset of E and set

T=inf{t>0: X, €A}

(note that we use the convention inf ) = +oo, so that the event {T"= oo} corresponds to
{X never enters the set A on time interval [0,00)}).
Then T is a (F;¥)-stopping time (cf [4] Problems 1.2.6 and 1.2.7, [6] Proposition 1.4.5).
This is roughly speaking because for any ¢ > 0,

{T <t} = {X has entered the set A before time ¢t} = {3s € [0,t], X; € A} € ]—"tx7

as such an event can be described using the paths of X on time interval [0, ¢].

But to establish precisely the result there are some subtleties inherent to filtrations of continuous
time processes. For example if X cesses to be continuous or A to be closed, then the result is not true
in general. We will not enter into these details in this document. We will in the sequel always face a.s.
continuous processes, adapted to "right continuous filtrations” (see [4] p4 for a definition). Therefore
the above result will always be true, even if A is open.

Definition 1.1.7. Let (F;);>0 be a filtration and T a stopping time. We denote
Fr={AeF: An{T <t} € F, vVt >0}
the o-field of events determined prior the stopping time 7.

Remark 1.1.2. Note that it is an exercise to show that the set Fr is actually a o-field (e.g. Problem
1.2.13 in [4]).



1.2 Markov processes

From now on some knowledge of conditional expectation w.r.t. a o-field is required (an introduction can
be found in Chapter 4 of [2]).

We denote E the state space of the considered processes. The space E is assumed to be metric and £
is then the Borel set endowed by the open sets for the underlying metric. A probability space (2, F,P)
is given, but starting from Definition 1.2.2 we may change P for another probability measure.

Definition 1.2.1. Let (F;):>0 be a filtration and X = (X;)¢>0 an adapted process. We say that X is
a (Fi)-Markov process is for any s < t and any bounded measurable function ¢ : E — R, we have

E[p(X:) | Fs] = Elp(Xy) | X].

Exercise 1.2.1. Let (F;)¢>0 be a filtration and X = (X;);>0 an adapted process. Show that if X is
a (F;)-Markov process then it is also a (F;*)-Markov process.

Let us examine the meaning of Definition 1.2.1. In view of Exercise 1.2.1 we have for any s < t and
any bounded measurable function ¢ : E — R,

Elp(Xe) | F] = Elp(Xo) | X,].

This means that the law of Xy, ¢t > s, knowing the path of X on time interval [0, s], only depends on the
position of X at time s: the path of X on [0, s) has been forgotten. This is called the Markov property.

To go further in the definitions we introduce the notion of homogeneous Markov family.

Definition 1.2.2. A homogeneous Markov family is a filtration (F;)¢>p and an adapted process X =
(Xt)1>0, defined on (Q, F), together with a family of probability measures {P*},cp on (€, F) such that
i) For each F' € F, the mapping = — P*(F’) is universally measurable (see Definition 1.5.6 in [4]).

ii) For any « € E we have P*(X, =x) = 1.
iii) For any « € F, 0 < s < ¢ and any bounded measurable function ¢ : E — R we have

E¥lo(Xy) | Fs] = E¥[o(Xy) | Xs], P* —as.

(we denote E* the expectation computed under P?).
iv) For any z,y € E, 0 < s < t and any bounded measurable function ¢ : E — R we have

E%o(Xy) | Xs = y] = BY[p(Xi—s)], for P? o X —a.e.y.

The above definition of a homogeneous Markov family is a bit cumbersome. For conciseness it may
happen that we simply say ” X is a homogeneous (F;)-Markov process” and then consider P? for varying
x € E (it is also sometimes convenient to see P? as P(:| Xy = z)). Also in view of Exercise 1.2.1 it may
happen that if we simply say ” X is a Markov process” we by default mean that X is a (F;X)-Markov
process. Which filtration is considered will always be clear from the context.

One way to check the Markov property for a process X is the following proposition, whose proof is
left to the reader.

Proposition 1.2.1. Let (F;)i>0 be a filtration and X = (X;)i>0 be an adapted process. The process X
is (F¢)-Markov if and only if for any s < t, any bounded measurable function ¢ : E — R, and any x € E
we have

E” [@(Xt) |fs] = g(t’ S, Xs)

where g(t, s,-) is a Borel measurable function.
The process X is homogeneous Markov if and only if g(t, s, ) depends only ont — s, i.e. g(t,s,) =
g(t —s,-). In that case note that we have g(t,z) = E*[p(X})].
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Definition 1.2.3. Let (F;);>0 be a filtration and X = (X;);>0 an adapted process. We say that X has
the strong Markov property (or is a (F;)-strong Markov process) if for any (F:)-stopping time 7, any
time ¢ > 0, any bounded measurable function ¢ : F — R and any = € F, we have

E*[p(Xe) | Fr] = E*[p(X:) | X7]
on the event {7 < t}.

Remark 1.2.1. For a time homogeneous strong Markov process X we have, for any stopping time T,
any time ¢t > 0, any bounded measurable function ¢ : E — R and any = € E,

E*[p(Xe) | Fr] = (Ur—rp) (X7)

on the event {7 < ¢}, where the family of operators (Us)s>o is defined by (Usp)(x) = E*[p(X,)], for
¢ : E — R bounded and measurable.

For the proof see [4], Proposition 2.6.7. We will use this property at the end of the chapter, in order
to prove the reflection principle for Brownian motion.

1.3 Continuous time martingales: first definitions

A probability space (Q, F,P) is given and the considered martingales are R-valued.

Definition 1.3.1. Let (F;)¢>0 be a filtration. A process M = (M;);>o is called a (F;)-martingale if:
i) M is (F)-adapted.
ii) For any t > 0, we have E|M;| < c.
iii) For any 0 < s < t, we have E[M; | F5] = M.

Remark 1.3.1. If iii) in the above definition is replaced by E[M;|F;] < M, we say that M is a
supermartingale; if iii) is replaced by E[M; | Fs] > M, we say that M is a submartingale.

Remark 1.3.2. We say in short "M is a martingale” when there is no ambiguity w.r.t. the involved
filtration.

Remark 1.3.3. We stress the importance in Definition 1.3.1 of the probability measure P that has been
put on (Q,F). If we alter P there is no reason why we would keep point iii) and M would remain a
martingale. Note that we could have done an analogous remark for Markov processes. But the remark
is here more relevant with martingales, because we will encounter later on the notion of change of
probability measure, that will give rise to new martingales (see Girsanov theorem in Chapter 4).

Concerning martingales we have ”optional sampling theorems”; we mention a few of them.

Theorem 1.3.1. Let (F)i>0 be a filtration, M a martingale, and T and S two bounded stopping times
satisfying S <T < ¢ < oo a.s. Then

E[MT | fs] = MS a.s.
Proof. See [4], Problem 1.3.23. O

Theorem 1.3.2. Let (F;);>0 be a filtration, M = (M;);>0 a martingale and T a stopping time (possibly
unbounded).
Then MT = (Mia7)i>0 is a again a martingale (called the stopped martingale MT).

Proof. See [4], Problem 1.3.24. O

Exercise 1.3.1. Some filtration is given. Let M = (M;)¢>0 be a square integrable martingale, i.e. with
E|M;|? < oo, for any t > 0. Show that

E[(M; — M,)?] = E[M? — M?], Y0<s<t.



1.4 A fundamental stochastic process: the Brownian motion

Definition 1.4.1. Let (Q, F,P) be a probability space and (F;);>o a filtration. A R-valued process
B = (By)i>0 is called a (F;)-standard Brownian motion if it is adapted and satisfies

i) By = 0, P-a.s.

ii) For any 0 < s < t we have B; — By ~ N(0,t — s).

iii) For any 0 < s < t the increment B; — By is independent from F.

iv) B is a.s. continuous.

Remark 1.4.1. Point iii) of Definition 1.4.1 implies that the increments of B are independent, that is:
for any 0 < ¢; < ... <t, the random variables B;,, B, — Bs,,..., B, — B, , are independent.

Conversely, let (Q,F,P) be a probability space and B a R-valued process defined on it, satisfying
Points i), ii) and iv) of Definition 1.4.1 and

iii’) for any 0 < ¢; < ... < t,, the random variables By,, By, — B,,..., By, — By, _, are independent.

Then B is a (F2)-Brownian motion (standard). To prove that iii’) implies iii) one uses the monotone
class theorem (see Theorem 0.2.1 in [6]).

Note that in Definition 1.4.1 there is no reason why (F;) should be the natural filtration of B. It is
sometimes convenient to work with a filtration larger that (F7), therefore the general Definition 1.4.1.

Remark 1.4.2. The word ”standard” in Definition 1.4.1 refers to the fact that B starts from zero
under P.

But we may have to consider some Brownian motion starting from = # 0. Therefore we will consider
the Brownian family (F;), B and {P*},cg, satisfying Point i) of Definition 1.2.2, Points ii) to iv) of
Definition 1.4.1, and P*(By = z) =1 for all z € R.

For conciseness we will most often say ” B is a Brownian motion” and have in mind that under P*,
x # 0, the process B is a non standard Brownian motion (it starts from z # 0). It is standard under P,
but we will omit the superscript when we are satisfied with standard Brownian motion and there is no
ambiguity.

Exercise 1.4.1. Let B be a (F;)-Brownian motion (some filtration is given). Show that the process B —
x = (By — x)¢>0 is a standard Brownian motion under P?, for any x € R.

The first question about Brownian motion is: how can such a process be defined ?

There are several ways to construct the Brownian motion. Among them the canonical approach (see
Section 2.2 of [4], already mentioned in Remark 1.1.1), the Hilbert analysis approach (Section 2.3 of [4]),
etc...

But maybe the most intuitive one is by scaling the symmetric random walk on Z (Section 2.4 of [4]).

Let us recall what we mean by symmetric random walk on Z: a sequence (X;);>1 of i.i.d. random
variables is defined on some probability space (Q, F,P), with P(X; = +1) = P(X; = —1) = 1.
Then we define the Z-valued discrete time process M = (M,,)n>0 by

n
My=0 and M, = ZXi, Vn > 1.
i=1
This process M is the symmetric random walk on Z.
Note that M is a discrete time martingale with respect to the filtration (F,,) defined by Fo = {0, Q}
and F, = o0(X;, 1 <i<n),n>1 (see Chapter 4 of [2] for a definition of discrete time martingales).
Indeed M is obviously (F,,)-adapted, and we have for any n > 0, E|M,,| < co and

E[Mps1 | Fol =Y Xi + E[Xn 1| Fo] = M,

i=1
(we have used the fact that X, 1 is independent from F, so that E[X,,1|F,] = E[X,4+1] = E[X1] = 0).
Then we define the continuous time process B(™) = (Bt(n))tZO by: Bt(") = ﬁMnt if nt is itself an

integer; if not, we define Bt(") by linear interpolation between its values at the nearest times s and u s.t.
s <t <wu and ns and nu are integers.



2.8

2.6

2.4

2.2

0.8

0.6

0.4

0.2

Figure 1.1: Path of B() on time interval [0, 10].

Figures 1.1, 1.2 and 1.3 show, for a given path of M, the corresponding path of B™), for n = 1 (this
is simply the path of M, that has been linearized), for n = 5 and for n = 1000.

One can observe that the path of B(1°%0) looks a bit like the path of a Brownian motion (that you
may have encountered on TV, internet or newspaper...).

In fact we have the following convergence result.

Theorem 1.4.1 (Donsker theorem). The process B™) converges in distribution, asn — oo to a process B
satisfying Points i), 4), #i’) and ) in Definition 1.4.1 and Remark 1.4.1.

Proof. See Theorem 2.4.17 and 2.4.20 in [4]. O

Therefore B is a (FF)-standard Brownian motion (Remark 1.4.1) defined on (£, F,P).

Note that the fact that the increments of B are gaussian (while the ones of B(™ are not) is due to
the central limit theorem.

Note also that when we say that B(™) converges in distribution to B this is in the sense of the
convergence of laws of continuous processes. We do not enter into details and refer again to [4].

We now explore some properties of the Brownian motion. In the sequel a filtration (F;) is given and
B is a (F;)-Brownian motion.

Proposition 1.4.1. B is a homogeneous (F;)-Markov process.

Proof. Let ¢ : R — R be a Borel bounded function and 0 < s < t. We have for any = € R
E*[p(Bt) | Fs] = E*[@(B; — Bs + Bs) | Fl-
But B;— B; is independent from Fs and By is Fs-measurable, thus (properties of conditional expectation)
E*[p(Bt — Bs + Bs) | Fs] = F(Bs)
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where F(y) = E*[¢(B; — Bs + y)]. Denoting p(u, z) =
we have

—L_c~# and using Point ii) of Definition 1.4.1

Flo) = [ ol +uplt = s.2)d
Thus F(y) = F(t — s,y) and we have
E*[p(By) | Fs] = F(t — s, Bs).
Therefore the result by Proposition 1.2.1. O

Proposition 1.4.2. The process B is an (F;)-martingale.

Proof. To fix ideas let us work under P = P, under which B is standard (but the result remains true
under P* x = 0).

The process B is (F;)-adapted by definition and we have for any ¢ > 0, B, = By — By ~ N(0, t), thus
E|B;| < co. Let us check the martingale property. We have for any s < ¢,

E[B:|Fs] = E[B; — Bs + Bs|Fs] = E[B; — Bs|Fs] + E[Bs|Fs] = E[B; — Bs] + Bs = Bs.

Here we have used the fact that B is Fs-measurable so that E[B;|Fs] = Bs, the fact that B, — By is
independent from F; so that E[B; — Bs|Fs] = E[B; — Bs| and finally the fact that By — Bs ~ N (0, — s)
so that E[B; — Bs] = 0. O

The two above propositions show that B is both a Markov process and a martingale. But note that
not all Markov processes are martingales, and not all martingales enjoy the Markov property.

We now turn to properties of the Brownian paths.

Proposition 1.4.3. Assume B is standard. We have

i) (Symmetry property): (—Bi)i>o s again a standard Brownian motion.

i) (Scaling property): For any ¢ > 0 the process (¢~ Bezt)i>0 s again a standard Brownian motion,
for the filtration (Fe2t)i>0-

iii) (Inversion of time): The process B defined by By =0 and By = tByi¢, t > 0 is again a standard
Brownian motion, for its natural filtration (]:—t)tzo-

Proof. PointsAi) and ii) are left to the reader. We give some elements for the proof of Point iii).
We have By = 0 by definition. Let ¢ > s > 0 we prove that B; — Bs ~ N(0,t — s). We have

Et—észtB% —sB1 ZtB% —S(B; —B%—FB%):(Z&—S)B% —S(B; —B%)

where B1 = B1—By ~ N(0, 1) and B1 —B1 ~ N(0, | — ) are independant normal (gaussian) variables.
Thus Et — Bs is gaussian with

E[B; — By] = (t — 5)E[B1] — sE[B1 — B1] =0
and
A - 1 1 1 1 2 2 2
Var[Bt—Bs]:(t—s)2¥+52(;—;)z(t2—23t+32)¥+s—%zt—Qs—F%—i—s—%:t—s.

Thus B;t — B, ~ N(Q,t — 5). The proof that for any 0 < ¢; < ... < ¢, the random variables Bm,
B, — B,,...,B;, — B, _, are independent is left to the reader. It implies (Remark 1.4.1) that B; — B,

is independent from F for any 0 < s < ¢ (note that B is obviously (F;)-adapted).
From the (a.s.) continuity of B it is clear that B; = tB;, is continuous (a.s.) at any time ¢ > 0. It

remains to see that limy g B, =0. The proof of this point is postponed to Proposition 1.4.6. O

Proposition 1.4.4 (Translated Brownian motion). Assume B is standard and let h > 0. Then (Byyip —
Bp)i>0 is again a standard Brownian motion (for its natural filtration).

12



Figure 1.4: A Brownian path on time interval [0, 10] and the graph of ¢ — —t.

Proof. We have Byt — Br, = 0 and the a.s. continuity of ¢ — By, — By, is clear. For any ¢ > s we
have (Biin — Br) — (Bsyn — Bp) = Byyp — Bsan ~ N(0,t —s). For any 0 < t; < ... < t,, we have
that By, +n — Bh, (Bigth — Bn) = (Bt,4h — Bn) = Btosn — Beyhs -5 (Be,4h — Br) = (B, _,+n — Bp) =
By, +n — By, _, +r are independent. O

Proposition 1.4.5 (Behavior at infinity). Assume B is standard. We have

i)

limsup B; = 400 a.s. and liminf By = —c0 a.s.
t—00 t—o0
B
lim =% =0 a.s.
t—o00
Proof. See Proposition 1.4.1 in [5] and Problem 2.9.3 in [4]. O

This proposition means that the standard Brownian motion explores the whole real line R, but slower
than the identity function ¢ — ¢ (see Figure 1.4).

Proposition 1.4.6. i) In the context of Proposition 1.4.3-iii) we have limy g B, =0.
it) (Nowhere differentiability of Brownian motion): we have for any to > 0,

B - B
limsup | -2t 20| — 4o g
t10 t
Proof. i) Performing a change of variable we have lim; o ¢B 1= lim 400 % = 0, thanks to Proposi-

tion 1.4.5-ii).
ii) By Proposition 1.4.5-i) we have limsup, | Zt| = limsup, |B1| = +o0.
In fact it is possible to show that we have the property limsup, |%
motion B (REF?).
Thus we have this property in particular for (Byiy, — By, )t>0 (Proposition 1.4.4), which leads to

| = 400 for any Brownian

B - B
lim sup “tott  Tho

= 400 a.s.
t10 t

13
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Figure 1.5: A Brownian path on time interval [0,10] and its ”shadow path” (reflected around the axis
y = b after time T3). Here b = 2.68.

We finish this section by stating and proving the reflection principle for Brownian motion.

Proposition 1.4.7 (Reflection principle). Let b > 0 and set T, = inf{t > 0: By = b}. We have for any
t>0,
PO(Ty, < t) = 2P°(B; > b) = PO(|B;| > b). (1.4.1)

The reflection principle allows for example to compute the law of Tp.

Exercise 1.4.2. Show that )
b

b
\/mexp(— %) dt.

PO(Ty, € dt) =

Note that the last part of (1.4.1) is simply due to
PO(|By| > b) = P°(B; > b) + PY(B; < —b) = P*(B; > b) + P°(—=B; > b) = 2P°(B; > b)

(using Proposition 1.4.3-1)).
The idea to prove the first part of (1.4.1) is to write

PYT, <t) =PYT, <t; B, >b) +P"(T, <t; B, <b).

But as {B; > b} C {T, <t} we have P°(T, < t; B; > b) = P°(B, > b).
So that we are done if we prove that

PYT, <t; By <b)=PYT, <t; B; > ). (1.4.2)

Consider Figure 1.5. Heuristically we will get (1.4.2) if the shadow path has the same probability to
occur than the initial path. One feels this has a chance to be true because B is Markov.

In fact we have better: B is strong Markov and will will use this to mathematically prove (1.4.2).
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Proposition 1.4.8. The Brownian motion B enjoys the strong Markov property.
Proof. See [4], Theorem 2.6.15. O

We thus write
PO(T) < t; By > b) = E°[E*(1n,<11p,50 | Fir,) | = B [11,<P°(By > b| Fi,)| = B°[11,<iP*(B, > b| Br,)|
(note that at the third equality we have used the fact that {T, < t} € Fr,; indeed let u > 0, one may
check that {T, < t} N{T} < u} is in F, by noticing that {1, <t} N{T, <u} ={T, <u} e F, if u <t,
and that {Tp, <t} N{T, <u} ={T, <t} € F; C F, if t < u).
We now use Remark 1.2.1. We have (note that here (Usf)(z) = E*[f(B;)] for any s > 0, z € R)
P()(Bt >b | BTb) = Eo[lBt>b| BTb] = (Ut*Tbl(b,JrOO))(BTb) = (Ut*Tbl(b,JrOO))(b)?
on the event {1} < t}, thus
t
PO(T, <t; B; >b) = / (Ut—s1(p,400)) (b) P*(T}, € ds).
0
Note now that
(Usl(p400))(b) = P"(By>b)=P°(B,—b>0)=P"B, >0)
= PYBs <0)=P"(B, —b<0)=P(Bs <b) = (Usl(—oo,))(b)
(we have used Exercise 1.4.1). Thus

t
PY Ty <t; B, >b) = / (Ui—s1(—oop)) (0) P°(Ty, € ds) = E° |15, <,P°(By < b| Fr,)| =P°(T, < t; By <b).
0

In fact this establishes (1.4.2) because the law of (T}, B;) has a density w.r.t. the Lebesgue measure.
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Chapter 2

Processes of finite variation and
quadratic variation of martingales

In this chapter we recall some elements about functions of finite variation and introduce the notion of
process of finite variation. We prove that a continuous time martingale is not of finite variation, unless
it is constant, and introduce the notion of quadratic variation of martingales.

2.1 Functions of finite variation

Note that all the considered functions will by default be right continuous, so that we will rarely recall
this assumption.

Let —o0 < a < b < +oo. We call a set A, = {tf,...,th} with tf = a <t} < ... <t =ba
subdivision of the interval [a, b], of size n.

We call |A,| :=sup,_; _, |tF — ;| the step of A,,.

.

Definition 2.1.1. Let f : [a,b] — R a function, we call the total variation of f on [a,b] the quantity
Vi (f) = sup {1 = F(t)1}
AV,LES i=1

where S is the set of all possible subdivisions of [a, b] (of all possible sizes).
If Vigs)(f) < 400, we say that f is of finite variation (FV) on [a, b].
Let f: Ry — R. If for any 7" > 0 the function f|jo 7 is of FV on [0, T], we say that f is of FV on R,

Property /Example 2.1.1. 1) If f : [a,b] — R is increasing then V}, 4 (f) = f(b) — f(a) < cc.

Indeed, for any subdivision A,, of [a,b], we have Y1 | [f(t;) — f(ti1)] = Yiey (F(:) — f(tiz1)) =
f(b) — f(a) (note that we will often drop the superscript n on the ¢?’s in the sequel).

2) If f € C'([a,b]) then f is of FV.

Indeed, for any subdivision A, of [a,b] we have,

n n 123 n t; b
F(ts) = F(timn)| = f(s)ds| < F($)lds = [ [£/(s)lds.

Thus Vigp(f) < f; |f/(s)|ds < oo.
3) A function f is of FV if and only if f = f; — fo with f; and fy two increasing functions.
The necessary condition is clear as

If(t:) — f(tic)| < [fi(t) = fi(tizo)| + | fa(ts) — fa(tiz1)| = (fr(ts) — fr(ti=1)) + (f2(ts) — fa(tiz1))-

For the sufficient condition see the Appendix (Proposition 6.1.1).
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Now consider p a positive measure on R and set f(t) = u([0,t]). The function f is increasing and
thus of FV.

If 11 is a signed measure, i.e. p = p; — pe with py, pe two positive measures, then f(¢) = u([0,t]) =
11 ([0,]) — p2([0,t]) is the difference of two increasing functions and therefore of FV.

In fact the converse is true. More precisely we have the following result.

Theorem 2.1.1. There is a one-to-one correspondance between the r.c. functions f of FV and the
signed measures i on Ry, via the equality

f(@t) = u([0,¢]), t=>0.
Proof. REF? O

We are then led to the concept of Stieltjes integral.
Let f of FV on Ry and s the corresponding signed measure. Let ¢ : Ry — R a Borel function s.t.

t
/ I0l(s) lugl(ds) < +o0, VE> 0
0

(here we have denoted |uy| the positive measure defined by |us| = py, + piy, where py = pp, — fiy, is
the decomposition of p¢; note that jyr, and jiy, correspond to the increasing functions f; and fz in the
decomposition f = f; — f2 of f).

Then we note

/ o(s) df(s) = / o(s)ps(ds), 20
0 (0,¢]

the Stieltjes integral of ¢ against f at time t. We may consider the function [j¢(s)df(s) : t —
fg ©(s)df(s) and call it the Stieltjes integral of ¢ against f.
Note that fot df(s) = f(t) — f(0). In the sequel we will often note df (s) for us(ds).

Property /Example 2.1.2. 1) The function [ ¢(s df( ) is itself of FV.

Indeed we have fg p(s)df (s) = pu7((0,1]) with pf(A) = [, p(s)df (s) for any A € B(Ry). And using
the decompositions ¢ = o™ —¢p~ and df = df; —df2 one may check that T 7 Is a signed measure. Therefore
the result, considering % ((0,t]) = p%([0,¢]) — 1 ({0}) and Theorem 2.1.1.

2) (Associativity of the Stieltjes integral) Let a:Ry — R of FV and ¢ z/) R+ — R having the re-

quired integrability. One sets A(t fo ) for any ¢ > 0. Then fo A(s) = fot d(8)Y(s) da(s)
for any t > 0.
Indeed A(t) = p (]0,t]) with p¥(B) = [ ¥( ) for any B € B(R,) (that is the measure pY has

density 1 w.r.t. the measure da(s)). Thus for any t 2 0,

/cb(S)dA(S): ¢(s)py (ds) = ¢(8)w(8)da(8)=/ d(s)(s)da(s).
0 10,¢] 0

10,¢]

3) If o is continuous then fOT @(s)df (s) = limya,, 10 2oieq (7)) (f(E7) — f(t7-y)) (the limit is taken
over subdivisions |A,| of [0,T],0 < T < o).
4) If f is of class C’1 and 7(0 )f()then focp foga s)ds for any t > 0.

Indeed, 1£([0,1]) fo s)ds for any ¢, Wthh shows that pr(dt) = f'(t)dt.

Exercise 2.1.1. Show that for f : Ry — R of FV (with f = f1 — fo with f1, fo increasing) we have
Vi (f) < [y 1df|(s), where |df| denotes df; + dfa.

2.2 Processes of finite variation

From now on and till the end of the chapter the encountered processes are R-valued and defined on some
probability space (2, F,P). A filtration (F;);>0 is given.

Definition 2.2.1. An (F;)-adapted and a.s. r.c. process X = (X;);>o is of FV if, for almost every
w € Q, the mapping t — X;(w) is of FV.
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Proposition 2.2.1. Let X = (X;)i>0 be a process of F'V, a.s. continuous and adapted.

Let H = (Hy)i>0 be a progressively measurable process such that for almost every w € Q, the func-
tion H.(w) is integrable against X.(w) in the Stieltjes sense.

The process H - X defined for almost every w € ) by

(H~X)t(w):/0 Hy(w)dX,(w), Yt>0

(here fot H(w)dXs(w) is the Stieltjes integral of H.(w) against X.(w) at time t) is called the Stieltjes
integral of H against X .
This process H - X is of FV, a.s. continuous and adapted.

Proof. See [6] p119 for some details.

The idea is that for a.e. w the process [j Hy(w)dX(w) is of FV by Property/Example 2.1.2-1). To
see the continuity one uses the continuity of the integral. To show that H - X is adapted is maybe the
most tricky part. It is here that the fact that H is progressively measurable comes into play. O

Proposition 2.2.2. Let M = (M,;);>0 be a continuous martingale with Mo = 0. If M is of FV then
M; =0 a.s., for any t > 0.

Proof. Note that this proof makes use of Exercises 2.2.1 and 2.2.2 that are proposed just after.
We consider, for any n € N, the stopping time 75, = inf{t > 0, Vjg 4(M) > n}.
For any n we consider the stopped martingale M 7" = (M;xr, )t>0 (see Theorem 1.3.2).
For a while we fix n and denote X = M7~ for conciseness. Then we fix ¢ > 0. We have for any
subdivision A, of [0,¢],
P P
0x7) = E[ 302 32 )] —E[3508 - o]
i=1 i=1
Here we have used Exercise 1.3.1 at the second inequality (and note that Exercise 2.2.1 guarantees
that E(X?) < 00).
Thus we have E(X?) < ]E[ sup; | Xo, —Xe, | D0 [ X, — X, | ] cbut 381Xy, — Xy, | < Vio,g(X) =
Vio,ent,) (M) < n.
Thus E(X?) < nE[ sup; | Xy, — X;,_,|]. And by the a.s. continuity of X we have

sup | Xy, — Xy, | —— 0 as.
i |Ap[40

As sup; | Xy, — Xy, | < Vjo.q(X) < n we can use the dominated convergence theorem to claim that

E(XtQ) < nE[ Sup |X75i - Xti—l':l m

Thus E(X?) = 0 and X; = 0 a.s., i.e. we have shown that
Miar, =0 as., VneN,Vt>0. (2.2.1)

To achieve the proof we now fix t > 0 again. As T;, T oo a.s. (Exercise 2.2.2) for a.e. w there exists
Ni¢(w) great enough s.t. T, () (w) > t.

Thus for a.e. w we have My(w) = Miary, () (w)(w). But this quantity is equal to zero thanks
to (2.2.1). O

Exercise 2.2.1. In the context and with the notations of the proof of Proposition 2.2.2, show that X
is bounded, and thus square-integrable (for a certain fixed n).

Exercise 2.2.2. Let Y = (Y;)¢>0 be a process of FV and define 7, = inf{t > 0, Vjg 4(Y) > n}. Show
that 7, T 00 a.s., as n T oco.
(Hint: Show that if 7,, < B < oo then Vjg p)(Y) = +00.)

A consequence of Proposition 2.2.2 is that a continuous martingale M with My = 0 which is not
constantly equal to zero (as the Brownian motion B for example !) if not of FV.

Therefore fo H,dM s cannot be defined in the Stieltjes sense: we will have to define the It6 integral,
this will be the topic of Chapter 3.
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2.3 Quadratic variation of martingales

Theorem 2.3.1 (Doob-Meyer decomposition). Let M = (M,;);>0 be a square-integrable continuous
martingale. There is a unique increasing process, continuous and adapted, denoted (M) = ((M);)i>0,
such that (M)o =0 and M? — (M) is a martingale.

Proof. For the existence we refer to Theorem 1.4.10 and Definition 1.5.3 in [4].

But it is quite easy to check uniqueness: let A and A be two increasing, continuous and adapted
processes, with Ag = Ay =0, and s.t. M2 — A and M? — A are martingales.

Then A — A = A— M? — (A — M?) is a continuous martingale, starting from zero (by linear com-
bination). But A — A is of FV, as the difference of two increasing processes. Thus A — A=0 by
Proposition 2.2.2. [

Example 2.3.1. For a standard Brownian motion B we have (B); =t, for all £ > 0.

Indeed, notice first that, as B; ~ N(0,t), we have E(B?) = Var(B;) =t < oo for any t > 0, so that B
is actually a square-integrable martingale.

Then the process (B? — t);>0 is integrable, adapted and continuous. Let us check that it satisfies the
martingale property. We have for any 0 < s < ¢

E(Bf —t|F,) = E[(Bi— By)?+2B,B, — BZ—5— (t—s)|F]
= E[(B; — Bs)?| - (t — 5) — s — B2 4+ 2B,E(B;|F,)

- pB2
= B -—s.

Here we have used the facts that By — B, is independent from F, and is distributed along N (0,¢ — s),
that By is Fs-measurable and that B is a martingale.

Thus (B? — t);>0 is a martingale. The (deterministic) process (t);>o obviously satisfies all the re-
quirements of (B). Thus by the uniqueness property in Theorem 2.3.1 we get (B); = t (and note that
the above computation provide the existence of (B) in the case of the Brownian motion B).

For a square-integrable continuous martingale M the process (M) is called the "bracket” or the
”quadratic variation” of M.

Indeed, for a subdivision A, of [0,#] we denote Q" (X) = Y27 (X, — Xy,_,)?, for any process X.
We say that X is of finite quadratic variation if for any ¢ > 0 there exists @+ < oo a.s. such that
Q2" (X) — Q, in probability as |A,| | 0. We have the following result.

Theorem 2.3.2. Let M = (M;)i>0 be a continuous square-integrable martingale. We have for any t > 0,

P
sup Q" (M) — (M) | —— 0. (2.3.1)
s<t [An]L0

In particular M is of finite quadratic variation and Q¢ = (M); for any t > 0.
Proof. See Theorem IV.1.8 in [6]. O

Remark 2.3.1. This is possible to understand why we have such a result by examining the case of
Brownian motion (again; see Example 2.3.1).

Let 0 =tf < ... <t =t be a subdivision of [0,¢] and B be a standard Brownian motion.

We have

n n n
IE| Z(Bt1 - Bti—l)Z - t|2 = ]E| Z ((Bti - Bti—l)Q - (ti - t’i—l)) |2 = IE| Z Zzn|2
i=1 i=1 i=1
where Z' = (By, — By,_,)? — (ti —t;_1). Note that the Z’s are centered (as E[(By, — By,_,)?] = ti —ti_1)

and square-integrable with E|Z7|2 = 2(¢; — t;_1)? (using E| X |?* = (Qik),' o2k for X ~ N(0,0?)).
In addition the Z}*’s are independent, thanks to the independence of the Brownian increments. Thus

_ 2 n2_ _ _
E|;(Bti B ) t| ;E|Z| 2;15 ti 1)<2tsup|t ti 1\m0
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This shows that Q2" (B) — ¢ = (B), in the L? sense when |A,| | 0. This is not the convergence stated
n (2.3.1), but gives an insight why we have some convergence of Q=" (B) to (B);.

Property 2.3.1. If a process X is continuous and of F'V then it is of null quadratic variation.

Proof. We have

Qrm(X )<SUP|Xt - Xy, 1\Z|Xt — X, | < Vjog(X)sup [ Xy, — X, |

—_—
i=1 |An L0

O

Definition 2.3.1 (Bracket of two martingales). Let M, N be two continuous square-integrable martin-
gales. We set

1
(M,N) := 5| (M +N) = (M) = (N)]
This is the ”(crossed) bracket of M with N”.

Property 2.3.2. 1) (M, N) is the unique continuous and adapted process, of FV, starting from zero,
such that MN — (M, N) is a martingale.
2) We have

n

<M’ N>t = \Alnﬁo |P Z(Mt7 - Mti—l)(Nti - Ntz‘—l)'
" i=1

3) For any progressively measurable process H that is integrable against (M, N) we have

/ Hyd(M,N), = hrﬁ |p ZHQ N DNy, — Ny, ).
Proof. You may check 1) as an exercise. For 2) and 3) see [6] and [4]. O

Exercise 2.3.1. Show that (M, N) — (M, N) is bilinear and symmetric.

Note that of course (M, M) = (M). We will use one or the other notation in the sequel.

To finish with, we have the following property.

Property 2.3.3. Let M = (My)i>0 be a continuous square-integrable martingale with My = 0 and
(M,M)=0. Then M = 0.

Proof. We have for any ¢ > 0 that E[M? — (M, M),] = [Mg (M, M)g] = 0, as a martingale is constant
in expectation and M@ — (M, M)y = 0. Thus E[M?] = E[(M, M);] = 0, for any t > 0. Thus M; = 0 a.s.
for any t > 0. O
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Chapter 3

Stochastic integration and Ito
formula

In this chapter we build the (It0) stochastic integral and present the It6 formula (or It6 lemma). Those
are the two main blocks of Stochastic Calculus. Note that the It6 formula is presented with the formalism
used in [6], but the proofs follow more often the spirit of [4].

3.1 Stochastic integration

In this whole chapter some time horizon 0 < T < oo is fixed. A probability space (Q,F,P) and a
filtration (Fi)o<t<r are given.

We aim at giving a sense to fot Hy,dMg, 0 <t < T, where M is a square-integrable martingale and H
a progressively measurable process satisfying some integrability conditions. From Proposition 2.2.2 we
already know that this cannot be done in the Stieltjes sense (unless M is constant).

We introduce some notations. We denote My the space of continuous square integrable martingales,
starting from zero (i.e. with My = 0). It is equipped with the norm

1] M= [[M]| = /E(MZ) = VE(M)7).

Exercise 3.1.1. Show that for any 0 < ¢ < T we have E(M?) < ||M||?. This imply that any element
of M5 is bounded in L2.

In fact the normed space (Ma, || - ||) is a Banach space (see Proposition IV.1.22 in [6]). This fact is
crucial and will be used later on (Theorem 3.1.2).

Pick M in My. We denote IIo(M) the space of progressively measurable processes H satisfying
T
||H|[3; = ]E/ HZ2d(M), < <.
0
Note that again the space (IIa(M), || - ||ar) is a Banach space (see a remark p137 in [6]; this is in fact

just due to the properties of LP(FE,E, u) spaces, for any measured space (E, &, u1); here the considered
measure is in some sense d(M)s ® dP). But we will not use this fact later on.

Step 1. We denote bII; the space of simple processes, those are processes H of the form
Ht = Y()l{o}(t) + Zml]ti—hti](t)’ 0 S t S T,
i=1

where tp =0 < t; < ... <t, =T is a subdivision of [0,T], Yy is Fo-measurable, Y; is F;,_,-measurable
for any 1 <i < n, and |V;] < C < o0 a.s. for any 0 < i <n.

Note that as H in bII; is l.c. and adapted it is progressively measurable (Proposition 1.1.1). Besides,
the boundedness of the Y;’s implies that EfOT H2d(M)4 < oco.
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Therefore bI1; C (M), for any M € Ms.
For M € My and H € bIl; we now define the process H - M by

n

(H-M); = ZYi(tht — My, at)- (3.1.1)

i=1

Theorem 3.1.1. 1) For any M € My and any H € bIly the process H - M is in M.
2) Let M € My fized. The application

s linear.
3) For any M,N € Ms and any H, K € bll; we have

t
<H~M,K-N>t:/ H,K,d(M,N),, YO<t<T,
0

where the above integral is understood in the Stieltjes sense.
4) We have for any 0 <t <T, any M,N € Ms and any H, K € bIl;,

B (0 M) =B [ H R ),

and in particular

E[(H - M) =E / "H2a01),.

Proof. 1) From the definition (3.1.1) one sees that H - M is continuous and starts from zero, and it is
easy to check it is square integrable (thanks in particular to the boundedness of the Y;’s that define H).
The fact that H - M is adapted is clear, one checks the martingale property. By linearity of the
conditional expectation it is enough to check that each of the processes (Y;-(Mti/\t — Mt,,-,l/\t))
0<t<T
verifies the martingale property. Let 1 < ¢ < n fixed.
Let 0 < s <t <T. There are several cases to treat separately.

M One has Yi(Mg,ns — My, ns) = 0.
a) If t <t;_y then Y;(Myne — My, ne) = 0 and thus E[Y; (Mg, ae — My, ne) | Fs] = 0.
b) If ¢ > ti*lv then
EIY;(Myae — My, ) | Fs] = —E[YiMy,_,|F] + E[E(Y; My ne| Fro_y )| Fs]
= _E[}/;Mti—l ‘]:3] + EI:}/;E<MtLAt‘ftL,1)‘~Fs]
= _E[Y;Mtif1 ‘]:S] + ]E[Yvthifl ‘]:s]
= O7

using the fact that Y; is F;,_,-measurable and that M is a martingale.

Thus
E[}/i(Mti/\t - Mta‘,—l/\t) “FS] = Yri(Mti/\s - Mti,l/\s) =0.

If s > tl One has }/i(Mti/\s - Mtifl/\s) = }/thi — Ythi,1 and
E[Y;(My,ne — My, pe) | Fs) = BIYi(My, — My, ) | Fs] = Yi(My, — My, _,),

where we have used the fact that Y;(M;, — My, ,) is Fy,- and thus Fs-measurable.
Thus
]E[}/;;(Mti/\t - Mti_l/\t) |~FS] = K(Mtﬂ\s - Mt,j_l/\s) = }/:L(Mh - Mt{,_l)'
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If t;—1 < s < t;: One has Y;(My,ns — My, ns) = Yi(Mg — My, ) and
ElY;(Meae — My, ne) | Fs) = EYiMyne — YiMy, | | Fs]
= }/;E[Mti/\t | ‘7:5] - )/Z‘Mti71

= }/I(Mé - Mti—l))

using successively the facts that Y; and Y; M;
martingale. Thus,

;. are Fi, - and thus F;-measurable, and that M is a

E[Y;;(Mti/\t - Mtifl/\t> |‘7:S] = }/i(Mti/\s - Mtifl/\s) = K(MS - Mtifl)'

To sum up, in any case we have E[Y; (M e — My, at) | Fs] = Yi(My,ns — My, ns), we have checked
the martingale property.

2) The linearity is left to the reader.

3) We aim at showing that the process defined by Z; := (H - M)(K - N); — fot H,K,d(M,N), is a
martingale. Indeed the result will then follow from the uniqueness part of Property 2.3.2-1).

By linearity arguments it is enough to prove the result for Hy = Yi1y,,_, +,1(t) and Ky = Yj/l}tj,l,tj] (t)
(we recall that in particular Y; is F,_,-measurable and Y] is F;,_,-measurable).

If i < j: Then [} HK,d(M,N), =0, as HK = 0. Consider now
(H - M)y(K - N)p = (YiMyne = YiMe,  20) (V) Nijne = Y] Ni,_a0)-

If ¢ < ¢;_; this quantity is equal to zero. If ¢ > ¢;_ it is equal to
Y;(an - Mtz‘fl)YYjI(th/\t - th—l) = (E(Mtl - Mtifl)yvjll]tj_l.,tj](') ’ N)t-

Thus this quantity can be seen as the integral against IV of the simple process J; = Y; (M, —M;, )Y 1y, +.1(t)
(note that Y;(My, — M, ,)Y] is Fy; ,-measurable). In fact, by the definition (3.1.1), it also true
for t < tj—1~

Thus Zy = (H- M) (K -N)y=(J-N);, 0 <t <T. Thus Z is a martingale according to Point 1).

If © = j: Then
0 if s<ti_1

Zs = Yi}/ti/[(MS_Mti—l)(NS_Nti—l)_(<M7N>5_<M7N>ti—1)] it t1<s<t
leyvz/[(MtL - Mti—l)(Nti - Nti—l) - (<M7 N>ti - <M7 N>ti71>] if s> t;

We check the martingale property of Z for t;_1 < s <t <'t; (other cases are a bit easier and left to the
reader). We have

Zy—Zs = }/iYi/[MtNt - Mti—th - MtNti,—l + Mti—thi—l - (<M7 N>t - <Mﬂ N>t7‘,—1)
*Mst + Mti_le + MSth,_l - Mti_1Nt7‘,—1 + (<M7 N>9 - <Ma N>t1,—1)]

= }/i}/i/[MtNt - MSNS - Mti—l(Nt 7N9) 7Nti—1(Mt - MS) - (<M7N>t - <M5N>S)]

But Y;, Y/, My, , and Ny, , are Fy, ,- and thus F,-measurable, thus

i—1

E[Z: — Z,|Fs] = YiYi’{IE[MtNt — M;Ns — ((M,N); — (M, N);)|Fs]

i—1

—M,,_,E[Ny — Ny|F,] — Ny, E[M; — M,|F,]}

= 0
as M, N and MN — (M, N) are martingales.
4) This comes from the fact that E(Z;) = E(Zy) = 0. O
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Note that Point 4) of Theorem 3.1.1 implies that
|H-M| =|H|lm VH €bl;, YM € M. (3.1.2)

This is an isometry property. We will now extend the construction of the stochastic integral to IIo(M),
preserving this isometry property.

Step 2. To start with we have the following result.

Lemma 3.1.1. For any M € My the space bll; is dense in Ia(M).

Proof. See Proposition 3.2.8 in [4]. O
We then have the following theorem.

Theorem 3.1.2. 1) Let M € My. The application

(M): b, — M,
H +— H-M

extends in an isometry Ins : Ilo(M) — Ma.
We note I (H) =: (H - M), H € TIy(M).
2) For any M, N € M, any H € TIo(M) and any K € IIo(N) we have

t
(H-M,K - N, :/ H,K,d(M,N),, 0<t<T.
0
Proof. 1) Let H € TIo(M), there is a sequence (H™),, in bIly s.t. ||[H"—H||ps — 0asn — oco. Thus (H™),

is Cauchy in IIo(M) (as it is convergent). By linearity and isometry (Eq. (3.1.2)) we thus have
|H™ - M — H™ - M|| = [[(H" — H™) - M|| = [[H" — H™[|pss ———0

m,n— o0

Thus (H™ - M),, is Cauchy in M, and thus convergent, to an element I;(H) of My. But by continuity
of the norm we have

(B || = Yimn ([H™ - M| = T ([ [|as = ||
and thus the application I, is an isometry.
2) Again limiting arguments: see [4], Section 3.2.B. O

Thus for M € My and H € TIo(M) we have constructed H - M, which we call the stochastic integral
(or the It6 integral) of H against M, and will often denote

/ H.dM,
0

(and for any 0 < ¢t < T we denote fg H.dM, = (fo Hdes>t = (H-M),).
Proposition 3.1.1. Let M € My and H € IIy(M), then H - M is the unique element in Mso satisfying
VYN e My, (H-M,N)=H-(M,N).
Proof. Let X another element of Mj satisfying
VN e My, (X,N)=H-{(M,N).

Then
YNeMy, (H-M—-X,N)y=(H-M,N)—(X,N)=0.

In particular, as H - M — X is in My we have
(H-M-—X,H- M—-—X);=0 as. VO<t<T.

Thus H - M — X =0 (using Property 2.3.3). O

26



The above property of the stochastic integral allows to prove the important following result.

Proposition 3.1.2 (Associativity of the stochastic integral). Let M € My, K € IlIy(M) and H €
IIy(K - M). Then HK € Iy(M) and (HK)-M =H - (K - M).

Proof. Using (K-M)y = (K-M,K-M), = fot K2d{M), (Point 2) of Theorem 3.1.2) and the associativity
of the Stieltjes integral (Property 2.1.2-2)) one gets, under the assumption H € Iy(K - M),

T T
E/ HZK2d(M), = ]E/ HZd(K - M), < +o0,
0 0

therefore HK is in IIo(M).
We now prove that

YN € Mo, (H-(K-M),N)= /‘HSKSd<M, N), (3.1.3)

As by Proposition 3.1.1 the process (HK) - M is the unique element in My to satisfy (HK) - M, N) =
fo' H,Kd(M,N)s, VN € My, we will get the desired result.

We have for any N € Ms, using (K - M,N) = K - (M, N) and the associativity of Stieltjes integral
again,

(H - (K - M), N) = / Hd{K - M,N), = / H,K.d(M,N),,
0 0
therefore (3.1.3). The proof is completed. O

Remark 3.1.1. To sum up we write in the integral form some of the above encountered properties, that
we shall often use when doing stochastic calculus.

%) Point 2) of Theorem 3.1.2 may be rewritten: for any M, N € My, any H € IIy(M) and any
K € 1I5(N),

. . t
</ HdeS7/ KSdNS>t:/ H,K d(M,N),, 0<t<T.
0 0 0

%) The associativity of the It6 integral may be rewritten: for M € My, K € Ty(M) and H €
IIo(K - M) one has

t . t
/ Hsd(/ K,dM,), :/ H,KdM,, 0<t<T.
0 0 0

3.2 Ito formula

Definition 3.2.1. We call a (R-valued) semimartingale a R-valued process X = (X;) of the form
Xt:X0+At+Mt, VOStST,

where X is some R-valued and Fy-measurable random variable representing the initial position of X, A
is some continuous and adapted process of FV, with Ay = 0, and M is some element of My (in particu-
lar My = 0).

Definition 3.2.2. Let X be a semimartingale with martingale part M and FV part A. Let H € IIy(M)
and integrable against A, we denote

/‘ H,dX, = /'HsdAﬁ/'HdeS,
0 0 0

where the first integral is understood in the Stieltjes sense and the second in the It6 sense.

Definition 3.2.3. Let X = Xg+ A+ M and Y = Yy + C + N be two semimartingales. We call the
bracket of X with Y the symmetric quantity

(X,Y) := (M, N).
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Note that Definition 3.2.3 comes from the fact that for any subdivision A,,,
QE(X,Y) = Q" (A+ M,C+ N) = Q7" (M,N) + Q" (A, N) + Q7" (M, C) + Qi (4,C)

and that Q2" (M, N) — (M, N), as |A,| | 0 (Property 2.3.1-2)), while the three other terms tend to
Zero.

Indeed they are the crossed quadratic variation of a continuous process with a process of FV. So that
for example (this is similar to Property 2.3.1)

|QtAn(A7N)| < Z |At1 - Ati—l' X ‘Ntz - Nti—ll < Sup|Nti - Nti—1| Vv[O,t](A) m 07

as A is of FV and sup, |N;, — Ny,_, | tends to zero by continuity of M.

With all these notations and definitions we can now state the Itd rule.

Theorem 3.2.1 (It6 rule, It6 formula). Let X!, ..., XP be continuous semimartingales and f € C?(RP;R)
such that

T
Vi<i<p E / 100, () PA(XF), < 400
0

(we have denoted X = (X1,..., XP)T for any 0 < s <T). Then

Z/ V(X X7, YO<t<T.

2]1

J(X0) = J(X0) +Z/ Or f(X.)dX] +

In order to give the main ideas of the proof of Theorem 3.2.1 we will need the following result.

Proposition 3.2.1 (Dominated convergence for the stochastic integral). Let X = A+ M be a semi-
martingale and (H™),, a sequence of integrable processes (against X; in particular the H™’s are progres-
siwely measurable). Assume H'(w) — Hq(w), as n — oo, for any (s,w). Assume H is bounded and
assume |H? (w)] < C < 400 for any (s,w) and any n. Then

sup\/ H}dX, / H,dX,| —— (3.2.1)

s<t

Proof. We do not prove the result fully, by give only the great lines. Thanks to the dominated convergence
for the Stieltjes integral fo H?dA; converges to fo H,dAg a.s. We now turn to the martingale part.
Thanks to the isometry of Itd integral we get for any 0 <t < T

_E‘/ (H" —

As |H"— H]| is bounded and converges pointwise to zero one may conclude by dominated convergence (for
the integral against d(M ), ® dP) that Efot |H? — Hg|?d(M)s — 0, as n — oo. That is to say fot H™dM;
converges to fg HydM, in L?(P).

It remains to pass to (3.2.1) (in the spirit of Theorem IV.1.8 in [6]). O

_E/\H" H,2d(M),.

Corollary 3.2.1. Let X a semimartingale and H a continuous adapted integrable bounded process. Then
for any 0 <t < T and any sequence (Ay,), of subdivisions of [0,1],

S Hy, (Xy, - X)) —— / H,dX,.
|An]10

it <t

Proof. Tt suffices to use the proposition with H}' = >, Hy, 1y, +,1(t).

Indeed one has fo HldXs =3 < Hi, ,(Xy, — Xy, ,) and H™ converges to H. O

Proposition 3.2.2. In the preceding context one has

t

ST Hy (Xe, — Xe )2 —— [ Hd(X),.
it <t ‘AnHO 0
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Proof. See [4] pp 151-152. O

Main ideas of the proof of Theorem 3.2.1: We deal only with the case p = 1, where the It6 formula
simply writes

F(X)) = F(Xo) + / FI(X)dXs + = / (X . (3.2.2)

A subdivision A,, of [0,?] is given. We have

n

F(X2) = f(Xo) = > (f(Xe) = F(Xi, )

i=1

and for any 1 <14 < n, we use a Taylor expansion between X;, , and X;,. This gives

—1

f(XtL) - f(Xti—l) = f/(Xti—l) (Xti - Xti—l) + %fﬁ(&)(xtb - Xti—1)27

where &; is some real number between X;, ; and X;,. By summation we get

)~ F(X) = 30 F (Ko ) (Ko = X)) (X, = X0 )
] i=1

Z ” th 1)) (th - Xt¢71)2

l\D\»—t

The term Y, f(X¢,_,) (Xy, — Xy, ) converges to fot f(Xs)dXs as |A,| 1 0 by Corollary 3.2.1 (in fact
a version of this corollary for locally bounded integrands; cf Proposition IV.2.13 in [6]).

The term > ., (X, ) (Xy, — X4, ,)? converges to fg’ 1"(Xs)d(X)s as |An| 4 0, by Proposi-
tion 3.2.2.

To finish with the term >\, (f"(&) — f"(Xt,_,)) (X¢, — X4, _,)? is bounded by

sup |f(&) = /" (Xe, )| Qe (X)
but sup; |f”(&) — f”(Xe,_,)| tends to zero as |A,| | 0, by continuity of f”, and Q2" (X) tends to

(X)) < oo. Thus > i, (f"(&) — f"(X+,_,)) (X¢, — Xt,_,)? tends to zero. Therefore the result.

Remark 3.2.1. Note that if X were of null quadratic variation (for example if X is continuous and of
FV) the second order term in (3.2.2) would be zero. In other words we would have f(X;) = f(Xo) +
fo f'(Xs)dXs, which corresponds in some sense to the classical differential calculus. Here the second
order term comes from the martingale part of X, which is of non null bracket, and which makes the
paths of X non smooth (they have in fact the same kind of smoothness than the Brownian paths:
continuous but not differentiable).

Remark 3.2.2. The It6 formula is often written in its differential (and shorter) form: in 1D it gives
1
df (Xy) = f/(Xy)dX: + §f”(Xt)d<X>t. (3.2.3)

But note that this differential writing has just an integral meaning: writing (3.2.3) just means that we
have (3.2.2).

Example 3.2.1. The Black-Scholes differential stochastic equation writes:
dSt = /.LStdt + O'StdBt, S() =x (324)

(which means that S; = = + fg uSsds + fof 05,dB; for any t > 0, see Chapter 5).
Is there a process S solving (3.2.4) ? Let us consider

2
Sy =wexp ((n— %)t +0B), t>0. (3.2.5)
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We denote Xy = (p — %2)1? + 0By, and apply the It formula, this gives,
dS; = wexp(Xy)dX; + jwexp(X;)d(X),

= Si(p— % )dt + SiodB; + 1 S;0%dt

,LLStdt + O'StdBt.
Thus the process S defined by (3.2.5) solves (3.2.4).

Remark 3.2.3. The assumption that EfOT |0z, f(Xs)[2d(X ) < 400, 1 < i < p, is required to have the

It6 integrals fot Oy, f(Xs)dM? (M? is the martingale part of X*) well defined in the It6 formula.
In fact this condition can be relaxed and we get a more general 1t6 formula under the weaker as-
sumption

t
/ 100, F(X)PAXT)y < 400, as. V>0, VI<i<p
0
(we can even deal with infinite time horizon).

But this requires to use the theory of "local martingales”, which is more involved (see [4] and [6]).
In this course we will only deal with functions having the right integrability condition.
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Chapter 4

Lévy and Girsanov theorems

In this chapter we state and prove the theorem of Lévy and the theorem of Girsanov. The theorem of
Girsanov is of crucial importance for the forthcoming Chapter 5 (it will allow to perform a risk-neutral
change of probability measure).

4.1 Exponential martingale and theorem of Lévy

In this section some time horizon 0 < T < oo is fixed. A probability space (Q,F,P) and a filtra-
tion (Fy)o<i<r are given. We start with a lemma.

Lemma 4.1.1. Let X = (X;)o<i<7 be a martingale, satisfying E(exp(%(X)T)) < +00. Then the process
Exp(X) = (exp(Xy — 5(X)1)) ycpeqp G5 @ martingale, called the exponential martingale (associated to X ).

Proof. By the It6 rule we get

1 1 1
d(exp(X; — §<X>t) = (Ezp(X)),dX; — §(€mp(X))td<X>t + i(garp(X))tdQ()t = (Ezp(X)),dX,,
meaning that Exp(X) is the stochastic integral of itself against a martingale. The only point that is not
clear is that Exp(X) has the required integrability (could we say for example that Exp(X) € II5(X) ?),
that we were allowed to use the It6 formula and that the obtained stochastic integral is a martingale.
But the assumption E(exp(3(X)7)) < +oc is here to ensure this is the case (see Proposition 3.5.12 in

[4] for details). O

In the sequel we will deal with multidimensional Brownian motion (B.m.). We revisit Definition 1.4.1
for dimension d > 1 in the definition below.

Definition 4.1.1. A R%valued process B = (B;)o<t<7 is called a d-dimensional (F;)-standard Brownian
motion if it is adapted and satisfies

1) BO = 0, P-a.s.

ii) For any 0 < s < t we have By — By ~ Ny(0, (t — s)Iy).

iii) For any 0 < s < t the increment B; — By is independent from F.

iv) B is a.s. continuous.

Remark 4.1.1. If we have d independent one-dimensional (F;)-standard Brownian motions B*,. .., B¢,
then B = (B,...,BY)T = ((B},...,B)T)o<i<r is a d-dimensional (F;)-standard Brownian motion.
The converse is true (by projection).

The following theorem allows to identify a d-dimensional standard Brownian motion. It is originally
due to Paul Lévy (1948). In 1967 Kunita and Watanabe gave a more modern proof, using It6 rule.

Theorem 4.1.1. Let X = (X*',..., X7 be a continuous and adapted R*-valued process, with Xq = 0.
The following statements are equivalent:

i) X is a d-dimensional (F;)-standard Brownian motion.

ii) Bach X' is a (F;)-martingale and we have

(XU X7y =1,;t, YO<t<T, V1<ij<d.
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Proof. i) = ii)”: Each X* is a martingale with bracket (X?, X*); = ¢ (by Remark 4.1.1, Proposition 1.4.2
and Example 2.3.1).

Let us check that (X* X7) =0 for i # j.

Let i # j, and let us first establish that &£ i\%Xj is a one-dimensional B.m. Indeed for any s < t the
quantity

(Xi—i—Xj)(t) (X“er)() X} - X+ X] - X
— — S =
V2 V2 V2
is independent from F; and is distributed as N(0, 0?) with
Xi— X! Xg’—Xg)_t—s t—s

02:Var(ﬁ)+Var( 5 + 5

(using the fact that X} — X! and th — X7 are independent between themselves, independent from F
and distributed as N'(0,t — s)).
Thus using Definition 2.3.1 we get for any 0 <t < T,

=t—3s

(X9 X7) = 2 [(XT+ X7 — (X — (X )] = (—Fr—

DO =

741) = 4)”: The idea is to identify the law of X; — X through its characteristic function (c.f.). We recall
that if Y ~ Ny(0,01,) its c.f. is given by

oy (€) = B[] = 721610 ¢ ¢ RY
d

j=1Tj
Let ¢ € R? and let us consider the (complex valued) martingale i¢. X = (i ijl €9 X7),, with bracket

(we use the notations z.y = Z;l:l z;y; and |z| = /> 5_, 22 for any z,y € RY).

d d
(i€.X)e = wa Zfl == > G, XY = —[¢Pt

j=11=1

Here we have used the bilinearity of the bracket and the assumption (X, X7); = 1,_;¢. In fact the result
of Lemma 4.1.1 remains true for a complex valued martingale so that we can say that Z = (Z;)o<i<r
defined by

1
Zy = exp (i€.X, + §|§|2t)7 0<t<T,
is a martingale. Let now 0 < s <t < T and A € F,. We have
E[14 exp(ié.(X, — X,))] = E[142,Z; e 2 6P (=9) ] = ¢ =3l (t=9)R[ 1, 771 7,).

But 147! is Fs-measurable so that by definition of the conditional expectation we have E[14Z;1Z;] =
E[14Z7 Y E(Z| Fs) | = E[14Z;1Zs] = E[14] and finally

E[14 exp(ié.(X; — X,))] = e 26 E=E[1 4].

Taking A = € this shows that X; — Xy ~ Ny(0,(t — s)Iz). Denoting E4(Y) = E[14Y]/P(A) the
expectation of a random variable Y knowing the event A € Fj, this also shows that

E et (Xi=Xa)] = e~ 3lEF(-9)  vA e F,.

This shows that X; — X is independent from F. O

4.2 Girsanov theorem

We stay under the assumptions of Section 4.1.
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Definition 4.2.1. A probability measure P on (Q, F) is said to be absolutely continuous with respect
to P if for any A € F such that P(A) = 0 we have P(4) = 0.

This is denoted by P << P _ _
We say that P and P are equivalent if P << P and P << P.

Remark 4.2.1. If an event is true P-a.s. and P << P, then it is true P-a.s.

Exercise 4.2.1. Show that if X = limp X,, (i.e. X, tends to X in probability, as n — oo, for the
probability measure P) and P << IP then X = limg X,,.

Theorem 4.2.1 (Radon-Nykodim). There is equivalence between:
i) We have P << P.
it) There ezists Z > 0, with E(Z) < 400 such that P(A) = Ep(Z14) for any A € F.
We note Z =: %, this is the density ofﬁ’ with respect to P.
Proof. Cf [1], Theorem 32.2. O

Definition 4.2.2. Let P be a probability measure on (2, 7). We say that P and P are locally equivalent
if for all 0 < ¢ < T, their restriction to F;, denoted P; and IP; are equivalent. We denote

T ap,  ap ==

the local density of P with respect to P.
For any 0 <t < T, and any F;-measurable random variable Y we have

~ dP
Es(Y) = / YdP, = / Y —LdP, = Ep|Y Z,]. (4.2.1)

Q q dPy
With all these definitions we can now state the Girsanov theorem.

Theorem 4.2.2 (Girsanov). Let B = ((B},..., BH)T)o<i<T be a d-dimensional (F;)-standard Brownian
motion (in particular By = 0) defined on (Q,F,P). Let X = (X',...,XHT be an adapted process,
with X* € TI5(BY), 1 <i<d and

T
Ep | exp (%/0 | X,|%ds)] < +o0.

Let Z = Exp( [; Xs.dBs) be defined by

t t
1
Zt:exp(/ XS.dBS—§/ \XS|2ds>7 0<t<T,
0 0

t t i i
(we denoteNfO X..dBs =3¢, IN X{dB{ for any t).
Define P locally equivalent to P by %Vt =Z;.
Then B = (El,...,gd)T defined Ei = B! - fot Xids, 0 <t <T,1<i<dis a d-dimensional

(F:)-standard Brownian motion under P.

The remainder of the chapter is devoted to the proof of Theorem 4.2.2. We need two lemmas and a
proposition. We denote E = Ep and E = Eg.

Lemma 4.2.1. In the context of Theorem 4.2.2, for any 0 < s <t < T and any F;-measurable random
variable Y with E|Y| < 400, we have

ZE(Y|F,) =E[YZ, | F] (as.)
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In other words Lemma 4.2.1 says that we have for any F;-measurable Y
~ Z
E(Y|F,) = IE[YZ—t | Fs].

This gives in some sense the density that allows to compute the conditional expectation IE(|]:S) of a Fy-
measurable random variable (we have to be very cautious when saying that, because remember that
E(Y|Fs) is a random variable, not always an expectation).

Proof of Lemma 4.2.1. Let 0 < s <t <T. For A € F; we have
E[14Z.E(Y|F.)] = E[14E(Y|F,)] = E[14Y] = E[14Y Z].

Here we have used at the first equality (4.2.1) and the fact that 1AIE(Y|]-'S) is Fg-measurable. At the
second equality we have used the definition of the conditional expectation. At the third inequality we
have used (4.2.1) and the fact that 14Y is F;-measurable.

As Z,E(Y | F,) is Fy-measurable the above equality shows that E[Y Z; | F,] = Z,E(Y | F,). O

Now remember two possible ways to define (X,Y) for X = M + A and Y = N + C two continuous
semimartingales. One is
X, Y) = li S(XY
< ) >t \AlnrﬁOhPQt ( ) )7

the other one is (X,Y) = (M, N) where (M, N) is the unique continuous adapted process of FV starting
from zero such that M N — (M, N) is a martingale under P (as M and N are; see Remark 1.3.3).

So one has the feeling that the bracket (X,Y)p) depends on the underlying probability measure P
(i.e. could be altered by a change of measure) ...

Lemma 4.2.2. Let P and P equivalent (or locally equivalent). Let X and Y be two semimartingales
under P. Then (X,Y) @) = (X,Y) ), P and P-a.s.

... this lemma says that in fact not, as long as the change of measure is equivalent.

Proof of Lemma 4.2.2. By Exercise 4.2.1 we have limp QtA” (X,Y) = limg QtA” (X,Y), as P << P. This
equality in understood in the P and P-almost sure sense and we have also limp QtA" (X,Y) =(X,Y); )
P-a.s. and limg QA" (X,Y) = (X, Y), @ P-a.s. Therefore the result. O

Proposition 4.2.1. In the context of Theorem 4.2.2 let M be a martingale under P (with My = 0).
Then M defined by

t
M, = M, —/ X,.d(M, B),
0

(we denote fg X,.d(M,B), =%, fg Xid(M, B),) is a martingale under P.

Proof. We have, remembering that dZ; = Z,X;.dB, = Y.*_, Z;X{dB! (see the proof of Lemma 4.1.1),

t t
ZM, = /ZSdMSJr/ MdZ, + (Z, M),
0 0
= /ZSdMS—Z/ stgd<M,Bl>s+Z/ MsZngdB;—kZ/ Z,X!d(M, B,
0 i=170 i=170 i=170

t .t
= [ zam.+y [ Sizxias:
0 i=170

Thanks to the assumption Ep[exp (% fOT |X,[?ds)] < 400 it is possible to proceed as if the stochastic
integrals are martingales under P (see [4] for details).
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Thus (ZMZ) is a martingale under P. Thus, using Lemma 4.2.1,

o 1~ 1 o~ —
E[M|Fs] = Z—E[MtZt | Fs] = ?ZSMS = M,.

S S
Thus M is a martingale under P. O
Proof of Theorem 4.2.2. For each 1 < i < d we apply Proposition 4.2.1 with M = B*. This gives

/XdBl Z/deBlB] = /de_B;,

and B' is a martingale under IP’ by the proposition.

It remains to check that B is a d-dimensional (Ft)-standard Brownian motion under P, using the
theorem of Lévy. We have o s
<BZ7BJ>(ﬁ) = <BZ7BJ>(P) = <B1aB]>(]P’)7
using Lemma 4.2.2 at the first equality. But B is a B.m. under P thus <Bi,Bj>t(p) = 1,_;t for
any 0 <t <T. O
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Chapter 5

Applications to Finance, Stochastic
Differential Equations and link with
Partial Differential Equations

In this chapter we present the applications of stochastic calculus to continuous time financial models. We
also illustrate the link between Stochastic Differential Equations (SDE) and Partial Differential Equations
(PDE). We are inspired mostly by [7].

5.1 Introduction and motivations, one-dimensional Black and
Scholes model

Some time horizon 0 < T' < oo is fixed. A probability space (2, F,P) and a filtration (F})o<i<r are
given.

In the sequel we will have one risky asset (or stock) of price S(t) at time 0 < ¢ < T (the risky asset
can be an action, a baril of petrol....). One assumes that the process S follows the Black-Scholes SDE

dS(t) = pS(t)dt + oS(t)dW,, Sp =z (5.1.1)

that we have already encountered in Example 3.2.1. In (5.1.1) the process W is some 1D (F;)-Brownian
motion defined on (2, F,P), 4 € R is the trend of the model and o > 0 is its volatility. At the end of the
forthcoming Section 5.2 we will have more informations about (5.1.1): in particular its existing solution
is unique and remains strictly positive as long as x > 0.

In addition to the risky asset S we will have a non-risky asset (or bond) of price Sp(t) at time
0 <t <T. Its dynamic is given by

dS()(t) = TSo(t)dt, So(O) = 1,

where 7 > 0 is the short interest rate. Note that for simplicity r is constant so that the dynamic of Sy is
deterministic. Note that Sp(t) = €™, 0 < ¢t < T (it is immediate to solve the involved ordinary differential
equation). The non-risky asset will help us to modelize the money we put at or borrow from the bank
(for example if one borrows 1 euro at time ¢ = 0 one has to give back So(T) = €' euros at time t = T').

Our object of interest is a derivative product (or ”derivative security”, or ”option”) on the risky
asset S.

Example 5.1.1. We start with the classical example of the European Call option. This option has a
maturity T (for simplicity this maturity is our time horizon T). It has a strike K > 0.

It has a buyer (owner) and a seller: at time ¢ = 0 the buyer gives Cy euros to the seller in exchange
of the option.

This option gives the right to its owner to buy the risky asset at price K at time ¢t =T
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At time T there are only two possible situations: if S(T) > K, it is interesting for the owner of the
option to use this right; he may indeed buy the asset at price K, and immediately sell it at its market
price S(T); he gets then a benefit of S(T') — K euros.

If S(T) < K, it is not interesting to use the option. We say that the option is dead. The owner gets
nothing.

If we sum up both situations in one formula the European Call option pays (S(T") — K) euros to its
owner at maturity t =T

Now if I am the seller of the option two questions arise:

i) At which ”fair price” Cy do I sell the option 7 (at time ¢ = 0). In other words what money do I
claim to the buyer at time ¢ = 0 in exchange to the fact that I promise to give him (S(T") — K)+ euros
at t =T 7 (Question of Pricing)

ii) Once I have received the C euros at time ¢t = 0, what do I do with this money to be (almost) sure
to have (S(T') — K)4 at my disposal at time ¢ = T ? (in oder to be able to provide this to the owner)
(Question of Hedging)

Concerning Point i) we will see that
Co =Egle " (S(T) — K) 4] (5.1.2)

where Q is some "risk-neutral probability measure” that we will exhibit in the sequel (Section 5.4).
But in fact Point i) is not separable from Point ii): we will solve both issues at the same time.

5.2 A digression on SDE

We have b : [0,T] x R? — R? (the ”drift term”) and o : [0,7] x R? — R¥*™ (the ”diffusion term”).
Let B a (F;)-Brownian motion of dimension m, defined on (€2, F,P). A strong solution of the SDE

dXt = b(t,Xt)dt + O'(t,Xt)dBt, XO =X (521)

is an a.s. continuous process X satisfying

i) X is (F¢)-adapted.

i) P(Xo = z) = L.

iii) For any 1 < i < d, any 1 < j < m, IEfOT{|bi(s,Xs) + 07(s, Xs) }ds < oo (this is to ensure that
the integrals in Point iv) are correctly defined).

iv) For any 1 <i <d and any 0 < ¢t < T we have

t m t
th = l‘i +/ bi(S,XS)dS + Z/ O’Z‘j(S,XS)ng.
0 = o

Concerning SDEs we have this kind of result, due again to Ito.
Theorem 5.2.1. Assume we have
d m 1/2
|b(t,$)—b(t,y)|+ (ZZ(O’”(t,J?)—O'U(t7y))2> §K|x—y|, \V/Z‘,yGRd, VOStST
i=1 j=1
(this means that b and o are globally Lipschitz) and
d m
bt 2)*+ ) of(ta) S K1+ |2?), Vo eRL VO<t<T
i=1 j=1

(this is some ”linear growth condition”), for some constant 0 < K < co.
Then (5.2.1) has a unique strong solution.

Proof. See Theorems 5.2.5 and 5.2.9 in [4]. O
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Example 5.2.1. The Black-Scholes SDE (5.1.1) writes
dS(t) = a(S(t))dW, + b(S(t))dt

with the functions &(z) = oz and b(z) = px.

We immediately see that the assumptions of Theorem 5.2.1 are satisfied. Thus we see that a solution
to (5.1.1) exists and is unique. In fact we had already seen the existence in Example 3.2.1. Now we know
that the sole solution to (5.1.1) is given by

o2
S(t) =zexp ((n— ?)t + oWy)

(this is formula (3.2.5) in Example 3.2.1). Note that this implies that this solution is strictlty positive
at any time, as long as x > 0.

5.3 Self-financing portfolio

Let (H(t)) and (Hy(t)) be adapted processes.

We consider a strategy (or portfolio) constituted at time 0 < ¢ < T with H(t) shares of risky asset
and Hy(t) shares of non-risky asset.

The value at time 0 < t < T of such a portfolio is

Vi(H) = H(t)S(t) + Ho(t)So(t)-
The process (Vi(H))o<t<T is sometimes called the wealth process.
Definition 5.3.1. We say that (H, Hy)T is a self-financing strategy if

dV,(H) = H(t)dS(t) + Ho(t)dSo (t).

Where does this definition come from, and what does ”self-financing” mean ?

Imagine that H and Hy do not evolve permanently (continuously) but are piecewise constant, for a
fixed randomness w. In fact imagine that they are simple processes (like in Chapter 3).

That is we have a time grid 0 = tg < t1 < ... < t, =T. At time ¢; we decide the quantity H (t;11)
of risky asset and the quantity Hg(¢;+1) of non-risky asset that will be held in the portfolio on time
interval (ti7ti+1]a i.e. H(t) = H(ti+1) and Ho(t) = HO(ti+1) for any te (ti,ti+1]. Note that H(tH_l) and
Hoy(ti4+1) are Fi,-measurable.

We want that when we take a new position in the portfolio (that is we pass from (H, Ho)T'(¢;) to
(H, Ho)T(t;41); we say that we rebalance the portfolio) its global value remains the same. That is to
say:

H(ti)S(ti) + Ho(ti)So(ti) = H(tH_l)S(ti) + Ho(ti+1)50(lfi) (531)

(in the above expression the left hand side is the value of the portfolio just before rebalancing and time ¢;,
and the right hand side is its value just after rebalancing and time ¢;).

This traducts the fact that the portfolio value evolves just because of the value of S, the capitalization
at rate r (contained in Sy) and our choice of H and Hy: we get no money from outside and do not drop
any; the portfolio is self-financing.

From (5.3.1) we have

Vie(H) = Vi, (H) = H(ti+1)S(tig1) + Ho(tig1)So(tiv1) — H(t:)S(t:) — Ho(t:)So(t:)
= H(ti+1)S(tiv1) + Ho(tit1)So(tiv1) — H(tiv1)S(t:) + Ho(tiv1)So(t:)
= H(tit1)(S(tiv1) — S(t:)) + Ho(tis1) (So(tiv1) — So(tit1))
= H(tit1)AS(tig1) + Ho(tit1)ASo(tiv1)
Therefore Definition 5.3.1 in infinitesimal time.
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Definition 5.3.2. Let f: R% — R such that f(S7) is square integrable.
The price at time 0 < ¢ < T of a derivative product paying f(S(T)) at maturity T is the value V;(H)
of a self-financing strategy that replicates the pay-off f(S(T)), i.e. such that Vip(H) = f(S(T)) P-a.s.

Remark 5.3.1. This give an answer to Question i) and ii) at the end of Section 5.1: if I am given Vo (H)
euros at time ¢t = 0, by investing this money in a self-financing replicating portfolio containing shares of
S, and shares of Sy (that is borrowing if necessary from the bank, or putting money at the bank), I will
be sure to have f(S(T)) euros at time t =T

Remark 5.3.2. The quantities H(t) and Hy(t) are signed (if the sign is negative that means that we
have a debt, in the risky asset, or the bond).

Consider (H, H°)T a self-financing strategy. We have
dVi(H) = H(t)dS(t) + Ho(t)dSo(t)
= H(t)dS(t) + Ho(t)rSo(t)dt
(5.3.2)
= r(Vi(H)— H(t)S(t))dt + H(t)dS(t)
= rVi(H)dt + H(t)(dS(t) — rS(t)dt).

Examine now the discounted wealth process (e "'V;) (here ™" = 1/Sy(t) is the discount factor and we
have written V; = V;(H)).
We have, using Ito rule, the fact that (e="") is of finite variation, and (5.3.2),

de™™V,) = —re " Vidt + e "dV, +0
= —re "Vidt + re "'Vidt + H(t)e " (dS(t) — rS(t)dt). (5.3.3)
= H@d(eS(0).
by noticing that
d(e""S(t)) = —re "' S(t)dt + e dS(t) = e~ (dS(t) — rS(t)dt).

Imagine now that we find a probability measure Q on (€2, F) under which (e~"*S(t)) is a martingale.
Assuming H € Ilz(e" S(-)) we will have that (e~"*V;) is a martingale under Q. Thus if the strategy
is replicating we have

e "V, = Bgle "V | Fi] = Egle " £(S(T)),| Fi], 0<t<T.

Thus
V, = Egle "V £(S(T))| ] (5.3.4)

for any time 0 <t < T'. In particular at time ¢ = 0 we have
Vo = Eqle™ " f(S(T)],

this is the result announced in (5.1.2).

We are now seeking for Q (Section 5.4) and will aim at constructing a self-financing replicating
portfolio (Section 5.5).

5.4 Risk -neutral probability measure

Definition 5.4.1. We say that a probability measure Q on (€2, F) is risk-neutral if it is locally equivalent

to P, and if the discounted risky asset price process (e’”S(t))0<t<T is a martingale under Q.
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It is quite easy to construct Q in the 1D Black-Scholes model. Remember that we have d(e~"*S(t)) =
e "t (dS(t) — rS(t)dt), thus

d(e7"S(t)) = e " (uS(t)dt + o S(t)dW, — rS(t)dt) = e " S(t)o (dW; + %dt)

We have “-° < oo and thus the assumption Ep [ exp (3 fOT |X;[2ds)] < 400 of Theorem 4.2.2 is imme-
diately satisfied with X = —£—=.

Thus W = (W, + %t)ogth

dQ
dP

is a (F¢)-B.m. under Q defined by

P — =

nw—r 1 pu—ry2
Wi — 5 (F=5)"%).

\ft:exp(—

Thus we have d(e~""5(t)) = e "t S(t)odW; and (e~"'S(t)) is a (F;) martingale under Q (one could check
that (e~"*S(t)o) is in Iy(W).

5.5 Construction of the self financing replicating portfolio, pric-
ing and hedging formulae, link with PDE

To construct the portfolio of interest, one could use a martingale representation theorem (cf Theorem 6.1.1
in the Appendix).
One can also use PDE arguments: one chooses this path to highlight the link between SDE and PDE.

Proposition 5.5.1. For any continuous function f : R% — R satisfying |f(e”)| < K'eKlel vz e R,

with K < %, there is a unique solution v € C([0,T] x R%) N C*%([0,T) x R%) to the PDE
1022292 v(t, x) + radyu(t, x) + O(t,x) —rv(t,z) = 0, V(t,z) € [0,T) x RY,
(5.5.1)
o(T,z) = f(x), VoeeRi.

Proof. See the appendix. We use a log-change of variable trick, to deal with the fact that the coeffi-
cient x — o222 is not elliptic, nor bounded and that = + rz is not bounded. O

Let us now compute dv(t, S(t)) using It rule. We get

du(t,S(t)) = Bwl(t, S(t))dt + dyv(t, S(£))dS(t) + %(ﬁmv(t, S())d(S); + 0

= Ouw(t,S(t))dt + %azmv(t, S(t))o?S?(t)dt + 0v(t, S(t))dS(t)

ro(t, S(t))dt — rS(t)duu(t, S(£))dt + dyv(t, S(t))dS(t)
= ru(t, S(t))dt + Dyu(t, S(£)[dS(t) — rS(t)dt]

(here we have used (5.5.1) at the third line).
That is to say the process (v(t,S(t))) satisfies (5.3.2) with H(t) = d,v(t, S(t)). For clarity let us do

again the computations of (5.3.2), but in the reverse sense, setting Ho(t) = (v(t, S(t))—0,v(t, S(t)) S(t))/So ().

We have
dv(t,S(t)) = rv(t,S(t))dt + Oyv(t, S(t))[dS(t) — rS(t)dt]

r(v(t, S(t) — 0,v(t, S(t) S(t))dt + 0,v(t, S(t))dS(t)
= 0,u(t,S())dS(t) + Ho(t)rSo(t)dt
= O,v(t, S(t))dS(t) + Ho(t)dSo(t).

41



Here we have used the definition of Hy(¢) at the third line and dSy(t) = rSy(t)dt at the fourth line. Then
the strategy defined by H(t) = 0,v(t,S(t)) and Hy(t) = (v(t, S(t)) — Oyv(t, S(t)) S(t))/So(t), which is
such that Vi;(H) = H(t)S(t) + Ho(t)So(t) = v(t,S(t)), 0 < t < T is self-financing. In addition it satisfies

Vr(H) = o(T,S(T)) = f(S(T)),

that is to say it is replicating.
Thus the announced program is accomplished and the formulae (5.1.2) and (5.3.4) are valid: the price
at time 0 < ¢ < T of the derivative product of interest is

v(t, S(t)) = Egle "1 £(S(T))| Fi. (5.5.2)

Remark 5.5.1. Let us check that we have (5.5.2); but by direct martingale computations. We have,
using the same computations than in (5.3.3) - and the forthcoming formula (5.5.3),

A~ 0(t, 5(1))) = Do (t, S()e ™ (dS(r) — rS(1)dt) = Dpo(t, S(1))e oS (1) dIW:.

This yields

e "u(s, S(s)) = e "w(t, S(t)) +/ e "0 (u, S(u))oS(u) dW,,

t

forany 0 <t < s <T. Ther.v. e~"'v(t, S(t)) is F-measurable and ( [, e "8, v(u, S(u))oS(u) qu)KKT

is a (F3) martingale under Q (we admit e="9,v(-,S(:))oS(:) € Ilo(W)), with value 0 at time ¢. Taking
then the conditional expectation Egl- | F;] of the above expression we get

Egle " v(s, S(s)) | Ft] = e "w(t, S(t))
Using dominated convergence it is possible to prove that Egle™"*v(s, S(s)) | F¢] converges to Eg[e "1 f(S(T)) | Fi]
when s — T'. This yields (5.5.2).
One step further and conclusion of the section. Remember that W is (Ft)-Markov under Q
(Proposition 1.4.1). A consequence is stated at the end of the following exercise.

Exercise 5.5.1. 1) Show that N
dS(t) = rS(t)dt + o S(t)dW,. (5.5.3)

2) Show that S is a (F;)-Markov process under Q (hint: one may use the explicit solution of (5.5.3)).

Thus the price at time 0 <t < T of the process of interest is given by
o(t, S(t)) = Egle™ "1 F(S(T))| S(2))-
So that the number of shares of risky asset at time 0 < ¢ < T in the corresponding strategy is
H(t) = 8,0(t, S()) = 0:Eqle™" T f(S(T))| S(t) = @] u=ss)-

For conciseness the RHS is often denoted Jg;)Eq [e="(T=1) £(S(T))| S(t)]. This is called the delta of the
option.

Thus we have answered the questions of pricing and hedging (questions i) and ii) and the end of
Section 5.1): they "reduce” to the question of computing Eg[e~"("= f(S(T))| S(t)] (for the price) and
IsEqle T =Y f(S(T))| S(¢)] (for the hedge).
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Chapter 6
Appendix

This appendix gathers the proofs of various technical results, that have been used in the previous chapters.

6.1 Functions of finite variation

Proposition 6.1.1. If a function f : [a,b] — R is of finite variation, then f = fi1 — fo where f1 and fa
are two increasing functions.

Proof. We set V f(x) := Vi, ,(f) for any = € [a,b] and consider the function V f. We have f =
f+Vf—=Vf. We will check that V f and f 4 V f are increasing functions.

Let a < x <y < b. Let (z;)l_, a subdivision of [a,7] (ie. a = 79 < 21 < ... < 71 = 2),
then (z;)f_, U {y} is a subdivision of [a,y]. Thus by definition of V f(y) we have

1

S I @) = fi)| + () = F@)] < V),

i=1

and then
V@) +|f(y) = f@)] < V()

(using this time the definition of V f(x) and the fact that the supremum is the smallest upper bound).
We thus get

lf(y) = f@)| <V [fy) = V(=) (6.1.1)
Note that this show that V f is increasing. Now from (6.1.1) one gets

fx) = fly) <1fy) = f@) <V ) -V iz)

and then
f@)+ V() < fly) +VIy).

We are done. O

Proof of Proposition 5.5.1. Consider the PDE

10202, 0(t,y) + (r — 5)3,0(t,y) + 8,0(t,y) — ri(t, x)

0,  Y(tz)e[0,T) xR,
] (6.1.2)
o(T,y) = f(y), VoeR,

with f(y) = f(ev) for all y € R.

The (constant) coefficients o2, (r—";) and r are obviously bounded. The coefficient 102 is uniformly

strictly elliptic (as it is strictly positive !). The terminal condition f satisfies | f(y)| < K'eX1v/* vy € R,
with K < o2 /8T.

43



Thus there is a unique solution ¥ € C([0,T] x R)NCH2([0,T) x R) to (6.1.2) (this is a classical result
on parabolic PDEs; see [3], in particular Theorem 1.12 and 1.16 therein).

Then it suffices to set v(¢, x) = (¢, log(x)) to get a solution of (5.5.1). Indeed, using o(t,y) = v(t, e¥),
and then 9,0(t,y) = e¥d,v(t, e¥) and 82, 0(t,y) = e¥0,v(t,e¥) + Y02, v(t,e¥) one gets

0 = 50202,8(t,y) + (r — 5 )3,(t,y) + ,5(t,y) — ri(t, z)
= 10?2 (eyaxv(t, e¥) + e2Y92, v(t, ey)) + (r— %Q)eyawv(t, e¥) + dru(t, e¥) — ro(t, ev)

= 102(e¥)202,v(t, €¥) + re¥d,v(t, €¥) + Opu(t, e¥) — ru(t, e¥)

for any y € R, any t € [0,7). Therefore the first line of (5.5.1), by bijection. The terminal condition

v(T,z) = f(log(x)) = f(x), x € RY is easily checked. Once this solution v(t,z) has been constructed it
is easy to check it is unique, using the uniqueness of ¥ and bijection arguments. O

Theorem 6.1.1 (Brownian martingale representation theorem). Let B(t) a r-dimensional Brownian
motion defined on some probability space (E,E,P) and (G;) its natural filtration. If (N(t)) is a (Gy)-
martingale under P, with Ep|N(t)|? < oo for any t, there exist unique adapted processes I';(t), 1 < j <r,
satisfying T'; € TIo(B;) for all1 < j <d, s.t.,

Vi N =NO)+ ) /O T, (s)dB;(s).

Proof. See Theorem V.3.5 in [6]. O
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