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Chapter 1

Stochastic processes and Brownian
motion

In this chapter we give general definitions on stochastic processes, Markov processes and continuous time
martingales. We then focus on the example of Brownian motion.

1.1 Stochastic processes: general definitions and properties

In the following definitions, a probability space (Ω,F ,P) is given.

Definition 1.1.1. A stochastic process (or random process) X = (Xθ)θ∈Θ with values in E (E is
equipped with a σ-field E), is a family of E-valued random variables Xθ defined on (Ω,F ,P) (i.e. Xθ :
Ω→ E is a measurable mapping for any θ ∈ Θ), indexed by θ ∈ Θ where Θ is a set.

If Θ is finite or countable (e.g. Θ = N,Z, . . .) we say that X = (Xθ)θ∈Θ is a discrete time process.
If Θ is not countable(e.g. Θ = R+,R,R2, . . .) we say that X is a continuous time process.
The space E is called the state space of the process X.

Remark 1.1.1. There are (at least) two other ways to consider a stochastic process.

1) One may see X as a bivariate mapping:

X : Θ× Ω → E
(θ, ω) 7→ Xθ(ω)

Note that the measurability of this bivariate mapping from Θ× Ω to E is not clear. We will turn back
to this aspect in Definition 1.1.4.

2) One may see X as a mapping from Ω to the functional space EΘ (the set of mappings from Θ
to E):

X : Ω → EΘ

ω 7→ X·(ω) : Θ → E
θ 7→ Xθ(ω).

Note that it is always possible to equip EΘ with a σ-field s.t. X : Ω → EΘ is measurable (see [4]
Section 2.2), so that in fact X is seen as a EΘ-valued random variable.

For ω ∈ Ω the function X·(ω) ∈ EΘ is called a path (or trajectory) of the stochastic process X (it is
the path associated to the randomness ω). The space EΘ is called the paths space of the process X.

This point of view is very rich and widely used in some branches of stochastic calculus: for example
it allows to construct Brownian motion in a canonical manner (see [4], again Section 2.2; here we will
not go further in this direction, and introduce another construction in the forthcoming Section 1.4).

From now on we consider that Θ = R+ and that the indices t ∈ R+ represent time.

Definition 1.1.2. A filtration (Ft)t≥0 is an increasing family of sub-σ-fields of F (i.e. ∀s < t, Fs ⊂
Ft ⊂ F).
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Example 1.1.1. Let X = (Xt)t≥0 be a continuous time stochastic process and let us consider its
”natural filtration” (FXt )t≥0 defined by

FXt = σ(Xs, s ≤ t), ∀t ≥ 0

(note that we denote σ(Xs, s ≤ t) the smallest sub-σ-field of F s.t. each Xs, s ≤ t is measurable w.r.t.
this σ-field).

We claim that the family (FXt ) is indeed a filtration: let s < t; any Xu, u ≤ s is measurable w.r.t.
FXt (as u < t), thus FXs ⊂ FXt (as FXs is the smallest σ-field that makes the Xu’s measurable for u ≤ s).
Definition 1.1.3. A process X = (Xt)t≥0 is said to be adapted to a filtration (Ft)t≥0 if for any t ≥ 0,
the random variable Xt is Ft-measurable.

Example 1.1.2. Of course a process X is adapted to its natural filtration (FXt ) ! Indeed Xt is FXt -
measurable by definition of FXt (for any t ≥ 0; see Example 1.1.1).

Definition 1.1.4. Let (Ft)t≥0 a filtration. A R-valued process X = (Xt)t≥0 is progressively measurable
if for any t ≥ 0 the mapping

[0, t]× Ω → R
(s, ω) 7→ Xs(ω)

is B([0, t])⊗Ft-measurable (here B([0, t]) denotes the Borel σ-field of [0, t]).

Definition 1.1.5. A process X is said to be almost surely (a.s.) continuous (resp. left continuous (l.c.),
resp. right continuous (r.c.)) if there exists Ω0 ∈ F , with P(Ω0) = 1 and such that for any ω ∈ Ω0, the
path X·(ω) is continous (resp. l.c., resp. r.c.).

In other words, if X is a.s. continuous, the elements ω in Ω s.t. X·(ω) is not continuous are included
in N ∈ F , with P(N) = 0 (taking N = Ωc0 in the above definition).

Proposition 1.1.1. Let (Ft)t≥0 be a filtration. Let X = (Xt)t≥0 be an adapted process. Assume X is
a.s. r.c. or l.c. Then X is progressively measurable.

Proof. Cf [4], Proposition 1.1.13.

We will use Proposition 1.1.1 later on (Chapter 3), to ensure that the stochastic integral is an adapted
process.

Definition 1.1.6. Let (Ft)t≥0 a filtration. A random variable T with values in R+∪{+∞} is said to be
a stopping time with respect to the filtration (Ft) (or an (Ft)-stopping time) if for any t ≥ 0 the event
{T ≤ t} is in Ft.
Example 1.1.3. Let X = (Xt)t≥0 be an a.s. continuous process, with values in a metric space E, and
(FXt ) its natural filtration. Let A a closed subset of E and set

T = inf{t ≥ 0 : Xt ∈ A}

(note that we use the convention inf ∅ = +∞, so that the event {T =∞} corresponds to
{X never enters the set A on time interval [0,∞)}).

Then T is a (FXt )-stopping time (cf [4] Problems 1.2.6 and 1.2.7, [6] Proposition I.4.5).
This is roughly speaking because for any t ≥ 0,

{T ≤ t} = {X has entered the set A before time t} = {∃s ∈ [0, t], Xs ∈ A} ∈ FXt ,

as such an event can be described using the paths of X on time interval [0, t].
But to establish precisely the result there are some subtleties inherent to filtrations of continuous

time processes. For example if X cesses to be continuous or A to be closed, then the result is not true
in general. We will not enter into these details in this document. We will in the sequel always face a.s.
continuous processes, adapted to ”right continuous filtrations” (see [4] p4 for a definition). Therefore
the above result will always be true, even if A is open.

Definition 1.1.7. Let (Ft)t≥0 be a filtration and T a stopping time. We denote

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft, ∀t ≥ 0}

the σ-field of events determined prior the stopping time T .

Remark 1.1.2. Note that it is an exercise to show that the set FT is actually a σ-field (e.g. Problem
1.2.13 in [4]).
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1.2 Markov processes

From now on some knowledge of conditional expectation w.r.t. a σ-field is required (an introduction can
be found in Chapter 4 of [2]).

We denote E the state space of the considered processes. The space E is assumed to be metric and E
is then the Borel set endowed by the open sets for the underlying metric. A probability space (Ω,F ,P)
is given, but starting from Definition 1.2.2 we may change P for another probability measure.

Definition 1.2.1. Let (Ft)t≥0 be a filtration and X = (Xt)t≥0 an adapted process. We say that X is
a (Ft)-Markov process is for any s < t and any bounded measurable function ϕ : E → R, we have

E[ϕ(Xt) | Fs] = E[ϕ(Xt) |Xs].

Exercise 1.2.1. Let (Ft)t≥0 be a filtration and X = (Xt)t≥0 an adapted process. Show that if X is
a (Ft)-Markov process then it is also a (FXt )-Markov process.

Let us examine the meaning of Definition 1.2.1. In view of Exercise 1.2.1 we have for any s < t and
any bounded measurable function ϕ : E → R,

E[ϕ(Xt) | FXs ] = E[ϕ(Xt) |Xs].

This means that the law of Xt, t > s, knowing the path of X on time interval [0, s], only depends on the
position of X at time s: the path of X on [0, s) has been forgotten. This is called the Markov property.

To go further in the definitions we introduce the notion of homogeneous Markov family.

Definition 1.2.2. A homogeneous Markov family is a filtration (Ft)t≥0 and an adapted process X =
(Xt)t≥0, defined on (Ω,F), together with a family of probability measures {Px}x∈E on (Ω,F) such that

i) For each F ∈ F , the mapping x 7→ Px(F ) is universally measurable (see Definition 1.5.6 in [4]).

ii) For any x ∈ E we have Px(X0 = x) = 1.

iii) For any x ∈ E, 0 ≤ s < t and any bounded measurable function ϕ : E → R we have

Ex[ϕ(Xt) | Fs] = Ex[ϕ(Xt) |Xs], Px − a.s.

(we denote Ex the expectation computed under Px).

iv) For any x, y ∈ E, 0 ≤ s < t and any bounded measurable function ϕ : E → R we have

Ex[ϕ(Xt) |Xs = y] = Ey[ϕ(Xt−s)], for Px ◦Xs − a.e.y.

The above definition of a homogeneous Markov family is a bit cumbersome. For conciseness it may
happen that we simply say ”X is a homogeneous (Ft)-Markov process” and then consider Px for varying
x ∈ E (it is also sometimes convenient to see Px as P(·|X0 = x)). Also in view of Exercise 1.2.1 it may
happen that if we simply say ”X is a Markov process” we by default mean that X is a (FXt )-Markov
process. Which filtration is considered will always be clear from the context.

One way to check the Markov property for a process X is the following proposition, whose proof is
left to the reader.

Proposition 1.2.1. Let (Ft)t≥0 be a filtration and X = (Xt)t≥0 be an adapted process. The process X
is (Ft)-Markov if and only if for any s < t, any bounded measurable function ϕ : E → R, and any x ∈ E
we have

Ex[ϕ(Xt) | Fs] = g(t, s,Xs)

where g(t, s, ·) is a Borel measurable function.

The process X is homogeneous Markov if and only if g(t, s, ·) depends only on t − s, i.e. g(t, s, ·) =
g(t− s, ·). In that case note that we have g(t, x) = Ex[ϕ(Xt)].
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Definition 1.2.3. Let (Ft)t≥0 be a filtration and X = (Xt)t≥0 an adapted process. We say that X has
the strong Markov property (or is a (Ft)-strong Markov process) if for any (Ft)-stopping time τ , any
time t ≥ 0, any bounded measurable function ϕ : E → R and any x ∈ E, we have

Ex[ϕ(Xt) | Fτ ] = Ex[ϕ(Xt) |Xτ ]

on the event {τ ≤ t}.

Remark 1.2.1. For a time homogeneous strong Markov process X we have, for any stopping time τ ,
any time t ≥ 0, any bounded measurable function ϕ : E → R and any x ∈ E,

Ex[ϕ(Xt) | Fτ ] = (Ut−τϕ)(Xτ )

on the event {τ ≤ t}, where the family of operators (Us)s≥0 is defined by (Usϕ)(x) = Ex[ϕ(Xs)], for
ϕ : E → R bounded and measurable.

For the proof see [4], Proposition 2.6.7. We will use this property at the end of the chapter, in order
to prove the reflection principle for Brownian motion.

1.3 Continuous time martingales: first definitions

A probability space (Ω,F ,P) is given and the considered martingales are R-valued.

Definition 1.3.1. Let (Ft)t≥0 be a filtration. A process M = (Mt)t≥0 is called a (Ft)-martingale if:
i) M is (Ft)-adapted.
ii) For any t ≥ 0, we have E|Mt| <∞.
iii) For any 0 ≤ s < t, we have E[Mt | Fs] = Ms.

Remark 1.3.1. If iii) in the above definition is replaced by E[Mt | Fs] ≤ Ms we say that M is a
supermartingale; if iii) is replaced by E[Mt | Fs] ≥Ms we say that M is a submartingale.

Remark 1.3.2. We say in short ”M is a martingale” when there is no ambiguity w.r.t. the involved
filtration.

Remark 1.3.3. We stress the importance in Definition 1.3.1 of the probability measure P that has been
put on (Ω,F). If we alter P there is no reason why we would keep point iii) and M would remain a
martingale. Note that we could have done an analogous remark for Markov processes. But the remark
is here more relevant with martingales, because we will encounter later on the notion of change of
probability measure, that will give rise to new martingales (see Girsanov theorem in Chapter 4).

Concerning martingales we have ”optional sampling theorems”; we mention a few of them.

Theorem 1.3.1. Let (Ft)t≥0 be a filtration, M a martingale, and T and S two bounded stopping times
satisfying S ≤ T ≤ c <∞ a.s. Then

E[MT | FS ] = MS a.s.

Proof. See [4], Problem 1.3.23.

Theorem 1.3.2. Let (Ft)t≥0 be a filtration, M = (Mt)t≥0 a martingale and T a stopping time (possibly
unbounded).

Then MT = (Mt∧T )t≥0 is a again a martingale (called the stopped martingale MT ).

Proof. See [4], Problem 1.3.24.

Exercise 1.3.1. Some filtration is given. Let M = (Mt)t≥0 be a square integrable martingale, i.e. with
E|Mt|2 <∞, for any t ≥ 0. Show that

E[(Mt −Ms)
2] = E[M2

t −M2
s ], ∀0 ≤ s < t.
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1.4 A fundamental stochastic process: the Brownian motion

Definition 1.4.1. Let (Ω,F ,P) be a probability space and (Ft)t≥0 a filtration. A R-valued process
B = (Bt)t≥0 is called a (Ft)-standard Brownian motion if it is adapted and satisfies

i) B0 = 0, P-a.s.
ii) For any 0 ≤ s < t we have Bt −Bs ∼ N (0, t− s).
iii) For any 0 ≤ s < t the increment Bt −Bs is independent from Fs.
iv) B is a.s. continuous.

Remark 1.4.1. Point iii) of Definition 1.4.1 implies that the increments of B are independent, that is:
for any 0 < t1 < . . . < tn the random variables Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1 are independent.

Conversely, let (Ω,F ,P) be a probability space and B a R-valued process defined on it, satisfying
Points i), ii) and iv) of Definition 1.4.1 and

iii’) for any 0 < t1 < . . . < tn the random variables Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1
are independent.

Then B is a (FBt )-Brownian motion (standard). To prove that iii’) implies iii) one uses the monotone
class theorem (see Theorem 0.2.1 in [6]).

Note that in Definition 1.4.1 there is no reason why (Ft) should be the natural filtration of B. It is
sometimes convenient to work with a filtration larger that (FBt ), therefore the general Definition 1.4.1.

Remark 1.4.2. The word ”standard” in Definition 1.4.1 refers to the fact that B starts from zero
under P.

But we may have to consider some Brownian motion starting from x 6= 0. Therefore we will consider
the Brownian family (Ft), B and {Px}x∈R, satisfying Point i) of Definition 1.2.2, Points ii) to iv) of
Definition 1.4.1, and Px(B0 = x) = 1 for all x ∈ R.

For conciseness we will most often say ”B is a Brownian motion” and have in mind that under Px,
x 6= 0, the process B is a non standard Brownian motion (it starts from x 6= 0). It is standard under P0,
but we will omit the superscript when we are satisfied with standard Brownian motion and there is no
ambiguity.

Exercise 1.4.1. Let B be a (Ft)-Brownian motion (some filtration is given). Show that the process B−
x = (Bt − x)t≥0 is a standard Brownian motion under Px, for any x ∈ R.

The first question about Brownian motion is: how can such a process be defined ?
There are several ways to construct the Brownian motion. Among them the canonical approach (see

Section 2.2 of [4], already mentioned in Remark 1.1.1), the Hilbert analysis approach (Section 2.3 of [4]),
etc...

But maybe the most intuitive one is by scaling the symmetric random walk on Z (Section 2.4 of [4]).

Let us recall what we mean by symmetric random walk on Z: a sequence (Xi)i≥1 of i.i.d. random
variables is defined on some probability space (Ω,F ,P), with P(X1 = +1) = P(X1 = −1) = 1

2 .
Then we define the Z-valued discrete time process M = (Mn)n≥0 by

M0 = 0 and Mn =

n∑
i=1

Xi, ∀n ≥ 1.

This process M is the symmetric random walk on Z.
Note that M is a discrete time martingale with respect to the filtration (Fn) defined by F0 = {∅,Ω}

and Fn = σ(Xi, 1 ≤ i ≤ n), n ≥ 1 (see Chapter 4 of [2] for a definition of discrete time martingales).
Indeed M is obviously (Fn)-adapted, and we have for any n ≥ 0, E|Mn| <∞ and

E[Mn+1 | Fn] =

n∑
i=1

Xi + E[Xn+1|Fn] = Mn

(we have used the fact that Xn+1 is independent from Fn so that E[Xn+1|Fn] = E[Xn+1] = E[X1] = 0).

Then we define the continuous time process B(n) = (B
(n)
t )t≥0 by: B

(n)
t = 1√

n
Mnt if nt is itself an

integer; if not, we define B
(n)
t by linear interpolation between its values at the nearest times s and u s.t.

s < t < u and ns and nu are integers.
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Figure 1.1: Path of B(1) on time interval [0, 10].

Figures 1.1, 1.2 and 1.3 show, for a given path of M , the corresponding path of B(n), for n = 1 (this
is simply the path of M , that has been linearized), for n = 5 and for n = 1000.

One can observe that the path of B(1000) looks a bit like the path of a Brownian motion (that you
may have encountered on TV, internet or newspaper...).

In fact we have the following convergence result.

Theorem 1.4.1 (Donsker theorem). The process B(n) converges in distribution, as n→∞ to a process B
satisfying Points i), ii), iii’) and iv) in Definition 1.4.1 and Remark 1.4.1.

Proof. See Theorem 2.4.17 and 2.4.20 in [4].

Therefore B is a (FBt )-standard Brownian motion (Remark 1.4.1) defined on (Ω,F ,P).
Note that the fact that the increments of B are gaussian (while the ones of B(n) are not) is due to

the central limit theorem.
Note also that when we say that B(n) converges in distribution to B this is in the sense of the

convergence of laws of continuous processes. We do not enter into details and refer again to [4].

We now explore some properties of the Brownian motion. In the sequel a filtration (Ft) is given and
B is a (Ft)-Brownian motion.

Proposition 1.4.1. B is a homogeneous (Ft)-Markov process.

Proof. Let ϕ : R→ R be a Borel bounded function and 0 ≤ s < t. We have for any x ∈ R

Ex[ϕ(Bt) | Fs] = Ex[ϕ(Bt −Bs +Bs) | Fs].

But Bt−Bs is independent from Fs and Bs is Fs-measurable, thus (properties of conditional expectation)

Ex[ϕ(Bt −Bs +Bs) | Fs] = F (Bs)

10



Figure 1.2: Path of B(5) on time interval [0, 10].

Figure 1.3: Path of B(1000) on time interval [0, 10].
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where F (y) = Ex[ϕ(Bt − Bs + y)]. Denoting p(u, z) = 1√
2πu

e−
z2

2u and using Point ii) of Definition 1.4.1

we have

F (y) =

∫
R
ϕ(z + y)p(t− s, z)dz.

Thus F (y) = F (t− s, y) and we have

Ex[ϕ(Bt) | Fs] = F (t− s,Bs).

Therefore the result by Proposition 1.2.1.

Proposition 1.4.2. The process B is an (Ft)-martingale.

Proof. To fix ideas let us work under P = P0, under which B is standard (but the result remains true
under Px, x 6= 0).

The process B is (Ft)-adapted by definition and we have for any t > 0, Bt = Bt−B0 ∼ N (0, t), thus
E|Bt| <∞. Let us check the martingale property. We have for any s < t,

E[Bt|Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs] = E[Bt −Bs] +Bs = Bs.

Here we have used the fact that Bs is Fs-measurable so that E[Bs|Fs] = Bs, the fact that Bt − Bs is
independent from Fs so that E[Bt−Bs|Fs] = E[Bt−Bs] and finally the fact that Bt−Bs ∼ N (0, t− s)
so that E[Bt −Bs] = 0.

The two above propositions show that B is both a Markov process and a martingale. But note that
not all Markov processes are martingales, and not all martingales enjoy the Markov property.

We now turn to properties of the Brownian paths.

Proposition 1.4.3. Assume B is standard. We have
i) (Symmetry property): (−Bt)t≥0 is again a standard Brownian motion.
ii) (Scaling property): For any c > 0 the process (c−1Bc2t)t≥0 is again a standard Brownian motion,

for the filtration (Fc2t)t≥0.

iii) (Inversion of time): The process B̂ defined by B̂0 = 0 and B̂t = tB1/t, t > 0 is again a standard

Brownian motion, for its natural filtration (F̂t)t≥0.

Proof. Points i) and ii) are left to the reader. We give some elements for the proof of Point iii).
We have B̂0 = 0 by definition. Let t > s > 0 we prove that B̂t − B̂s ∼ N (0, t− s). We have

B̂t − B̂s = tB 1
t
− sB 1

s
= tB 1

t
− s(B 1

s
−B 1

t
+B 1

t
) = (t− s)B 1

t
− s(B 1

s
−B 1

t
)

where B 1
t

= B 1
t
−B0 ∼ N (0, 1

t ) and B 1
s
−B 1

t
∼ N (0, 1

s−
1
t ) are independant normal (gaussian) variables.

Thus B̂t − B̂s is gaussian with

E[B̂t − B̂s] = (t− s)E[B 1
t
]− sE[B 1

s
−B 1

t
] = 0

and

Var[B̂t − B̂s] = (t− s)2 1

t
+ s2(

1

s
− 1

t
) = (t2 − 2st+ s2)

1

t
+ s− s2

t
= t− 2s+

s2

t
+ s− s2

t
= t− s.

Thus B̂t − B̂s ∼ N (0, t − s). The proof that for any 0 < t1 < . . . < tn the random variables B̂t1 ,
B̂t2 − B̂t1 , . . . , B̂tn − B̂tn−1

are independent is left to the reader. It implies (Remark 1.4.1) that B̂t − B̂s
is independent from F̂s for any 0 ≤ s < t (note that B̂ is obviously (F̂t)-adapted).

From the (a.s.) continuity of B it is clear that B̂t = tB1/t is continuous (a.s.) at any time t > 0. It

remains to see that limt↓0 B̂t = 0. The proof of this point is postponed to Proposition 1.4.6.

Proposition 1.4.4 (Translated Brownian motion). Assume B is standard and let h > 0. Then (Bt+h−
Bh)t≥0 is again a standard Brownian motion (for its natural filtration).
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Figure 1.4: A Brownian path on time interval [0, 10] and the graph of t 7→ −t.

Proof. We have B0+h − Bh = 0 and the a.s. continuity of t 7→ Bt+h − Bh is clear. For any t > s we
have (Bt+h − Bh) − (Bs+h − Bh) = Bt+h − Bs+h ∼ N (0, t − s). For any 0 < t1 < . . . < tn we have
that Bt1+h −Bh, (Bt2+h −Bh)− (Bt1+h −Bh) = Bt2+h −Bt1+h, . . . , (Btn+h −Bh)− (Btn−1+h −Bh) =
Btn+h −Btn−1+h are independent.

Proposition 1.4.5 (Behavior at infinity). Assume B is standard. We have
i)

lim sup
t→∞

Bt = +∞ a.s. and lim inf
t→∞

Bt = −∞ a.s.

ii)

lim
t→∞

Bt
t

= 0 a.s.

Proof. See Proposition 1.4.1 in [5] and Problem 2.9.3 in [4].

This proposition means that the standard Brownian motion explores the whole real line R, but slower
than the identity function t 7→ t (see Figure 1.4).

Proposition 1.4.6. i) In the context of Proposition 1.4.3-iii) we have limt↓0 B̂t = 0.
ii) (Nowhere differentiability of Brownian motion): we have for any t0 ≥ 0,

lim sup
t↓0

∣∣∣Bt0+t −Bt0
t

∣∣∣ = +∞ a.s.

Proof. i) Performing a change of variable we have limt↓0 tB 1
t

= limu↑∞
Bu

u = 0, thanks to Proposi-

tion 1.4.5-ii).

ii) By Proposition 1.4.5-i) we have lim supt↓0 | B̂t

t | = lim supt↓0 |B 1
t
| = +∞.

In fact it is possible to show that we have the property lim supt↓0 |Bt

t | = +∞ for any Brownian
motion B (REF?).

Thus we have this property in particular for (Bt+t0 −Bt0)t≥0 (Proposition 1.4.4), which leads to

lim sup
t↓0

∣∣∣Bt0+t −Bt0
t

∣∣∣ = +∞ a.s.

13



Figure 1.5: A Brownian path on time interval [0, 10] and its ”shadow path” (reflected around the axis
y = b after time Tb). Here b = 2.68.

We finish this section by stating and proving the reflection principle for Brownian motion.

Proposition 1.4.7 (Reflection principle). Let b ≥ 0 and set Tb = inf{t ≥ 0 : Bt = b}. We have for any
t ≥ 0,

P0(Tb ≤ t) = 2P0(Bt > b) = P0(|Bt| > b). (1.4.1)

The reflection principle allows for example to compute the law of Tb.

Exercise 1.4.2. Show that

P0(Tb ∈ dt) =
b√

2πt3
exp

(
− b2

2t

)
dt.

Note that the last part of (1.4.1) is simply due to

P0(|Bt| > b) = P0(Bt > b) + P0(Bt < −b) = P0(Bt > b) + P0(−Bt > b) = 2P0(Bt > b)

(using Proposition 1.4.3-i)).
The idea to prove the first part of (1.4.1) is to write

P0(Tb ≤ t) = P0(Tb ≤ t ; Bt > b) + P0(Tb ≤ t ; Bt ≤ b).

But as {Bt > b} ⊂ {Tb ≤ t} we have P0(Tb ≤ t ; Bt > b) = P0(Bt > b).
So that we are done if we prove that

P0(Tb ≤ t ; Bt ≤ b) = P0(Tb ≤ t ; Bt > b). (1.4.2)

Consider Figure 1.5. Heuristically we will get (1.4.2) if the shadow path has the same probability to
occur than the initial path. One feels this has a chance to be true because B is Markov.

In fact we have better: B is strong Markov and will will use this to mathematically prove (1.4.2).

14



Proposition 1.4.8. The Brownian motion B enjoys the strong Markov property.

Proof. See [4], Theorem 2.6.15.

We thus write

P0(Tb ≤ t ; Bt > b) = E0
[
E0
(
1Tb≤t1Bt>b | FTb

)]
= E0

[
1Tb≤tP0(Bt > b | FTb

)
]

= E0
[
1Tb≤tP0(Bt > b |BTb

)
]

(note that at the third equality we have used the fact that {Tb ≤ t} ∈ FTb
; indeed let u ≥ 0, one may

check that {Tb ≤ t} ∩ {Tb ≤ u} is in Fu by noticing that {Tb ≤ t} ∩ {Tb ≤ u} = {Tb ≤ u} ∈ Fu if u ≤ t,
and that {Tb ≤ t} ∩ {Tb ≤ u} = {Tb ≤ t} ∈ Ft ⊂ Fu if t < u).

We now use Remark 1.2.1. We have (note that here (Usf)(x) = Ex[f(Bs)] for any s ≥ 0, x ∈ R)

P0(Bt > b |BTb
) = E0[1Bt>b|BTb

] = (Ut−Tb
1(b,+∞))(BTb

) = (Ut−Tb
1(b,+∞))(b),

on the event {Tb ≤ t}, thus

P0(Tb ≤ t ; Bt > b) =

∫ t

0

(Ut−s1(b,+∞))(b)P0(Tb ∈ ds).

Note now that

(Us1(b,+∞))(b) = Pb(Bs > b) = Pb(Bs − b > 0) = P0(Bs > 0)

= P0(Bs < 0) = Pb(Bs − b < 0) = Pb(Bs < b) = (Us1(−∞,b))(b)

(we have used Exercise 1.4.1). Thus

P0(Tb ≤ t ; Bt > b) =

∫ t

0

(Ut−s1(−∞,b))(b)P0(Tb ∈ ds) = E0
[
1Tb≤tP0(Bt < b | FTb

)
]

= P0(Tb ≤ t ; Bt < b).

In fact this establishes (1.4.2) because the law of (Tb, Bt) has a density w.r.t. the Lebesgue measure.
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Chapter 2

Processes of finite variation and
quadratic variation of martingales

In this chapter we recall some elements about functions of finite variation and introduce the notion of
process of finite variation. We prove that a continuous time martingale is not of finite variation, unless
it is constant, and introduce the notion of quadratic variation of martingales.

2.1 Functions of finite variation

Note that all the considered functions will by default be right continuous, so that we will rarely recall
this assumption.

Let −∞ < a < b < +∞. We call a set ∆n = {tn0 , . . . , tnn} with tn0 = a < tn1 < . . . < tnn = b a
subdivision of the interval [a, b], of size n.

We call |∆n| := supi=1,...,n |tni − tni−1| the step of ∆n.

Definition 2.1.1. Let f : [a, b]→ R a function, we call the total variation of f on [a, b] the quantity

V[a,b](f) = sup
∆n∈S

{ n∑
i=1

|f(tni )− f(tni−1)|
}

where S is the set of all possible subdivisions of [a, b] (of all possible sizes).

If V[a,b](f) < +∞, we say that f is of finite variation (FV) on [a, b].

Let f : R+ → R. If for any T > 0 the function f|[0,T ] is of FV on [0, T ], we say that f is of FV on R+.

Property/Example 2.1.1. 1) If f : [a, b]→ R is increasing then V[a,b](f) = f(b)− f(a) <∞.

Indeed, for any subdivision ∆n of [a, b], we have
∑n
i=1 |f(ti) − f(ti−1)| =

∑n
i=1(f(ti) − f(ti−1)) =

f(b)− f(a) (note that we will often drop the superscript n on the tni ’s in the sequel).

2) If f ∈ C1([a, b]) then f is of FV.

Indeed, for any subdivision ∆n of [a, b] we have,

n∑
i=1

|f(ti)− f(ti−1)| =
n∑
i=1

∣∣ ∫ ti

ti−1

f ′(s)ds
∣∣ ≤ n∑

i=1

∫ ti

ti−1

|f ′(s)|ds =

∫ b

a

|f ′(s)|ds.

Thus V[a,b](f) ≤
∫ b
a
|f ′(s)|ds <∞.

3) A function f is of FV if and only if f = f1 − f2 with f1 and f2 two increasing functions.

The necessary condition is clear as

|f(ti)− f(ti−1)| ≤ |f1(ti)− f1(ti−1)|+ |f2(ti)− f2(ti−1)| = (f1(ti)− f1(ti−1)) + (f2(ti)− f2(ti−1)).

For the sufficient condition see the Appendix (Proposition 6.1.1).
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Now consider µ a positive measure on R+ and set f(t) = µ([0, t]). The function f is increasing and
thus of FV.

If µ is a signed measure, i.e. µ = µ1 − µ2 with µ1, µ2 two positive measures, then f(t) = µ([0, t]) =
µ1([0, t])− µ2([0, t]) is the difference of two increasing functions and therefore of FV.

In fact the converse is true. More precisely we have the following result.

Theorem 2.1.1. There is a one-to-one correspondance between the r.c. functions f of FV and the
signed measures µ on R+, via the equality

f(t) = µ([0, t]), t ≥ 0.

Proof. REF?

We are then led to the concept of Stieltjes integral.
Let f of FV on R+ and µf the corresponding signed measure. Let ϕ : R+ → R a Borel function s.t.∫ t

0

|ϕ|(s) |µf |(ds) < +∞, ∀t ≥ 0

(here we have denoted |µf | the positive measure defined by |µf | = µf1 + µf2 where µf = µf1 − µf2 is
the decomposition of µf ; note that µf1 and µf2 correspond to the increasing functions f1 and f2 in the
decomposition f = f1 − f2 of f).

Then we note ∫ t

0

ϕ(s) df(s) :=

∫
(0,t]

ϕ(s)µf (ds), t ≥ 0

the Stieltjes integral of ϕ against f at time t. We may consider the function
∫ ·

0
ϕ(s) df(s) : t 7→∫ t

0
ϕ(s) df(s) and call it the Stieltjes integral of ϕ against f .

Note that
∫ t

0
df(s) = f(t)− f(0). In the sequel we will often note df(s) for µf (ds).

Property/Example 2.1.2. 1) The function
∫ ·

0
ϕ(s) df(s) is itself of FV.

Indeed we have
∫ t

0
ϕ(s)df(s) = µϕf ((0, t]) with µϕf (A) =

∫
A
ϕ(s)df(s) for any A ∈ B(R+). And using

the decompositions ϕ = ϕ+−ϕ− and df = df1−df2 one may check that µϕf is a signed measure. Therefore

the result, considering µϕf ((0, t]) = µϕf ([0, t])− µϕf ({0}) and Theorem 2.1.1.

2) (Associativity of the Stieltjes integral) Let a : R+ → R of FV and φ, ψ : R+ → R having the re-

quired integrability. One sets A(t) =
∫ t

0
ψ(s)da(s) for any t ≥ 0. Then

∫ t
0
φ(s)dA(s) =

∫ t
0
φ(s)ψ(s) da(s)

for any t ≥ 0.
Indeed A(t) = µψa (]0, t]) with µψa (B) =

∫
B
ψ(s) da(s) for any B ∈ B(R+) (that is the measure µψa has

density ψ w.r.t. the measure da(s)). Thus, for any t ≥ 0,∫ t

0

φ(s)dA(s) =

∫
]0,t]

φ(s)µψa (ds) =

∫
]0,t]

φ(s)ψ(s)da(s) =

∫ t

0

φ(s)ψ(s)da(s).

3) If ϕ is continuous then
∫ T

0
ϕ(s)df(s) = lim|∆n|↓0

∑n
i=1 ϕ(tni−1)(f(tni )− f(tni−1)) (the limit is taken

over subdivisions |∆n| of [0, T ], 0 < T <∞).

4) If f is of class C1 and f(0) = 0 then
∫ t

0
ϕ(s)df(s) =

∫ t
0
ϕ(s)f ′(s)ds for any t ≥ 0.

Indeed, µf ([0, t]) = f(t) =
∫ t

0
f ′(s)ds for any t, which shows that µf (dt) = f ′(t)dt.

Exercise 2.1.1. Show that for f : R+ → R of FV (with f = f1 − f2 with f1, f2 increasing) we have

V[0,t](f) ≤
∫ t

0
|df |(s), where |df | denotes df1 + df2.

2.2 Processes of finite variation

From now on and till the end of the chapter the encountered processes are R-valued and defined on some
probability space (Ω,F ,P). A filtration (Ft)t≥0 is given.

Definition 2.2.1. An (Ft)-adapted and a.s. r.c. process X = (Xt)t≥0 is of FV if, for almost every
ω ∈ Ω, the mapping t 7→ Xt(ω) is of FV.
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Proposition 2.2.1. Let X = (Xt)t≥0 be a process of FV, a.s. continuous and adapted.
Let H = (Ht)t≥0 be a progressively measurable process such that for almost every ω ∈ Ω, the func-

tion H·(ω) is integrable against X·(ω) in the Stieltjes sense.
The process H ·X defined for almost every ω ∈ Ω by

(H ·X)t(ω) =

∫ t

0

Hs(ω)dXs(ω), ∀t ≥ 0

(here
∫ t

0
Hs(ω)dXs(ω) is the Stieltjes integral of H·(ω) against X·(ω) at time t) is called the Stieltjes

integral of H against X.
This process H ·X is of FV, a.s. continuous and adapted.

Proof. See [6] p119 for some details.
The idea is that for a.e. ω the process

∫ ·
0
Hs(ω)dXs(ω) is of FV by Property/Example 2.1.2-1). To

see the continuity one uses the continuity of the integral. To show that H ·X is adapted is maybe the
most tricky part. It is here that the fact that H is progressively measurable comes into play.

Proposition 2.2.2. Let M = (Mt)t≥0 be a continuous martingale with M0 = 0. If M is of FV then
Mt = 0 a.s., for any t ≥ 0.

Proof. Note that this proof makes use of Exercises 2.2.1 and 2.2.2 that are proposed just after.
We consider, for any n ∈ N, the stopping time Tn = inf{t ≥ 0, V[0,t](M) ≥ n}.
For any n we consider the stopped martingale MTn = (Mt∧Tn)t≥0 (see Theorem 1.3.2).
For a while we fix n and denote X = MTn for conciseness. Then we fix t > 0. We have for any

subdivision ∆p of [0, t],

E(X2
t ) = E

[ p∑
i=1

(X2
ti −X

2
ti−1

)
]

= E
[ p∑
i=1

(Xti −Xti−1)2
]
.

Here we have used Exercise 1.3.1 at the second inequality (and note that Exercise 2.2.1 guarantees
that E(X2

t ) <∞).
Thus we have E(X2

t ) ≤ E
[

supi |Xti−Xti−1
|
∑p
i=1 |Xti−Xti−1

|
]
, but

∑p
i=1 |Xti−Xti−1

| ≤ V[0,t](X) =
V[0,t∧Tn](M) ≤ n.

Thus E(X2
t ) ≤ nE

[
supi |Xti −Xti−1

|
]
. And by the a.s. continuity of X we have

sup
i
|Xti −Xti−1 | −−−−→|∆p|↓0

0 a.s.

As supi |Xti −Xti−1
| ≤ V[0,t](X) ≤ n we can use the dominated convergence theorem to claim that

E(X2
t ) ≤ nE

[
sup
i
|Xti −Xti−1

|
]
−−−−→
|∆p|↓0

0.

Thus E(X2
t ) = 0 and Xt = 0 a.s., i.e. we have shown that

Mt∧Tn = 0 a.s., ∀n ∈ N, ∀t > 0. (2.2.1)

To achieve the proof we now fix t > 0 again. As Tn ↑ ∞ a.s. (Exercise 2.2.2) for a.e. ω there exists
Nt(ω) great enough s.t. TNt(ω)(ω) > t.

Thus for a.e. ω we have Mt(ω) = Mt∧TNt(ω)(ω)(ω). But this quantity is equal to zero thanks
to (2.2.1).

Exercise 2.2.1. In the context and with the notations of the proof of Proposition 2.2.2, show that X
is bounded, and thus square-integrable (for a certain fixed n).

Exercise 2.2.2. Let Y = (Yt)t≥0 be a process of FV and define τn = inf{t ≥ 0, V[0,t](Y ) ≥ n}. Show
that τn ↑ ∞ a.s., as n ↑ ∞.

(Hint: Show that if τn ≤ B <∞ then V[0,B](Y ) = +∞.)

A consequence of Proposition 2.2.2 is that a continuous martingale M with M0 = 0 which is not
constantly equal to zero (as the Brownian motion B for example !) if not of FV.

Therefore
∫ ·

0
HsdMs cannot be defined in the Stieltjes sense: we will have to define the Itô integral,

this will be the topic of Chapter 3.
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2.3 Quadratic variation of martingales

Theorem 2.3.1 (Doob-Meyer decomposition). Let M = (Mt)t≥0 be a square-integrable continuous
martingale. There is a unique increasing process, continuous and adapted, denoted 〈M〉 = (〈M〉t)t≥0,
such that 〈M〉0 = 0 and M2 − 〈M〉 is a martingale.

Proof. For the existence we refer to Theorem 1.4.10 and Definition 1.5.3 in [4].
But it is quite easy to check uniqueness: let A and Â be two increasing, continuous and adapted

processes, with A0 = Â0 = 0, and s.t. M2 −A and M2 − Â are martingales.
Then A − Â = A −M2 − (Â −M2) is a continuous martingale, starting from zero (by linear com-

bination). But A − Â is of FV, as the difference of two increasing processes. Thus A − Â ≡ 0 by
Proposition 2.2.2.

Example 2.3.1. For a standard Brownian motion B we have 〈B〉t = t, for all t ≥ 0.
Indeed, notice first that, as Bt ∼ N (0, t), we have E(B2

t ) = Var(Bt) = t <∞ for any t > 0, so that B
is actually a square-integrable martingale.

Then the process (B2
t − t)t≥0 is integrable, adapted and continuous. Let us check that it satisfies the

martingale property. We have for any 0 ≤ s < t

E(B2
t − t | Fs) = E

[
(Bt −Bs)2 + 2BtBs −B2

s − s− (t− s)
∣∣Fs]

= E[(Bt −Bs)2]− (t− s)− s−B2
s + 2BsE(Bt|Fs)

= B2
s − s.

Here we have used the facts that Bt − Bs is independent from Fs and is distributed along N (0, t − s),
that Bs is Fs-measurable and that B is a martingale.

Thus (B2
t − t)t≥0 is a martingale. The (deterministic) process (t)t≥0 obviously satisfies all the re-

quirements of 〈B〉. Thus by the uniqueness property in Theorem 2.3.1 we get 〈B〉t = t (and note that
the above computation provide the existence of 〈B〉 in the case of the Brownian motion B).

For a square-integrable continuous martingale M the process 〈M〉 is called the ”bracket” or the
”quadratic variation” of M .

Indeed, for a subdivision ∆n of [0, t] we denote Q∆n
t (X) =

∑n
i=1(Xti −Xti−1

)2, for any process X.
We say that X is of finite quadratic variation if for any t ≥ 0 there exists Qt < ∞ a.s. such that
Q∆n
t (X)→ Qt in probability as |∆n| ↓ 0. We have the following result.

Theorem 2.3.2. Let M = (Mt)t≥0 be a continuous square-integrable martingale. We have for any t ≥ 0,

sup
s≤t
|Q∆n

s (M)− 〈M〉s|
P−−−−→

|∆n|↓0
0. (2.3.1)

In particular M is of finite quadratic variation and Qt = 〈M〉t for any t ≥ 0.

Proof. See Theorem IV.1.8 in [6].

Remark 2.3.1. This is possible to understand why we have such a result by examining the case of
Brownian motion (again; see Example 2.3.1).

Let 0 = tn0 < . . . < tnn = t be a subdivision of [0, t] and B be a standard Brownian motion.
We have

E
∣∣ n∑
i=1

(Bti −Bti−1
)2 − t

∣∣2 = E
∣∣ n∑
i=1

(
(Bti −Bti−1

)2 − (ti − ti−1)
)∣∣2 = E

∣∣ n∑
i=1

Zni
∣∣2

where Zni = (Bti−Bti−1
)2− (ti− ti−1). Note that the Zni ’s are centered (as E[(Bti−Bti−1

)2] = ti− ti−1)

and square-integrable with E|Zni |2 = 2(ti − ti−1)2 (using E|X|2k = (2k)!
2kk!

σ2k for X ∼ N (0, σ2)).
In addition the Zni ’s are independent, thanks to the independence of the Brownian increments. Thus

E
∣∣ n∑
i=1

(Bti −Bti−1
)2 − t

∣∣2 =

n∑
i=1

E|Zni |2 = 2

n∑
i=1

(ti − ti−1)2 ≤ 2t sup
i
|ti − ti−1| −−−−→

|∆n|↓0
0.
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This shows that Q∆n
t (B)→ t = 〈B〉t in the L2 sense when |∆n| ↓ 0. This is not the convergence stated

in (2.3.1), but gives an insight why we have some convergence of Q∆n
t (B) to 〈B〉t.

Property 2.3.1. If a process X is continuous and of FV then it is of null quadratic variation.

Proof. We have

Q∆n
t (X) ≤ sup

i
|Xti −Xti−1

|
n∑
i=1

|Xti −Xti−1
| ≤ V[0,t](X) sup

i
|Xti −Xti−1

| −−−−→
|∆n|↓0

0.

Definition 2.3.1 (Bracket of two martingales). Let M,N be two continuous square-integrable martin-
gales. We set

〈M,N〉 :=
1

2

[
〈M +N〉 − 〈M〉 − 〈N〉

]
.

This is the ”(crossed) bracket of M with N”.

Property 2.3.2. 1) 〈M,N〉 is the unique continuous and adapted process, of FV, starting from zero,
such that MN − 〈M,N〉 is a martingale.

2) We have

〈M,N〉t = lim
|∆n|↓0

|P
n∑
i=1

(Mti −Mti−1
)(Nti −Nti−1

).

3) For any progressively measurable process H that is integrable against 〈M,N〉 we have∫ t

0

Hsd〈M,N〉s = lim
|∆n|↓0

|P
n∑
i=1

Hti−1
(Mti −Mti−1

)(Nti −Nti−1
).

Proof. You may check 1) as an exercise. For 2) and 3) see [6] and [4].

Exercise 2.3.1. Show that (M,N) 7→ 〈M,N〉 is bilinear and symmetric.

Note that of course 〈M,M〉 = 〈M〉. We will use one or the other notation in the sequel.

To finish with, we have the following property.

Property 2.3.3. Let M = (Mt)t≥0 be a continuous square-integrable martingale with M0 = 0 and
〈M,M〉 ≡ 0. Then M ≡ 0.

Proof. We have for any t ≥ 0 that E[M2
t −〈M,M〉t] = E[M2

0 −〈M,M〉0] = 0, as a martingale is constant
in expectation and M2

0 − 〈M,M〉0 = 0. Thus E[M2
t ] = E[〈M,M〉t] = 0, for any t ≥ 0. Thus Mt = 0 a.s.

for any t ≥ 0.
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Chapter 3

Stochastic integration and Itô
formula

In this chapter we build the (Itô) stochastic integral and present the Itô formula (or Itô lemma). Those
are the two main blocks of Stochastic Calculus. Note that the Itô formula is presented with the formalism
used in [6], but the proofs follow more often the spirit of [4].

3.1 Stochastic integration

In this whole chapter some time horizon 0 < T < ∞ is fixed. A probability space (Ω,F ,P) and a
filtration (Ft)0≤t≤T are given.

We aim at giving a sense to
∫ t

0
HsdMs, 0 ≤ t ≤ T , where M is a square-integrable martingale and H

a progressively measurable process satisfying some integrability conditions. From Proposition 2.2.2 we
already know that this cannot be done in the Stieltjes sense (unless M is constant).

We introduce some notations. We denoteM2 the space of continuous square integrable martingales,
starting from zero (i.e. with M0 = 0). It is equipped with the norm

|| · || : M 7→ ||M || =
√
E(M2

T ) =
√

E(〈M〉T ).

Exercise 3.1.1. Show that for any 0 ≤ t ≤ T we have E(M2
t ) ≤ ||M ||2. This imply that any element

of M2 is bounded in L2.

In fact the normed space (M2, || · ||) is a Banach space (see Proposition IV.1.22 in [6]). This fact is
crucial and will be used later on (Theorem 3.1.2).

Pick M in M2. We denote Π2(M) the space of progressively measurable processes H satisfying

||H||2M := E
∫ T

0

H2
sd〈M〉s <∞.

Note that again the space (Π2(M), || · ||M ) is a Banach space (see a remark p137 in [6]; this is in fact
just due to the properties of Lp(E, E , µ) spaces, for any measured space (E, E , µ); here the considered
measure is in some sense d〈M〉s ⊗ dP). But we will not use this fact later on.

Step 1. We denote bΠ1 the space of simple processes, those are processes H of the form

Ht = Y01{0}(t) +

n∑
i=1

Yi1]ti−1,ti](t), 0 ≤ t ≤ T,

where t0 = 0 < t1 < . . . < tn = T is a subdivision of [0, T ], Y0 is F0-measurable, Yi is Fti−1
-measurable

for any 1 ≤ i ≤ n, and |Yi| ≤ C <∞ a.s. for any 0 ≤ i ≤ n.
Note that as H in bΠ1 is l.c. and adapted it is progressively measurable (Proposition 1.1.1). Besides,

the boundedness of the Yi’s implies that E
∫ T

0
H2
sd〈M〉s <∞.
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Therefore bΠ1 ⊂ Π2(M), for any M ∈M2.
For M ∈M2 and H ∈ bΠ1 we now define the process H ·M by

(H ·M)t =

n∑
i=1

Yi(Mti∧t −Mti−1∧t). (3.1.1)

Theorem 3.1.1. 1) For any M ∈M2 and any H ∈ bΠ1 the process H ·M is in M2.
2) Let M ∈M2 fixed. The application

(·M) : bΠ1 → M2

H 7→ H ·M

is linear.
3) For any M,N ∈M2 and any H,K ∈ bΠ1 we have

〈H ·M,K ·N〉t =

∫ t

0

HsKsd〈M,N〉s, ∀0 ≤ t ≤ T,

where the above integral is understood in the Stieltjes sense.
4) We have for any 0 ≤ t ≤ T , any M,N ∈M2 and any H,K ∈ bΠ1,

E[(H ·M)t(K ·N)t] = E
∫ t

0

HsKsd〈M,N〉s

and in particular

E[(H ·M)2
t ] = E

∫ t

0

H2
sd〈M〉s.

Proof. 1) From the definition (3.1.1) one sees that H ·M is continuous and starts from zero, and it is
easy to check it is square integrable (thanks in particular to the boundedness of the Yi’s that define H).

The fact that H ·M is adapted is clear, one checks the martingale property. By linearity of the

conditional expectation it is enough to check that each of the processes
(
Yi(Mti∧t −Mti−1∧t)

)
0≤t≤T

verifies the martingale property. Let 1 ≤ i ≤ n fixed.

Let 0 ≤ s < t ≤ T . There are several cases to treat separately.

If s ≤ ti−1: One has Yi(Mti∧s −Mti−1∧s) = 0.
a) If t < ti−1 then Yi(Mti∧t −Mti−1∧t) = 0 and thus E[Yi(Mti∧t −Mti−1∧t) | Fs] = 0.
b) If t ≥ ti−1, then

E[Yi(Mti∧t −Mti−1∧t) | Fs] = −E[YiMti−1
|Fs] + E

[
E(YiMti∧t|Fti−1

)|Fs
]

= −E[YiMti−1
|Fs] + E

[
YiE(Mti∧t|Fti−1

)|Fs
]

= −E[YiMti−1 |Fs] + E
[
YiMti−1 |Fs

]
= 0,

using the fact that Yi is Fti−1
-measurable and that M is a martingale.

Thus
E[Yi(Mti∧t −Mti−1∧t) | Fs] = Yi(Mti∧s −Mti−1∧s) = 0.

If s ≥ ti: One has Yi(Mti∧s −Mti−1∧s) = YiMti − YiMti−1
and

E[Yi(Mti∧t −Mti−1∧t) | Fs] = E[Yi(Mti −Mti−1
) | Fs] = Yi(Mti −Mti−1

),

where we have used the fact that Yi(Mti −Mti−1
) is Fti- and thus Fs-measurable.

Thus
E[Yi(Mti∧t −Mti−1∧t) | Fs] = Yi(Mti∧s −Mti−1∧s) = Yi(Mti −Mti−1).
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If ti−1 < s < ti: One has Yi(Mti∧s −Mti−1∧s) = Yi(Ms −Mti−1
) and

E[Yi(Mti∧t −Mti−1∧t) | Fs] = E[YiMti∧t − YiMti−1
| Fs]

= YiE[Mti∧t | Fs]− YiMti−1

= Yi(Ms −Mti−1
),

using successively the facts that Yi and YiMti−1
are Fti−1

- and thus Fs-measurable, and that M is a
martingale. Thus,

E[Yi(Mti∧t −Mti−1∧t) | Fs] = Yi(Mti∧s −Mti−1∧s) = Yi(Ms −Mti−1
).

To sum up, in any case we have E[Yi(Mti∧t −Mti−1∧t) | Fs] = Yi(Mti∧s −Mti−1∧s), we have checked
the martingale property.

2) The linearity is left to the reader.

3) We aim at showing that the process defined by Zt := (H ·M)t(K · N)t −
∫ t

0
HsKsd〈M,N〉s is a

martingale. Indeed the result will then follow from the uniqueness part of Property 2.3.2-1).
By linearity arguments it is enough to prove the result for Ht = Yi1]ti−1,ti](t) and Kt = Y ′j1]tj−1,tj ](t)

(we recall that in particular Yi is Fti−1 -measurable and Y ′j is Ftj−1-measurable).

If i < j: Then
∫ t

0
HsKsd〈M,N〉s = 0, as HK ≡ 0. Consider now

(H ·M)t(K ·N)t = (YiMti∧t − YiMti−1∧t)(Y
′
jNtj∧t − Y ′jNtj−1∧t).

If t < tj−1 this quantity is equal to zero. If t ≥ tj−1 it is equal to

Yi(Mti −Mti−1
)Y ′j (Ntj∧t −Ntj−1

) =
(
Yi(Mti −Mti−1

)Y ′j1]tj−1,tj ](·) ·N
)
t
.

Thus this quantity can be seen as the integral againstN of the simple process Jt = Yi(Mti−Mti−1)Y ′j1]tj−1,tj ](t)
(note that Yi(Mti − Mti−1

)Y ′j is Ftj−1
-measurable). In fact, by the definition (3.1.1), it also true

for t < tj−1.
Thus Zt = (H ·M)t(K ·N)t = (J ·N)t, 0 ≤ t ≤ T . Thus Z is a martingale according to Point 1).

If i = j: Then

Zs =

 0 if s < ti−1

YiY
′
i [(Ms −Mti−1

)(Ns −Nti−1
)− (〈M,N〉s − 〈M,N〉ti−1

)] if ti−1 ≤ s ≤ ti
YiY

′
i [(Mti −Mti−1

)(Nti −Nti−1
)− (〈M,N〉ti − 〈M,N〉ti−1

)] if s > ti

We check the martingale property of Z for ti−1 ≤ s < t ≤ ti (other cases are a bit easier and left to the
reader). We have

Zt − Zs = YiY
′
i

[
MtNt −Mti−1

Nt −MtNti−1
+Mti−1

Nti−1
− (〈M,N〉t − 〈M,N〉ti−1

)

−MsNs +Mti−1
Ns +MsNti−1

−Mti−1
Nti−1

+ (〈M,N〉s − 〈M,N〉ti−1
)
]

= YiY
′
i

[
MtNt −MsNs −Mti−1

(Nt −Ns)−Nti−1
(Mt −Ms)− (〈M,N〉t − 〈M,N〉s)

]
.

But Yi, Y
′
i , Mti−1

and Nti−1
are Fti−1

- and thus Fs-measurable, thus

E[Zt − Zs|Fs] = YiY
′
i

{
E[MtNt −MsNs − (〈M,N〉t − 〈M,N〉s)|Fs]

−Mti−1
E[Nt −Ns|Fs]−Nti−1

E[Mt −Ms|Fs]
}

= 0

as M , N and MN − 〈M,N〉 are martingales.

4) This comes from the fact that E(Zt) = E(Z0) = 0.
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Note that Point 4) of Theorem 3.1.1 implies that

||H ·M || = ||H||M ∀H ∈ bΠ1, ∀M ∈M2. (3.1.2)

This is an isometry property. We will now extend the construction of the stochastic integral to Π2(M),
preserving this isometry property.

Step 2. To start with we have the following result.

Lemma 3.1.1. For any M ∈M2 the space bΠ1 is dense in Π2(M).

Proof. See Proposition 3.2.8 in [4].

We then have the following theorem.

Theorem 3.1.2. 1) Let M ∈M2. The application

(·M) : bΠ1 → M2

H 7→ H ·M

extends in an isometry IM : Π2(M)→M2.
We note IM (H) =: (H ·M), H ∈ Π2(M).

2) For any M,N ∈M2, any H ∈ Π2(M) and any K ∈ Π2(N) we have

〈H ·M,K ·N〉t =

∫ t

0

HsKsd〈M,N〉s, 0 ≤ t ≤ T.

Proof. 1) Let H ∈ Π2(M), there is a sequence (Hn)n in bΠ1 s.t. ||Hn−H||M → 0 as n→∞. Thus (Hn)n
is Cauchy in Π2(M) (as it is convergent). By linearity and isometry (Eq. (3.1.2)) we thus have

||Hn ·M −Hm ·M || = ||(Hn −Hm) ·M || = ||Hn −Hm||M −−−−−→
m,n→∞

0

Thus (Hn ·M)n is Cauchy inM2, and thus convergent, to an element IM (H) ofM2. But by continuity
of the norm we have

||IM (H)|| = lim
n→∞

||Hn ·M || = lim
n→∞

||Hn||M = ||H||M ,

and thus the application IM is an isometry.

2) Again limiting arguments: see [4], Section 3.2.B.

Thus for M ∈M2 and H ∈ Π2(M) we have constructed H ·M , which we call the stochastic integral
(or the Itô integral) of H against M , and will often denote∫ .

0

HsdMs

(and for any 0 ≤ t ≤ T we denote
∫ t

0
HsdMs =

( ∫ .
0
HsdMs

)
t

= (H ·M)t).

Proposition 3.1.1. Let M ∈M2 and H ∈ Π2(M), then H ·M is the unique element in M2 satisfying

∀N ∈M2, 〈H ·M,N〉 = H · 〈M,N〉.

Proof. Let X another element of M2 satisfying

∀N ∈M2, 〈X,N〉 = H · 〈M,N〉.

Then
∀N ∈M2, 〈H ·M −X,N〉 = 〈H ·M,N〉 − 〈X,N〉 = 0.

In particular, as H ·M −X is in M2 we have

〈H ·M −X,H ·M −X〉t = 0 a.s. ∀0 ≤ t ≤ T.

Thus H ·M −X ≡ 0 (using Property 2.3.3).
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The above property of the stochastic integral allows to prove the important following result.

Proposition 3.1.2 (Associativity of the stochastic integral). Let M ∈ M2, K ∈ Π2(M) and H ∈
Π2(K ·M). Then HK ∈ Π2(M) and (HK) ·M = H · (K ·M).

Proof. Using 〈K ·M〉t = 〈K ·M,K ·M〉t =
∫ t

0
K2
sd〈M〉s (Point 2) of Theorem 3.1.2) and the associativity

of the Stieltjes integral (Property 2.1.2-2)) one gets, under the assumption H ∈ Π2(K ·M),

E
∫ T

0

H2
sK

2
sd〈M〉s = E

∫ T

0

H2
sd〈K ·M〉s < +∞,

therefore HK is in Π2(M).
We now prove that

∀N ∈M2, 〈H · (K ·M), N〉 =

∫ .

0

HsKsd〈M,N〉s (3.1.3)

As by Proposition 3.1.1 the process (HK) ·M is the unique element in M2 to satisfy 〈(HK) ·M,N〉 =∫ .
0
HsKsd〈M,N〉s, ∀N ∈M2, we will get the desired result.
We have for any N ∈ M2, using 〈K ·M,N〉 = K · 〈M,N〉 and the associativity of Stieltjes integral

again,

〈H · (K ·M), N〉 =

∫ .

0

Hsd〈K ·M,N〉s =

∫ .

0

HsKsd〈M,N〉s,

therefore (3.1.3). The proof is completed.

Remark 3.1.1. To sum up we write in the integral form some of the above encountered properties, that
we shall often use when doing stochastic calculus.

?) Point 2) of Theorem 3.1.2 may be rewritten: for any M,N ∈ M2, any H ∈ Π2(M) and any
K ∈ Π2(N), 〈 ∫ .

0

HsdMs ,

∫ .

0

KsdNs
〉
t

=

∫ t

0

HsKsd〈M,N〉s, 0 ≤ t ≤ T.

?) The associativity of the Itô integral may be rewritten: for M ∈ M2, K ∈ Π2(M) and H ∈
Π2(K ·M) one has ∫ t

0

Hsd
( ∫ .

0

KudMu

)
s

=

∫ t

0

HsKsdMs, 0 ≤ t ≤ T.

3.2 Itô formula

Definition 3.2.1. We call a (R-valued) semimartingale a R-valued process X = (Xt) of the form

Xt = X0 +At +Mt, ∀0 ≤ t ≤ T,

where X0 is some R-valued and F0-measurable random variable representing the initial position of X, A
is some continuous and adapted process of FV, with A0 = 0, and M is some element of M2 (in particu-
lar M0 = 0).

Definition 3.2.2. Let X be a semimartingale with martingale part M and FV part A. Let H ∈ Π2(M)
and integrable against A, we denote∫ .

0

HsdXs :=

∫ .

0

HsdAs +

∫ .

0

HsdMs,

where the first integral is understood in the Stieltjes sense and the second in the Itô sense.

Definition 3.2.3. Let X = X0 + A + M and Y = Y0 + C + N be two semimartingales. We call the
bracket of X with Y the symmetric quantity

〈X,Y 〉 := 〈M,N〉.
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Note that Definition 3.2.3 comes from the fact that for any subdivision ∆n,

Q∆n
t (X,Y ) = Q∆n

t (A+M,C +N) = Q∆n
t (M,N) +Q∆n

t (A,N) +Q∆n
t (M,C) +Q∆n

t (A,C)

and that Q∆n
t (M,N) → 〈M,N〉t as |∆n| ↓ 0 (Property 2.3.1-2)), while the three other terms tend to

zero.
Indeed they are the crossed quadratic variation of a continuous process with a process of FV. So that

for example (this is similar to Property 2.3.1)

|Q∆n
t (A,N)| ≤

∑
i

|Ati −Ati−1 | × |Nti −Nti−1 | ≤ sup
i
|Nti −Nti−1 |V[0,t](A) −−−−→

|∆n|↓0
0,

as A is of FV and supi |Nti −Nti−1
| tends to zero by continuity of M .

With all these notations and definitions we can now state the Itô rule.

Theorem 3.2.1 (Itô rule, Itô formula). Let X1, . . . , Xp be continuous semimartingales and f ∈ C2(Rp;R)
such that

∀1 ≤ i ≤ p, E
∫ T

0

|∂xif(Xs)|2d〈Xi〉s < +∞

(we have denoted Xs = (X1
s , . . . , X

p
s )T for any 0 ≤ s ≤ T ). Then

f(Xt) = f(X0) +

p∑
i=1

∫ t

0

∂xi
f(Xs)dX

i
s +

1

2

p∑
i,j=1

∫ t

0

∂2
xixj

f(Xs)d〈Xi, Xj〉s, ∀0 ≤ t ≤ T.

In order to give the main ideas of the proof of Theorem 3.2.1 we will need the following result.

Proposition 3.2.1 (Dominated convergence for the stochastic integral). Let X = A + M be a semi-
martingale and (Hn)n a sequence of integrable processes (against X; in particular the Hn’s are progres-
sively measurable). Assume Hn

s (ω) → Hs(ω), as n → ∞, for any (s, ω). Assume H is bounded and
assume |Hn

s (ω)| ≤ C < +∞ for any (s, ω) and any n. Then

sup
s≤t

∣∣ ∫ s

0

Hn
udXu −

∫ s

0

HudXu

∣∣ P−−−−→
n→∞

0 (3.2.1)

Proof. We do not prove the result fully, by give only the great lines. Thanks to the dominated convergence
for the Stieltjes integral

∫ .
0
Hn
s dAs converges to

∫ .
0
HsdAs a.s. We now turn to the martingale part.

Thanks to the isometry of Itô integral we get for any 0 ≤ t ≤ T

E
∣∣∣ ∫ t

0

Hn
s dMs −

∫ t

0

HsdMs

∣∣∣2 = E
∣∣∣ ∫ t

0

(Hn
s −Hs)dMs

∣∣∣2 = E
∫ t

0

|Hn
s −Hs|2d〈M〉s.

As |Hn−H| is bounded and converges pointwise to zero one may conclude by dominated convergence (for

the integral against d〈M〉s ⊗ dP) that E
∫ t

0
|Hn

s −Hs|2d〈M〉s → 0, as n→∞. That is to say
∫ t

0
Hn
s dMs

converges to
∫ t

0
HsdMs in L2(P).

It remains to pass to (3.2.1) (in the spirit of Theorem IV.1.8 in [6]).

Corollary 3.2.1. Let X a semimartingale and H a continuous adapted integrable bounded process. Then
for any 0 ≤ t ≤ T and any sequence (∆n)n of subdivisions of [0, t],∑

i: ti≤t

Hti−1
(Xti −Xti−1

)
P−−−−→

|∆n|↓0

∫ t

0

HsdXs.

Proof. It suffices to use the proposition with Hn
t =

∑
iHti−1

1]ti−1,ti](t).

Indeed one has
∫ t

0
Hn
s dXs =

∑
i: ti≤tHti−1(Xti −Xti−1) and Hn converges to H.

Proposition 3.2.2. In the preceding context one has∑
i: ti≤t

Hti−1
(Xti −Xti−1

)2 P−−−−→
|∆n|↓0

∫ t

0

Hsd〈X〉s.
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Proof. See [4] pp 151-152.

Main ideas of the proof of Theorem 3.2.1: We deal only with the case p = 1, where the Itô formula
simply writes

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X〉s. (3.2.2)

A subdivision ∆n of [0, t] is given. We have

f(Xt)− f(X0) =

n∑
i=1

(f(Xti)− f(Xti−1
))

and for any 1 ≤ i ≤ n, we use a Taylor expansion between Xti−1
and Xti . This gives

f(Xti)− f(Xti−1) = f ′(Xti−1) (Xti −Xti−1) +
1

2
f ′′(ξi)(Xti −Xti−1)2,

where ξi is some real number between Xti−1 and Xti . By summation we get

f(Xt)− f(X0) =

n∑
i=1

f ′(Xti−1) (Xti −Xti−1) +
1

2

n∑
i=1

f ′′(Xti−1) (Xti −Xti−1)2

+
1

2

n∑
i=1

(f ′′(ξi)− f ′′(Xti−1)) (Xti −Xti−1)2

The term
∑n
i=1 f

′(Xti−1
) (Xti −Xti−1

) converges to
∫ t

0
f ′(Xs)dXs as |∆n| ↓ 0 by Corollary 3.2.1 (in fact

a version of this corollary for locally bounded integrands; cf Proposition IV.2.13 in [6]).

The term
∑n
i=1 f

′′(Xti−1
) (Xti − Xti−1

)2 converges to
∫ t

0
f ′′(Xs)d〈X〉s as |∆n| ↓ 0, by Proposi-

tion 3.2.2.
To finish with the term

∑n
i=1(f ′′(ξi)− f ′′(Xti−1)) (Xti −Xti−1)2 is bounded by

sup
i
|f ′′(ξi)− f ′′(Xti−1)|Q∆n

t (X)

but supi |f ′′(ξi) − f ′′(Xti−1
)| tends to zero as |∆n| ↓ 0, by continuity of f ′′, and Q∆n

t (X) tends to
〈X〉t <∞. Thus

∑n
i=1(f ′′(ξi)− f ′′(Xti−1

)) (Xti −Xti−1
)2 tends to zero. Therefore the result.

Remark 3.2.1. Note that if X were of null quadratic variation (for example if X is continuous and of
FV), the second order term in (3.2.2) would be zero. In other words we would have f(Xt) = f(X0) +∫ t

0
f ′(Xs)dXs, which corresponds in some sense to the classical differential calculus. Here the second

order term comes from the martingale part of X, which is of non null bracket, and which makes the
paths of X non smooth (they have in fact the same kind of smoothness than the Brownian paths:
continuous but not differentiable).

Remark 3.2.2. The Itô formula is often written in its differential (and shorter) form: in 1D it gives

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t. (3.2.3)

But note that this differential writing has just an integral meaning: writing (3.2.3) just means that we
have (3.2.2).

Example 3.2.1. The Black-Scholes differential stochastic equation writes:

dSt = µStdt+ σStdBt, S0 = x (3.2.4)

(which means that St = x+
∫ t

0
µSsds+

∫ t
0
σSsdBs for any t ≥ 0, see Chapter 5).

Is there a process S solving (3.2.4) ? Let us consider

St = x exp
(
(µ− σ2

2
)t+ σBt

)
, t ≥ 0. (3.2.5)
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We denote Xt = (µ− σ2

2 )t+ σBt, and apply the Itô formula, this gives,

dSt = x exp(Xt)dXt + 1
2x exp(Xt)d〈X〉t

= St(µ− σ2

2 )dt+ StσdBt + 1
2Stσ

2dt

= µStdt+ σStdBt.

Thus the process S defined by (3.2.5) solves (3.2.4).

Remark 3.2.3. The assumption that E
∫ T

0
|∂xif(Xs)|2d〈Xi〉s < +∞, 1 ≤ i ≤ p, is required to have the

Itô integrals
∫ t

0
∂xi

f(Xs)dM
i
s (M i is the martingale part of Xi) well defined in the Itô formula.

In fact this condition can be relaxed and we get a more general Itô formula under the weaker as-
sumption ∫ t

0

|∂xi
f(Xs)|2d〈Xi〉s < +∞, a.s. ∀t ≥ 0, ∀1 ≤ i ≤ p

(we can even deal with infinite time horizon).
But this requires to use the theory of ”local martingales”, which is more involved (see [4] and [6]).

In this course we will only deal with functions having the right integrability condition.
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Chapter 4

Lévy and Girsanov theorems

In this chapter we state and prove the theorem of Lévy and the theorem of Girsanov. The theorem of
Girsanov is of crucial importance for the forthcoming Chapter 5 (it will allow to perform a risk-neutral
change of probability measure).

4.1 Exponential martingale and theorem of Lévy

In this section some time horizon 0 < T < ∞ is fixed. A probability space (Ω,F ,P) and a filtra-
tion (Ft)0≤t≤T are given. We start with a lemma.

Lemma 4.1.1. Let X = (Xt)0≤t≤T be a martingale, satisfying E(exp( 1
2 〈X〉T )) < +∞. Then the process

Exp(X) =
(

exp(Xt− 1
2 〈X〉t)

)
0≤t≤T is a martingale, called the exponential martingale (associated to X).

Proof. By the Itô rule we get

d(exp(Xt −
1

2
〈X〉t) =

(
Exp(X)

)
t
dXt −

1

2

(
Exp(X)

)
t
d〈X〉t +

1

2

(
Exp(X)

)
t
d〈X〉t =

(
Exp(X)

)
t
dXt,

meaning that Exp(X) is the stochastic integral of itself against a martingale. The only point that is not
clear is that Exp(X) has the required integrability (could we say for example that Exp(X) ∈ Π2(X) ?),
that we were allowed to use the Itô formula and that the obtained stochastic integral is a martingale.
But the assumption E(exp( 1

2 〈X〉T )) < +∞ is here to ensure this is the case (see Proposition 3.5.12 in
[4] for details).

In the sequel we will deal with multidimensional Brownian motion (B.m.). We revisit Definition 1.4.1
for dimension d ≥ 1 in the definition below.

Definition 4.1.1. A Rd-valued process B = (Bt)0≤t≤T is called a d-dimensional (Ft)-standard Brownian
motion if it is adapted and satisfies

i) B0 = 0, P-a.s.
ii) For any 0 ≤ s < t we have Bt −Bs ∼ Nd(0, (t− s)Id).
iii) For any 0 ≤ s < t the increment Bt −Bs is independent from Fs.
iv) B is a.s. continuous.

Remark 4.1.1. If we have d independent one-dimensional (Ft)-standard Brownian motions B1, . . . , Bd,
then B = (B1, . . . , Bd)T = ((B1

t , . . . , B
d
t )T )0≤t≤T is a d-dimensional (Ft)-standard Brownian motion.

The converse is true (by projection).

The following theorem allows to identify a d-dimensional standard Brownian motion. It is originally
due to Paul Lévy (1948). In 1967 Kunita and Watanabe gave a more modern proof, using Itô rule.

Theorem 4.1.1. Let X = (X1, . . . , Xd)T be a continuous and adapted Rd-valued process, with X0 = 0.
The following statements are equivalent:

i) X is a d-dimensional (Ft)-standard Brownian motion.
ii) Each Xi is a (Ft)-martingale and we have

〈Xi, Xj〉t = 1i=j t, ∀0 ≤ t ≤ T, ∀1 ≤ i, j ≤ d.
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Proof. ”i)⇒ ii)”: Each Xi is a martingale with bracket 〈Xi, Xi〉t = t (by Remark 4.1.1, Proposition 1.4.2
and Example 2.3.1).

Let us check that 〈Xi, Xj〉 ≡ 0 for i 6= j.

Let i 6= j, and let us first establish that Xi+Xj
√

2
is a one-dimensional B.m. Indeed for any s < t the

quantity (Xi +Xj

√
2

)
(t)−

(Xi +Xj

√
2

)
(s) =

Xi
t −Xi

s +Xj
t −Xj

s√
2

is independent from Fs and is distributed as N (0, σ2) with

σ2 = Var
(Xi

t −Xi
s√

2

)
+ Var

(Xj
t −Xj

s√
2

)
=
t− s

2
+
t− s

2
= t− s

(using the fact that Xi
t −Xi

s and Xj
t −Xj

s are independent between themselves, independent from Fs
and distributed as N (0, t− s)).

Thus using Definition 2.3.1 we get for any 0 ≤ t ≤ T ,

〈Xi, Xj〉t =
1

2

[
〈Xi +Xj〉t − 〈Xi〉t − 〈Xj〉t

]
= 〈X

i +Xj

√
2
〉t −

t

2
− t

2
= t− t = 0.

”ii)⇒ i)”: The idea is to identify the law of Xt−Xs through its characteristic function (c.f.). We recall
that if Y ∼ Nd(0, θ Id) its c.f. is given by

ϕY (ξ) = E[eiξ.Y ] = e−
1
2 |ξ|

2θ, ξ ∈ Rd

(we use the notations x.y =
∑d
j=1 xjyj and |x| =

√∑d
j=1 x

2
j for any x, y ∈ Rd).

Let ξ ∈ Rd and let us consider the (complex valued) martingale iξ.X = (i
∑d
j=1 ξ

jXj
t )t, with bracket

〈iξ.X〉t = (i)2〈
d∑
j=1

ξjXj ,

d∑
l=1

ξlX l〉t = −
d∑
j=1

d∑
l=1

ξjξl〈Xj , X l〉t = −|ξ|2t.

Here we have used the bilinearity of the bracket and the assumption 〈Xi, Xj〉t = 1i=j t. In fact the result
of Lemma 4.1.1 remains true for a complex valued martingale so that we can say that Z = (Zt)0≤t≤T
defined by

Zt = exp
(
iξ.Xt +

1

2
|ξ|2t

)
, 0 ≤ t ≤ T,

is a martingale. Let now 0 ≤ s < t ≤ T and A ∈ Fs. We have

E[ 1A exp(iξ.(Xt −Xs)) ] = E[ 1AZtZ
−1
s e−

1
2 |ξ|

2(t−s) ] = e−
1
2 |ξ|

2(t−s)E[ 1AZ
−1
s Zt ].

But 1AZ
−1
s is Fs-measurable so that by definition of the conditional expectation we have E[ 1AZ

−1
s Zt ] =

E[ 1AZ
−1
s E(Zt|Fs) ] = E[ 1AZ

−1
s Zs ] = E[1A] and finally

E[ 1A exp(iξ.(Xt −Xs)) ] = e−
1
2 |ξ|

2(t−s)E[1A].

Taking A = Ω this shows that Xt − Xs ∼ Nd(0, (t − s)Id). Denoting EA(Y ) = E[1AY ]/P(A) the
expectation of a random variable Y knowing the event A ∈ Fs, this also shows that

EA[eiξ.(Xt−Xs)] = e−
1
2 |ξ|

2(t−s), ∀A ∈ Fs.

This shows that Xt −Xs is independent from Fs.

4.2 Girsanov theorem

We stay under the assumptions of Section 4.1.
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Definition 4.2.1. A probability measure P̃ on (Ω,F) is said to be absolutely continuous with respect

to P if for any A ∈ F such that P(A) = 0 we have P̃(A) = 0.

This is denoted by P̃ << P.
We say that P and P̃ are equivalent if P̃ << P and P << P̃.

Remark 4.2.1. If an event is true P-a.s. and P̃ << P, then it is true P̃-a.s.

Exercise 4.2.1. Show that if X = limPXn (i.e. Xn tends to X in probability, as n → ∞, for the

probability measure P) and P̃ << P then X = limP̃Xn.

Theorem 4.2.1 (Radon-Nykodim). There is equivalence between:

i) We have P̃ << P.

ii) There exists Z ≥ 0, with E(Z) < +∞ such that P̃(A) = EP(Z1A) for any A ∈ F .

We note Z =: dP̃dP , this is the density of P̃ with respect to P.

Proof. Cf [1], Theorem 32.2.

Definition 4.2.2. Let P̃ be a probability measure on (Ω,F). We say that P and P̃ are locally equivalent

if for all 0 ≤ t ≤ T , their restriction to Ft, denoted Pt and P̃t are equivalent. We denote

Zt :=
dP̃t
dPt

=:
dP̃
dP
|Ft
, 0 ≤ t ≤ T,

the local density of P̃ with respect to P.
For any 0 ≤ t ≤ T , and any Ft-measurable random variable Y we have

EP̃(Y ) =

∫
Ω

Y dP̃t =

∫
Ω

Y
dP̃t
dPt

dPt = EP[Y Zt]. (4.2.1)

With all these definitions we can now state the Girsanov theorem.

Theorem 4.2.2 (Girsanov). Let B = ((B1
t , . . . , B

d
t )T )0≤t≤T be a d-dimensional (Ft)-standard Brownian

motion (in particular B0 = 0) defined on (Ω,F ,P). Let X = (X1, . . . , Xd)T be an adapted process,
with Xi ∈ Π2(Bi), 1 ≤ i ≤ d and

EP
[

exp
(1

2

∫ T

0

|Xs|2ds
)]
< +∞.

Let Z = Exp
( ∫ .

0
Xs.dBs

)
be defined by

Zt = exp
(∫ t

0

Xs.dBs −
1

2

∫ t

0

|Xs|2ds
)
, 0 ≤ t ≤ T,

(we denote
∫ t

0
Xs.dBs =

∑d
i=1

∫ t
0
Xi
sdB

i
s for any t).

Define P̃ locally equivalent to P by dP̃
dP |Ft

= Zt.

Then B̃ = (B̃1, . . . , B̃d)T defined B̃it = Bit −
∫ t

0
Xi
sds, 0 ≤ t ≤ T , 1 ≤ i ≤ d is a d-dimensional

(Ft)-standard Brownian motion under P̃.

The remainder of the chapter is devoted to the proof of Theorem 4.2.2. We need two lemmas and a
proposition. We denote E = EP and Ẽ = EP̃.

Lemma 4.2.1. In the context of Theorem 4.2.2, for any 0 ≤ s < t ≤ T and any Ft-measurable random
variable Y with Ẽ|Y | < +∞, we have

ZsẼ(Y |Fs) = E[Y Zt | Fs] (a.s.)
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In other words Lemma 4.2.1 says that we have for any Ft-measurable Y

Ẽ(Y |Fs) = E
[
Y
Zt
Zs
| Fs

]
.

This gives in some sense the density that allows to compute the conditional expectation Ẽ(·|Fs) of a Ft-
measurable random variable (we have to be very cautious when saying that, because remember that

Ẽ(Y |Fs) is a random variable, not always an expectation).

Proof of Lemma 4.2.1. Let 0 ≤ s < t ≤ T . For A ∈ Fs we have

E[1AZsẼ(Y |Fs)] = Ẽ[1AẼ(Y |Fs)] = Ẽ[1AY ] = E[1AY Zt].

Here we have used at the first equality (4.2.1) and the fact that 1AẼ(Y |Fs) is Fs-measurable. At the
second equality we have used the definition of the conditional expectation. At the third inequality we
have used (4.2.1) and the fact that 1AY is Ft-measurable.

As ZsẼ(Y |Fs) is Fs-measurable the above equality shows that E[Y Zt | Fs] = ZsẼ(Y |Fs).

Now remember two possible ways to define 〈X,Y 〉 for X = M + A and Y = N + C two continuous
semimartingales. One is

〈X,Y 〉t = lim
|∆n|↓0

|P Q∆n
t (X,Y ),

the other one is 〈X,Y 〉 = 〈M,N〉 where 〈M,N〉 is the unique continuous adapted process of FV starting
from zero such that MN − 〈M,N〉 is a martingale under P (as M and N are; see Remark 1.3.3).

So one has the feeling that the bracket 〈X,Y 〉(P) depends on the underlying probability measure P
(i.e. could be altered by a change of measure) ...

Lemma 4.2.2. Let P and P̃ equivalent (or locally equivalent). Let X and Y be two semimartingales

under P. Then 〈X,Y 〉(P) = 〈X,Y 〉(P̃), P and P̃-a.s.

... this lemma says that in fact not, as long as the change of measure is equivalent.

Proof of Lemma 4.2.2. By Exercise 4.2.1 we have limP Q
∆n
t (X,Y ) = limP̃ Q

∆n
t (X,Y ), as P̃ << P. This

equality in understood in the P and P̃-almost sure sense and we have also limP Q
∆n
t (X,Y ) = 〈X,Y 〉t (P)

P-a.s. and limP̃ Q
∆n
t (X,Y ) = 〈X,Y 〉t (P̃) P̃-a.s. Therefore the result.

Proposition 4.2.1. In the context of Theorem 4.2.2 let M be a martingale under P (with M0 = 0).

Then M̃ defined by

M̃t = Mt −
∫ t

0

Xs.d〈M,B〉s

(we denote
∫ t

0
Xs.d〈M,B〉s =

∑d
i=1

∫ t
0
Xi
sd〈M,Bi〉s) is a martingale under P̃.

Proof. We have, remembering that dZt = ZtXt.dBt =
∑d
i=1 ZtX

i
tdB

i
t (see the proof of Lemma 4.1.1),

ZtM̃t =

∫ t

0

ZsdM̃s +

∫ t

0

M̃sdZs + 〈Z, M̃〉t

=

∫ t

0

ZsdMs −
d∑
i=1

∫ t

0

ZsX
i
sd〈M,Bi〉s +

d∑
i=1

∫ t

0

M̃sZsX
i
sdB

i
s +

d∑
i=1

∫ t

0

ZsX
i
sd〈M,Bi〉s

=

∫ t

0

ZsdMs +

d∑
i=1

∫ t

0

M̃sZsX
i
sdB

i
s.

Thanks to the assumption EP
[

exp
(

1
2

∫ T
0
|Xs|2ds

)]
< +∞ it is possible to proceed as if the stochastic

integrals are martingales under P (see [4] for details).
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Thus (ZtM̃t) is a martingale under P. Thus, using Lemma 4.2.1,

Ẽ[M̃t|Fs] =
1

Zs
E[M̃tZt | Fs] =

1

Zs
ZsM̃s = M̃s.

Thus M̃ is a martingale under P̃.

Proof of Theorem 4.2.2. For each 1 ≤ i ≤ d we apply Proposition 4.2.1 with M = Bi. This gives

Bit −
∫ t

0

Xs.d〈Bi, B〉s = Bit −
d∑
j=1

∫ t

0

Xj
sd〈Bi, Bj〉s = Bit −

∫ t

0

Xi
sds = B̃it,

and B̃i is a martingale under P̃ by the proposition.
It remains to check that B̃ is a d-dimensional (Ft)-standard Brownian motion under P̃, using the

theorem of Lévy. We have
〈B̃i, B̃j〉(P̃) = 〈B̃i, B̃j〉(P) = 〈Bi, Bj〉(P),

using Lemma 4.2.2 at the first equality. But B is a B.m. under P thus 〈Bi, Bj〉t (P) = 1i=jt for
any 0 ≤ t ≤ T .
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Chapter 5

Applications to Finance, Stochastic
Differential Equations and link with
Partial Differential Equations

In this chapter we present the applications of stochastic calculus to continuous time financial models. We
also illustrate the link between Stochastic Differential Equations (SDE) and Partial Differential Equations
(PDE). We are inspired mostly by [7].

5.1 Introduction and motivations, one-dimensional Black and
Scholes model

Some time horizon 0 < T < ∞ is fixed. A probability space (Ω,F ,P) and a filtration (Ft)0≤t≤T are
given.

In the sequel we will have one risky asset (or stock) of price S(t) at time 0 ≤ t ≤ T (the risky asset
can be an action, a baril of petrol....). One assumes that the process S follows the Black-Scholes SDE

dS(t) = µS(t)dt+ σS(t)dWt, S0 = x (5.1.1)

that we have already encountered in Example 3.2.1. In (5.1.1) the process W is some 1D (Ft)-Brownian
motion defined on (Ω,F ,P), µ ∈ R is the trend of the model and σ > 0 is its volatility. At the end of the
forthcoming Section 5.2 we will have more informations about (5.1.1): in particular its existing solution
is unique and remains strictly positive as long as x > 0.

In addition to the risky asset S we will have a non-risky asset (or bond) of price S0(t) at time
0 ≤ t ≤ T . Its dynamic is given by

dS0(t) = rS0(t)dt, S0(0) = 1,

where r > 0 is the short interest rate. Note that for simplicity r is constant so that the dynamic of S0 is
deterministic. Note that S0(t) = ert, 0 ≤ t ≤ T (it is immediate to solve the involved ordinary differential
equation). The non-risky asset will help us to modelize the money we put at or borrow from the bank
(for example if one borrows 1 euro at time t = 0 one has to give back S0(T ) = erT euros at time t = T ).

Our object of interest is a derivative product (or ”derivative security”, or ”option”) on the risky
asset S.

Example 5.1.1. We start with the classical example of the European Call option. This option has a
maturity T (for simplicity this maturity is our time horizon T ). It has a strike K > 0.

It has a buyer (owner) and a seller: at time t = 0 the buyer gives C0 euros to the seller in exchange
of the option.

This option gives the right to its owner to buy the risky asset at price K at time t = T .
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At time T there are only two possible situations: if S(T ) > K, it is interesting for the owner of the
option to use this right; he may indeed buy the asset at price K, and immediately sell it at its market
price S(T ); he gets then a benefit of S(T )−K euros.

If S(T ) ≤ K, it is not interesting to use the option. We say that the option is dead. The owner gets
nothing.

If we sum up both situations in one formula the European Call option pays (S(T )−K)+ euros to its
owner at maturity t = T .

Now if I am the seller of the option two questions arise:
i) At which ”fair price” C0 do I sell the option ? (at time t = 0). In other words what money do I

claim to the buyer at time t = 0 in exchange to the fact that I promise to give him (S(T )−K)+ euros
at t = T ? (Question of Pricing)

ii) Once I have received the C0 euros at time t = 0, what do I do with this money to be (almost) sure
to have (S(T ) −K)+ at my disposal at time t = T ? (in oder to be able to provide this to the owner)
(Question of Hedging)

Concerning Point i) we will see that

C0 = EQ[e−rT (S(T )−K)+] (5.1.2)

where Q is some ”risk-neutral probability measure” that we will exhibit in the sequel (Section 5.4).
But in fact Point i) is not separable from Point ii): we will solve both issues at the same time.

5.2 A digression on SDE

We have b : [0, T ]× Rd → Rd (the ”drift term”) and σ : [0, T ]× Rd → Rd×m (the ”diffusion term”).
Let B a (Ft)-Brownian motion of dimension m, defined on (Ω,F ,P). A strong solution of the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = x (5.2.1)

is an a.s. continuous process X satisfying
i) X is (Ft)-adapted.
ii) P(X0 = x) = 1.

iii) For any 1 ≤ i ≤ d, any 1 ≤ j ≤ m, E
∫ T

0
{|bi(s,Xs) + σ2

ij(s,Xs)}ds < ∞ (this is to ensure that
the integrals in Point iv) are correctly defined).

iv) For any 1 ≤ i ≤ d and any 0 ≤ t ≤ T we have

Xi
t = xi +

∫ t

0

bi(s,Xs)ds+

m∑
j=1

∫ t

0

σij(s,Xs)dB
j
s .

Concerning SDEs we have this kind of result, due again to Itô.

Theorem 5.2.1. Assume we have

|b(t, x)− b(t, y)|+
( d∑
i=1

m∑
j=1

(σij(t, x)− σij(t, y))2
)1/2

≤ K|x− y|, ∀x, y ∈ Rd, ∀0 ≤ t ≤ T

(this means that b and σ are globally Lipschitz) and

|b(t, x)|2 +

d∑
i=1

m∑
j=1

σ2
ij(t, x) ≤ K2(1 + |x|2), ∀x ∈ Rd, ∀0 ≤ t ≤ T

(this is some ”linear growth condition”), for some constant 0 < K <∞.
Then (5.2.1) has a unique strong solution.

Proof. See Theorems 5.2.5 and 5.2.9 in [4].
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Example 5.2.1. The Black-Scholes SDE (5.1.1) writes

dS(t) = σ̄(S(t))dWt + b(S(t))dt

with the functions σ̄(x) = σx and b(x) = µx.
We immediately see that the assumptions of Theorem 5.2.1 are satisfied. Thus we see that a solution

to (5.1.1) exists and is unique. In fact we had already seen the existence in Example 3.2.1. Now we know
that the sole solution to (5.1.1) is given by

S(t) = x exp
(
(µ− σ2

2
)t+ σWt

)
(this is formula (3.2.5) in Example 3.2.1). Note that this implies that this solution is strictlty positive
at any time, as long as x > 0.

5.3 Self-financing portfolio

Let (H(t)) and (H0(t)) be adapted processes.
We consider a strategy (or portfolio) constituted at time 0 ≤ t ≤ T with H(t) shares of risky asset

and H0(t) shares of non-risky asset.
The value at time 0 ≤ t ≤ T of such a portfolio is

Vt(H) = H(t)S(t) +H0(t)S0(t).

The process (Vt(H))0≤t≤T is sometimes called the wealth process.

Definition 5.3.1. We say that (H,H0)T is a self-financing strategy if

dVt(H) = H(t)dS(t) +H0(t)dS0(t).

Where does this definition come from, and what does ”self-financing” mean ?
Imagine that H and H0 do not evolve permanently (continuously) but are piecewise constant, for a

fixed randomness ω. In fact imagine that they are simple processes (like in Chapter 3).
That is we have a time grid 0 = t0 < t1 < . . . < tn = T . At time ti we decide the quantity H(ti+1)

of risky asset and the quantity H0(ti+1) of non-risky asset that will be held in the portfolio on time
interval (ti, ti+1], i.e. H(t) = H(ti+1) and H0(t) = H0(ti+1) for any t ∈ (ti, ti+1]. Note that H(ti+1) and
H0(ti+1) are Fti-measurable.

We want that when we take a new position in the portfolio (that is we pass from (H,H0)T (ti) to
(H,H0)T (ti+1); we say that we rebalance the portfolio) its global value remains the same. That is to
say:

H(ti)S(ti) +H0(ti)S0(ti) = H(ti+1)S(ti) +H0(ti+1)S0(ti) (5.3.1)

(in the above expression the left hand side is the value of the portfolio just before rebalancing and time ti,
and the right hand side is its value just after rebalancing and time ti).

This traducts the fact that the portfolio value evolves just because of the value of S, the capitalization
at rate r (contained in S0) and our choice of H and H0: we get no money from outside and do not drop
any; the portfolio is self-financing.

From (5.3.1) we have

Vti+1
(H)− Vti(H) = H(ti+1)S(ti+1) +H0(ti+1)S0(ti+1)−H(ti)S(ti)−H0(ti)S0(ti)

= H(ti+1)S(ti+1) +H0(ti+1)S0(ti+1)−H(ti+1)S(ti) +H0(ti+1)S0(ti)

= H(ti+1)(S(ti+1)− S(ti)) +H0(ti+1)(S0(ti+1)− S0(ti+1))

= H(ti+1)∆S(ti+1) +H0(ti+1)∆S0(ti+1)

Therefore Definition 5.3.1 in infinitesimal time.
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Definition 5.3.2. Let f : R∗+ → R such that f(ST ) is square integrable.
The price at time 0 ≤ t ≤ T of a derivative product paying f(S(T )) at maturity T is the value Vt(H)

of a self-financing strategy that replicates the pay-off f(S(T )), i.e. such that VT (H) = f(S(T )) P-a.s.

Remark 5.3.1. This give an answer to Question i) and ii) at the end of Section 5.1: if I am given V0(H)
euros at time t = 0, by investing this money in a self-financing replicating portfolio containing shares of
S, and shares of S0 (that is borrowing if necessary from the bank, or putting money at the bank), I will
be sure to have f(S(T )) euros at time t = T .

Remark 5.3.2. The quantities H(t) and H0(t) are signed (if the sign is negative that means that we
have a debt, in the risky asset, or the bond).

Consider (H,H0)T a self-financing strategy. We have

dVt(H) = H(t)dS(t) +H0(t)dS0(t)

= H(t)dS(t) +H0(t)rS0(t)dt

= r(Vt(H)−H(t)S(t))dt+H(t)dS(t)

= rVt(H)dt+H(t)(dS(t)− rS(t)dt).

(5.3.2)

Examine now the discounted wealth process (e−rtVt) (here e−rt = 1/S0(t) is the discount factor and we
have written Vt ≡ Vt(H)).

We have, using Itô rule, the fact that (e−rt) is of finite variation, and (5.3.2),

d(e−rtVt) = −re−rtVtdt+ e−rtdVt + 0

= −re−rtVtdt+ re−rtVtdt+H(t)e−rt(dS(t)− rS(t)dt).

= H(t)d
(
e−rtS(t)

)
,

(5.3.3)

by noticing that

d
(
e−rtS(t)

)
= −re−rtS(t)dt+ e−rtdS(t) = e−rt(dS(t)− rS(t)dt).

Imagine now that we find a probability measure Q on (Ω,F) under which (e−rtS(t)) is a martingale.
Assuming H ∈ Π2(er·S(·)) we will have that (e−rtVt) is a martingale under Q. Thus if the strategy

is replicating we have

e−rtVt = EQ[e−rTVT | Ft] = EQ[e−rT f(S(T )), | Ft], 0 ≤ t ≤ T.

Thus

Vt = EQ[e−r(T−t)f(S(T ))| Ft] (5.3.4)

for any time 0 ≤ t ≤ T . In particular at time t = 0 we have

V0 = EQ[e−rT f(S(T ))],

this is the result announced in (5.1.2).

We are now seeking for Q (Section 5.4) and will aim at constructing a self-financing replicating
portfolio (Section 5.5).

5.4 Risk -neutral probability measure

Definition 5.4.1. We say that a probability measure Q on (Ω,F) is risk-neutral if it is locally equivalent
to P, and if the discounted risky asset price process

(
e−rtS(t)

)
0≤t≤T is a martingale under Q.
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It is quite easy to construct Q in the 1D Black-Scholes model. Remember that we have d
(
e−rtS(t)

)
=

e−rt(dS(t)− rS(t)dt), thus

d
(
e−rtS(t)

)
= e−rt(µS(t)dt+ σS(t)dWt − rS(t)dt) = e−rtS(t)σ

(
dWt +

µ− r
σ

dt
)
.

We have µ−r
σ < ∞ and thus the assumption EP

[
exp

(
1
2

∫ T
0
|Xs|2ds

)]
< +∞ of Theorem 4.2.2 is imme-

diately satisfied with X ≡ −µ−rσ .

Thus W̃ =
(
Wt + µ−r

σ t
)

0≤t≤T is a (Ft)-B.m. under Q defined by

dQ
dP
|Ft

= exp
(
− µ− r

σ
Wt −

1

2

(µ− r
σ

)2
t
)
.

Thus we have d
(
e−rtS(t)

)
= e−rtS(t)σdW̃t and (e−rtS(t)) is a (Ft) martingale under Q (one could check

that (e−rtS(t)σ) is in Π2(W̃ ).

5.5 Construction of the self financing replicating portfolio, pric-
ing and hedging formulae, link with PDE

To construct the portfolio of interest, one could use a martingale representation theorem (cf Theorem 6.1.1
in the Appendix).

One can also use PDE arguments: one chooses this path to highlight the link between SDE and PDE.

Proposition 5.5.1. For any continuous function f : R∗+ → R satisfying |f(ex)| ≤ K ′eK|x|
2

, ∀x ∈ R,

with K < σ2

8T , there is a unique solution v ∈ C([0, T ]× R∗+) ∩ C1,2([0, T )× R∗+) to the PDE
1
2σ

2x2∂2
xxv(t, x) + rx∂xv(t, x) + ∂tv(t, x)− rv(t, x) = 0, ∀(t, x) ∈ [0, T )× R∗+,

v(T, x) = f(x), ∀x ∈ R∗+.
(5.5.1)

Proof. See the appendix. We use a log-change of variable trick, to deal with the fact that the coeffi-
cient x 7→ σ2x2 is not elliptic, nor bounded and that x 7→ rx is not bounded.

Let us now compute dv(t, S(t)) using Itô rule. We get

dv(t, S(t)) = ∂tv(t, S(t))dt+ ∂xv(t, S(t))dS(t) +
1

2
∂2
xxv(t, S(t))d〈S〉t + 0

= ∂tv(t, S(t))dt+
1

2
∂2
xxv(t, S(t))σ2S2(t)dt+ ∂xv(t, S(t))dS(t)

= rv(t, S(t))dt− rS(t)∂xv(t, S(t))dt+ ∂xv(t, S(t))dS(t)

= rv(t, S(t))dt+ ∂xv(t, S(t))[dS(t)− rS(t)dt]

(here we have used (5.5.1) at the third line).
That is to say the process

(
v(t, S(t))

)
satisfies (5.3.2) with H(t) = ∂xv(t, S(t)). For clarity let us do

again the computations of (5.3.2), but in the reverse sense, settingH0(t) =
(
v(t, S(t))−∂xv(t, S(t))S(t)

)
/S0(t).

We have
dv(t, S(t)) = rv(t, S(t))dt+ ∂xv(t, S(t))[dS(t)− rS(t)dt]

= r
(
v(t, S(t))− ∂xv(t, S(t))S(t)

)
dt+ ∂xv(t, S(t))dS(t)

= ∂xv(t, S(t))dS(t) +H0(t)rS0(t)dt

= ∂xv(t, S(t))dS(t) +H0(t)dS0(t).

41



Here we have used the definition of H0(t) at the third line and dS0(t) = rS0(t)dt at the fourth line. Then
the strategy defined by H(t) = ∂xv(t, S(t)) and H0(t) =

(
v(t, S(t)) − ∂xv(t, S(t))S(t)

)
/S0(t), which is

such that Vt(H) = H(t)S(t) +H0(t)S0(t) = v(t, S(t)), 0 ≤ t ≤ T is self-financing. In addition it satisfies

VT (H) = v(T, S(T )) = f(S(T )),

that is to say it is replicating.
Thus the announced program is accomplished and the formulae (5.1.2) and (5.3.4) are valid: the price

at time 0 ≤ t ≤ T of the derivative product of interest is

v(t, S(t)) = EQ[e−r(T−t)f(S(T ))| Ft]. (5.5.2)

Remark 5.5.1. Let us check that we have (5.5.2); but by direct martingale computations. We have,
using the same computations than in (5.3.3) - and the forthcoming formula (5.5.3),

d
(
e−rtv(t, S(t))

)
= ∂xv(t, S(t))e−rt

(
dS(t)− rS(t)dt

)
= ∂xv(t, S(t))e−rtσS(t) dW̃t.

This yields

e−rsv(s, S(s)) = e−rtv(t, S(t)) +

∫ s

t

e−ru∂xv(u, S(u))σS(u) dW̃u,

for any 0 ≤ t < s < T . The r.v. e−rtv(t, S(t)) is Ft-measurable and
( ∫ s

t
e−ru∂xv(u, S(u))σS(u) dW̃u

)
t≤s<T

is a (Ft) martingale under Q (we admit e−r·∂xv(·, S(·))σS(·) ∈ Π2(W̃ )), with value 0 at time t. Taking
then the conditional expectation EQ[ · | Ft] of the above expression we get

EQ[e−rsv(s, S(s)) | Ft] = e−rtv(t, S(t))

Using dominated convergence it is possible to prove that EQ[e−rsv(s, S(s)) | Ft] converges to EQ[e−rT f(S(T )) | Ft]
when s→ T . This yields (5.5.2).

One step further and conclusion of the section. Remember that W̃ is (Ft)-Markov under Q
(Proposition 1.4.1). A consequence is stated at the end of the following exercise.

Exercise 5.5.1. 1) Show that

dS(t) = rS(t)dt+ σS(t)dW̃t. (5.5.3)

2) Show that S is a (Ft)-Markov process under Q (hint: one may use the explicit solution of (5.5.3)).

Thus the price at time 0 ≤ t ≤ T of the process of interest is given by

v(t, S(t)) = EQ[e−r(T−t)f(S(T ))|S(t)].

So that the number of shares of risky asset at time 0 ≤ t ≤ T in the corresponding strategy is

H(t) = ∂xv(t, S(t)) = ∂xEQ[e−r(T−t)f(S(T ))|S(t) = x]|x=S(t).

For conciseness the RHS is often denoted ∂S(t)EQ[e−r(T−t)f(S(T ))|S(t)]. This is called the delta of the
option.

Thus we have answered the questions of pricing and hedging (questions i) and ii) and the end of
Section 5.1): they ”reduce” to the question of computing EQ[e−r(T−t)f(S(T ))|S(t)] (for the price) and
∂S(t)EQ[e−r(T−t)f(S(T ))|S(t)] (for the hedge).
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Chapter 6

Appendix

This appendix gathers the proofs of various technical results, that have been used in the previous chapters.

6.1 Functions of finite variation

Proposition 6.1.1. If a function f : [a, b]→ R is of finite variation, then f = f1 − f2 where f1 and f2

are two increasing functions.

Proof. We set V f(x) := V[a,x](f) for any x ∈ [a, b] and consider the function V f . We have f =
f + V f − V f . We will check that V f and f + V f are increasing functions.

Let a ≤ x < y ≤ b. Let (xi)
I
i=0 a subdivision of [a, x] (i.e. a = x0 < x1 < . . . < xI = x),

then (xi)
I
i=0 ∪ {y} is a subdivision of [a, y]. Thus by definition of V f(y) we have

I∑
i=1

|f(xi)− f(xi−1)|+ |f(y)− f(x)| ≤ V f(y),

and then
V f(x) + |f(y)− f(x)| ≤ V f(y)

(using this time the definition of V f(x) and the fact that the supremum is the smallest upper bound).
We thus get

|f(y)− f(x)| ≤ V f(y)− V f(x). (6.1.1)

Note that this show that V f is increasing. Now from (6.1.1) one gets

f(x)− f(y) ≤ |f(y)− f(x)| ≤ V f(y)− V f(x)

and then
f(x) + V f(x) ≤ f(y) + V f(y).

We are done.

Proof of Proposition 5.5.1. Consider the PDE
1
2σ

2∂2
yy ṽ(t, y) + (r − σ2

2 )∂y ṽ(t, y) + ∂tṽ(t, y)− rṽ(t, x) = 0, ∀(t, x) ∈ [0, T )× R,

ṽ(T, y) = f̃(y), ∀x ∈ R,
(6.1.2)

with f̃(y) = f(ey) for all y ∈ R.

The (constant) coefficients 1
2σ

2, (r− σ2

2 ) and r are obviously bounded. The coefficient 1
2σ

2 is uniformly

strictly elliptic (as it is strictly positive !). The terminal condition f̃ satisfies |f̃(y)| ≤ K ′eK|y|2 , ∀y ∈ R,
with K ≤ σ2/8T .
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Thus there is a unique solution ṽ ∈ C([0, T ]×R)∩C1,2([0, T )×R) to (6.1.2) (this is a classical result
on parabolic PDEs; see [3], in particular Theorem 1.12 and 1.16 therein).

Then it suffices to set v(t, x) = ṽ(t, log(x)) to get a solution of (5.5.1). Indeed, using ṽ(t, y) = v(t, ey),
and then ∂y ṽ(t, y) = ey∂xv(t, ey) and ∂2

yy ṽ(t, y) = ey∂xv(t, ey) + e2y∂2
xxv(t, ey) one gets

0 = 1
2σ

2∂2
yy ṽ(t, y) + (r − σ2

2 )∂y ṽ(t, y) + ∂tṽ(t, y)− rṽ(t, x)

= 1
2σ

2
(
ey∂xv(t, ey) + e2y∂2

xxv(t, ey)
)

+ (r − σ2

2 )ey∂xv(t, ey) + ∂tv(t, ey)− rv(t, ey)

= 1
2σ

2(ey)2∂2
xxv(t, ey) + rey∂xv(t, ey) + ∂tv(t, ey)− rv(t, ey)

for any y ∈ R, any t ∈ [0, T ). Therefore the first line of (5.5.1), by bijection. The terminal condition
v(T, x) = f̃(log(x)) = f(x), x ∈ R∗+ is easily checked. Once this solution v(t, x) has been constructed it
is easy to check it is unique, using the uniqueness of ṽ and bijection arguments.

Theorem 6.1.1 (Brownian martingale representation theorem). Let B(t) a r-dimensional Brownian
motion defined on some probability space (E, E , P ) and (Gt) its natural filtration. If (N(t)) is a (Gt)-
martingale under P , with EP |N(t)|2 <∞ for any t, there exist unique adapted processes Γj(t), 1 ≤ j ≤ r,
satisfying Γj ∈ Π2(Bj) for all 1 ≤ j ≤ d, s.t.,

∀t, N(t) = N(0) +

r∑
j=1

∫ t

0

Γj(s)dBj(s).

Proof. See Theorem V.3.5 in [6].
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