Detection of dependence patterns with delay

J. Chevallier T. Laloë

LJAD University of Nice

Université Nice Sophia Antipolis

Journées de la SFdS

4 Juin 2015
Biological context

- **Neural network:** Interacting cells.
- **Information transport via electric pulses:** action potentials.
Biological context

- Neural network: Interacting cells.
- Information transport via electric pulses: action potentials.

After preprocessing, we dispose of M trials of simultaneously recorded spike trains.
- The synchronization phenomenon can occur during sensory-motor tasks.
- The repetition of a given task may give birth to neuronal assemblies.

Goal

Detection of synchronizations.
Statistical analysis

- Cross-correlogram (Perkel et al., '67).
- Peristimulus time histogram (PSTH, (Aertsen et al., '89)).
Statistical analysis

- Cross-correlogram (Perkel et al., '67).
- Peristimulus time histogram (PSTH, (Aertsen et al., '89)).
- Unitary events (Grün, '96).
Cross-correlogram (Perkel et al., '67).
Peristimulus time histogram (PSTH, (Aertsen et al., '89)).
Unitary events (Grün, '96).

UE method
- Unitary event: spike synchrony that recurs more often than expected.
- The test statistic is based on the *number of coincidences*.
 - Introduced in the PhD thesis of S. Grün ('96).
 - Applied to time discrete data.
Statistical analysis

- Cross-correlogram (Perkel et al., '67).
- Peristimulus time histogram (PSTH, (Aertsen et al., '89)).
- Unitary events (Grün, '96).

UE method

- Unitary event: spike synchrony that recurs more often than expected.
- The test statistic is based on the *number of coincidences*.
 - Introduced in the PhD thesis of S. Grün ('96).
 - Applied to time discrete data.

GAUE method for two neurons (Tuleau-Malot et al., 2014)

- Notion of coincidence transposed to the continuous time framework.
- Independence test between Poisson processes based on this new notion.
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{I} \subset \{1, \ldots, n\}$ is a set of indices.
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{J} \subset \{1, \ldots, n\}$ is a set of indices.

Definition

The *delayed coincidence count* of delay $\delta < (b - a)/2$ is

$$X_J := \int_{[a,b]^J} 1_{\max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \leq \delta} N_{i_1}(dx_1) \ldots N_{i_J}(dx_J).$$

Neuron 1
Neuron 2
Neuron 3

\[a \quad \quad b \]
Notion of delayed coincidences

- \(N_1, \ldots, N_n \) are point processes on \([a, b]\).
- \(J \subset \{1, \ldots, n\} \) is a set of indices.

Definition

The *delayed coincidence count* of delay \(\delta < (b - a)/2 \) is

\[
X_J := \int_{[a,b]^J} 1_{\max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \leq \delta} N_{i_1}(dx_1) \cdots N_{i_J}(dx_J).
\]
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{J} \subset \{1, \ldots, n\}$ is a set of indices.

Definition

The *delayed coincidence count* of delay $\delta < (b - a)/2$ is

$$X_{\mathcal{J}} := \int_{[a,b]^J} 1 \left| \max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \right| \leq \delta N_{i_1} (dx_1) \ldots N_{i_J} (dx_J).$$
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{J} \subset \{1, \ldots, n\}$ is a set of indices.

Definition

The *delayed coincidence count* of delay $\delta < (b - a)/2$ is

$$X_{\mathcal{J}} := \int_{[a,b]^J} 1_{\max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \leq \delta} N_{i_1}(dx_1) \cdots N_{i_J}(dx_J).$$

Neuron 1
Neuron 2
Neuron 3

$\mathcal{J} \circ \{1, \ldots, n\}$ is a set of indices.
Notion of delayed coincidences

- \(N_1, \ldots, N_n \) are point processes on \([a, b]\).
- \(\mathcal{J} \subset \{1, \ldots, n\} \) is a set of indices.

Definition

The *delayed coincidence count* of delay \(\delta < (b-a)/2 \) is

\[
X_{\mathcal{J}} := \int_{[a,b]^J} 1 \left| \max_{i \in \{1,\ldots,J\}} x_i - \min_{i \in \{1,\ldots,J\}} x_i \right| \leq \delta \prod_{i \in \mathcal{J}} N_i (dx_i)
\]
Notion of delayed coincidences

- \(N_1, \ldots, N_n \) are point processes on \([a, b]\).
- \(J \subset \{1, \ldots, n\} \) is a set of indices.

Definition

The *delayed coincidence count* of delay \(\delta < (b - a)/2 \) is

\[
X_J := \int_{[a,b]^J} 1_{\left| \max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \right| \leq \delta} N_{i_1}(dx_1) \ldots N_{i_J}(dx_J).
\]
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{I} \subset \{1, \ldots, n\}$ is a set of indices.

Definition

The *delayed coincidence count* of delay $\delta < (b - a)/2$ is

$$X_{\mathcal{I}} := \int_{[a, b]^\mathcal{I}} 1_{\max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \leq \delta} N_{i_1}(dx_1) \cdots N_{i_J}(dx_J).$$

Diagram

- Neuron 1
- Neuron 2
- Neuron 3

a b
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{J} \subset \{1, \ldots, n\}$ is a set of indices.

Definition

The *delayed coincidence count* of delay $\delta < (b - a)/2$ is

$$X_{\mathcal{J}} := \int_{[a,b]^J} 1_{\max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \leq \delta} N_{i_1}(dx_1) \cdots N_{i_J}(dx_J).$$
Notion of delayed coincidences

- \(N_1, \ldots, N_n \) are point processes on \([a, b]\).
- \(\mathcal{J} \subset \{1, \ldots, n\} \) is a set of indices.

Definition

The *delayed coincidence count* of delay \(\delta < (b - a)/2 \) is

\[
X_{\mathcal{J}} := \int_{[a,b]^J} \mathbf{1}_{\max_{i \in \{1, \ldots, J\}} x_i - \min_{i \in \{1, \ldots, J\}} x_i \leq \delta} N_{i_1}(dx_1) \cdots N_{i_J}(dx_J).
\]
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{J} \subset \{1, \ldots, n\}$ is a set of indices.

Definition

The general coincidence count is

$$X_{\mathcal{J}} := \int_{[a,b]^J} c(x_1, \ldots, x_J) \ N_{i_1}(dx_1) \cdots N_{i_J}(dx_J).$$
Notion of delayed coincidences

- N_1, \ldots, N_n are point processes on $[a, b]$.
- $\mathcal{J} \subset \{1, \ldots, n\}$ is a set of indices.

Definition

The *general coincidence count* is

$$X_{\mathcal{J}} := \int_{[a,b]^J} c(x_1, \ldots, x_J) \ N_{i_1}(dx_1) \cdots N_{i_J}(dx_J).$$

Goal: Test \mathcal{H}_0 against \mathcal{H}_1

$$\begin{cases}
\mathcal{H}_0 : \text{ The processes } N_j, j \in \mathcal{J} \text{ are independent;} \\
\mathcal{H}_1 : \text{ The processes } N_j, j \in \mathcal{J} \text{ are not independent.}
\end{cases}$$
Asymptotic properties

Let $(N_1^{(k)}, \ldots, N_n^{(k)})_{1 \leq k \leq M}$ denote a M-sample. We compare two estimates.

- CLT $\Rightarrow \sqrt{M} \frac{\bar{m} - \mathbb{E}[X_{\mathcal{J}}]}{\sqrt{\text{Var}(X_{\mathcal{J}})}} \xrightarrow{M \to \infty} \mathcal{N}(0,1)$, where $\bar{m} = \frac{1}{M} \sum_{k=1}^{M} X_{\mathcal{J}}^{(k)}$.
Asymptotic properties

Let \((N_1^{(k)}, \ldots, N_n^{(k)})_{1 \leq k \leq M}\) denote a \(M\)-sample. We compare two estimates.

- CLT \(\Rightarrow \sqrt{M} \frac{\bar{m} - \mathbb{E}[X_J]}{\sqrt{\text{Var}(X_J)}} \xrightarrow{M \to \infty} N(0, 1)\), where \(\bar{m} = \frac{1}{M} \sum_{k=1}^{M} X_J^{(k)}\).

- If \(N_1, \ldots, N_n\) are Poisson processes with intensities \(\lambda_1, \ldots, \lambda_n\), then
 \[
 \begin{cases}
 \mathbb{E}[X_J] = m_0((\lambda_i)_i) \\
 \text{Var}(X_J) = \nu_0((\lambda_i)_i)
 \end{cases}
 \text{ under } \mathcal{H}_0.
 \]

- Let us denote
 \[
 \hat{\lambda}_i := \frac{1}{M} \sum_{k=1}^{M} \frac{N_i^{(k)}([a, b])}{b - a}
 \quad \text{and} \quad
 \begin{cases}
 \hat{m}_0 = m_0((\hat{\lambda}_i)_i) \\
 \hat{\nu}_0 = \nu_0((\hat{\lambda}_i)_i).
 \end{cases}
 \]

- Plug-in step (delta method + Slutsky) \(\Rightarrow \sqrt{M} \frac{\bar{m} - \hat{m}_0}{\hat{s}^2} \xrightarrow{M \to \infty, \mathcal{H}_0} N(0, 1)\) where
 \[
 \hat{s}^2 = \hat{\nu}_0 - (b - a)^{-1} \hat{m}_0^2 \left(\sum_{j \in J} \hat{\lambda}_j^{-1} \right).
 \]
Definition

Denote \(z_\alpha \) the \(\alpha \)-quantile of the standard Gaussian distribution. Then the symmetric test \(\Delta_\alpha \) rejects \(H_0 \) when \(\bar{m} \) and \(\hat{m}_0 \) are too different, that is when

\[
\left| \sqrt{M} \frac{(\bar{m} - \hat{m}_0)}{\sqrt{\hat{\sigma}^2}} \right| > z_{1-\alpha/2}.
\]

Theorem

If \(N_1, \ldots, N_n \) are homogeneous Poisson processes, the test \(\Delta_\alpha \) is of asymptotic level \(\alpha \).
Simulation procedure

1. Generate a set of random parameters \((b - a, (\lambda_i)_i)\) according to the appropriate Framework;
2. Use this set (and \(\delta = 10\text{ms}\)) to generate \(M\) trials;
3. Compute the different statistics;
4. Repeat steps 1 to 3 a thousand times.
- $n = 4$ neurons. $I = \{1, 2, 3, 4\}$;
- $b - a \sim \mathcal{U}([0.2, 0.4])$;
- Independent intensities. $\lambda_i \sim \mathcal{U}([8, 20\text{Hz}])$;
- $M = 50$ (Figure C).
Add an injection process \tilde{N}. Intensity: 0.3Hz.

$\alpha = 0.05$.

$M = 50$ (Figure B).
Hawkes processes ('71)

- More realistic than Poisson processes (Goodness of fit tests, Reynaud-Bouret et al., '14).
Hawkes processes ('71)

- More realistic than Poisson processes (Goodness of fit tests, Reynaud-Bouret et al., '14).

- Form of the intensity:

\[
\lambda_t^j = \max \left(0, \mu_j + \sum_{i=1}^{n} \int_{s<t} h_{ij}(t-s) N^j_i(ds) \right).
\]

- Spontaneous rate \(\mu_j \geq 0 \).

- Interaction function \(h_{ij} \): influence of neuron \(i \) over neuron \(j \).
 - Either excitatory or inhibitory phenomena.
 - Strict refractory period. \((h_{ii} \ll 0) \)
- $n = 4$ neurons. $\mathcal{J} = \{1, 2, 3, 4\}$;
- $b - a \sim \mathcal{U}([0.2, 0.4])$;
- Independent spontaneous intensities. $\mu_i \sim \mathcal{U}([8, 20\text{Hz}])$;
- Auto-interaction functions h_{ii} to model refractory period of 3ms.
- $M = 50$ (Figure C).
Add interaction functions according to the graph. Range: 5ms.

- $\alpha = 0.05$.
- $M = 50$ (Figure B).
Simulations

Rate of dependence detection
Overview

- Independence test over any subset of \(n \) neurons.
- Multiple testing over the subsets.
Overview

- Independence test over any subset of n neurons.
- Multiple testing over the subsets.

Outlook:
- Find the asymptotic for Hawkes processes.
- R package.