Spiking neural models: from point processes to partial differential equations.

Julien Chevallier
Co-workers: M. J. Càceres, M. Doumic and P. Reynaud-Bouret

LJAD University of Nice

GT Maths bio et santé
LJLL - Paris

2015/11/09
Outline

1. Introduction

2. A key tool: The thinning procedure

3. First approach: Mathematical expectation

4. Second approach: Mean-field interactions
1 Introduction
 - Neurobiologic context
 - Microscopic modelling
 - Macroscopic modelling

2 A key tool: The thinning procedure

3 First approach: Mathematical expectation

4 Second approach: Mean-field interactions
Biological context

- **Action potential**: brief and stereotyped phenomenon (*spike*).
- **Physiological constraint**: refractory period.
- **Model** interacting spiking neurons.
Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \(\mathbb{R} \) or \(\mathbb{R}_+ \)).

- Point process: \(N = \{ T_i, i \in \mathbb{Z} \} \) s.t. \(\cdots < T_0 \leq 0 < T_1 < \cdots \).
- Point measure: \(N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt) \). Hence, \(\int f(t) N(dt) = \sum_{i \in \mathbb{Z}} f(T_i) \).
Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\cdots < T_0 \leq 0 < T_1 < \cdots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.
- Age process: $(S_{t-})_{t \geq 0}$.

Age = delay since last spike.
Microscopic modelling

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\cdots < T_0 \leq 0 < T_1 < \cdots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.
- Age process: $(S_{t-})_{t \geq 0}$.

Stochastic intensity

- Heuristically,
 \[
 \lambda_t = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \mathbb{P} \left(N([t, t+\Delta t]) = 1 \mid \mathcal{F}_{t-}^N \right),
 \]
 where \mathcal{F}_{t-}^N denotes the history of N before time t.
- Local behaviour: probability to find a new spike.
- May depend on the past (e.g. refractory period, aftershocks).
Some classical point processes in neuroscience

- Poisson process: $\lambda_t = \lambda(t)$ (deterministic, no refractory period).
Some classical point processes in neuroscience

- **Poisson process**: $\lambda_t = \lambda(t)$ (deterministic, no refractory period).
- **Renewal process**: $\lambda_t = f(S_{t^-}) \Leftrightarrow$ i.i.d. ISIs. (refractory period)

![Diagram of Poisson and Renewal processes](attachment:image.png)
Some classical point processes in neuroscience

- Poisson process: \(\lambda_t = \lambda(t) \) (deterministic, no refractory period).
- Renewal process: \(\lambda_t = f(S_t^-) \iff \text{i.i.d. ISIs. (refractory period)} \)

 ![Diagram of renewal process with ISIs](image)

- Linear Hawkes process: \(\lambda_t = \mu + \int_{-\infty}^{t^-} h(t-x)N(dx) \quad h \geq 0 \)
Some classical point processes in neuroscience

- **Poisson process**: $\lambda_t = \lambda(t)$ (deterministic, no refractory period).

- **Renewal process**: $\lambda_t = f(S_{t-}) \Leftrightarrow$ i.i.d. ISIs. (refractory period)

- **Linear Hawkes process**: $\lambda_t = \mu + \int_{-\infty}^{t-} h(t-x)N(dx) \quad h \geq 0$

 $= \mu + \sum_{V \in N, V < t} h(t-V)$.
Age structured equations (K. Pakdaman, B. Perthame, D. Salort, 2010)

- Age = delay since last spike.
- \(n(t, s) = \begin{cases}
 \text{probability density of finding a neuron with age } s \text{ at time } t. \\
 \text{ratio of the neural population with age } s \text{ at time } t.
\end{cases} \)

\[
\begin{align*}
\frac{\partial n(t, s)}{\partial t} + \frac{\partial n(t, s)}{\partial s} + p(s, X(t)) n(t, s) &= 0 \\
n(t, 0) &= \int_{0}^{+\infty} p(s, X(t)) n(t, s) \, ds.
\end{align*}
\] (PPS)
Age structured equations (K. Pakdaman, B. Perthame, D. Salort, 2010)

- Age = delay since last spike.
- \(n(t,s) = \begin{cases}
 \text{probability density of finding a neuron with age } s \text{ at time } t. \\
 \text{ratio of the neural population with age } s \text{ at time } t.
\end{cases} \)

\[
\begin{align*}
\frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) &= 0 \\
n(t,0) &= \int_0^{+\infty} p(s,X(t))n(t,s) ds.
\end{align*}
\] (PPS)

Parameters

- rate function \(p \). For example, \(p(s,X) = 1\{s > \sigma(X)\}. \)

\[X(t) = \int_0^t d(t-x)n(x,0)dx \quad \text{(global neural activity)}\]

- Propagation time.
- \(d = \) delay function. For example, \(d(x) = e^{-\tau x}. \)
Age structured equations (K. Pakdaman, B. Perthame, D. Salort, 2010)

- Age = delay since last spike.
- \(n(t,s) = \begin{cases}
\text{probability density of finding a neuron with age } s \text{ at time } t. \\
\text{ratio of the neural population with age } s \text{ at time } t.
\end{cases} \)

\[
\begin{align*}
\frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t)) n(t,s) &= 0 \\
n(t,0) &= \int_{0}^{+\infty} p(s,X(t)) n(t,s) \, ds.
\end{align*}
\]

(PPS)

Parameters

- rate function \(p \). For example, \(p(s,X) = 1_{\{s>\sigma(X)\}} \).

\[
X(t) = \int_{0}^{t} d(t-x)n(x,0)\,dx \quad \text{(global neural activity)}
\]

- Propagation time.
- \(d = \text{delay function}. \) For example, \(d(x) = e^{-\tau x} \).

Cornerstone: \(X(t) \leftrightarrow \int_{0}^{t-} h(t-x)N(dx) \).
Outline

1. Introduction

2. A key tool: The thinning procedure

3. First approach: Mathematical expectation

4. Second approach: Mean-field interactions
Lewis and Shedler’s Thinning, 1979

- \(\Pi \) is a Poisson process with intensity 1.
- \(\Pi(dt, dx) = \sum \delta_x \).
- \(\mathbb{E}[\Pi(dt, dx)] = dtdx \).
- Spatial independence.

\(\mathbb{R}_+ \)

0

\(t \)
Lewis and Shedler’s Thinning, 1979

\(\Pi \) is a Poisson process with intensity 1.
\(\Pi(dt, dx) = \sum \delta_x \).
\(\mathbb{E}[\Pi(dt, dx)] = dt dx \).
Spatial independence.

\(\lambda \) is deterministic.
\(N \) admits \(\lambda \) as an intensity.
Ogata’s Thinning, 1981

- Π is a Poisson process with intensity 1.
- Π(dt, dx) = \sum \delta_x.
- E [Π(dt, dx)] = dt dx.
- Spatial independence.
Ogata’s Thinning, 1981

- Π is a Poisson process with intensity 1.
- $\Pi(dt, dx) = \sum \delta_x$.
- $\mathbb{E}[\Pi(dt, dx)] = dt dx$.
- Spatial independence.
- λ is random.
- N admits λ as an intensity.
Ogata’s Thinning, 1981

- Π is a Poisson process with intensity 1.
- $\Pi(dt, dx) = \sum \delta_x$.
- $\mathbb{E}[\Pi(dt, dx)] = dt dx$.
- Spatial independence.
- λ is random.
- N admits λ as an intensity.
Ogata's Thinning, 1981

\[\Pi \text{ is a Poisson process with intensity 1.} \]
\[\Pi(dt, dx) = \sum \delta_X. \]
\[\mathbb{E} [\Pi(dt, dx)] = dt dx. \]

Spatial independence.

\[\lambda \text{ is random.} \]

\[N \text{ admits } \lambda \text{ as an intensity.} \]
Introduction

1/ Expectation

Ogata's Thinning, 1981

\[\Pi \text{ is a Poisson process with intensity 1.} \]
\[\Pi(dt, dx) = \sum \delta_x. \]
\[\mathbb{E} \left[\Pi(dt, dx) \right] = dt dx. \]

Spatial independence.

\[\lambda \text{ is random.} \]
\[N \text{ admits } \lambda \text{ as an intensity.} \]
1. Introduction

2. A key tool: The thinning procedure

3. First approach: Mathematical expectation
 - The system satisfied in expectation
 - Coming back to the examples

4. Second approach: Mean-field interactions
Technical construction

- (PPS) system: $n(t,.)$ is the probability density of the age at time t.
- One neuron scale: at fixed time t, the distribution is a Dirac mass at S_t.
Technical construction

- (PPS) system: \(n(t,.) \) is the probability density of the age at time \(t \).
- One neuron scale: at fixed time \(t \), the distribution is a Dirac mass at \(S_t^- \).

Microscopic measure

- We construct an ad hoc random measure \(U \) which satisfies a system of SDEs driven by Poisson noise similar to (PPS) (thinning).

\[
U(t, ds) = \delta_{S_t^-}(ds)
\]
Technical construction

- (PPS) system: \(n(t,.) \) is the probability density of the age at time \(t \).
- One neuron scale: at fixed time \(t \), the distribution is a Dirac mass at \(S_t^- \).

Microscopic measure
- We construct an ad hoc random measure \(U \) which satisfies a system of SDEs driven by Poisson noise similar to (PPS) (thinning).
 \[
 U(t,ds) = \delta_{S_t^-}(ds)
 \]

Macroscopic measure
- We consider the expectation measure \(u(dt,ds) = \mathbb{E}[U(dt,ds)] \).
 \(u(t,.) \) is the distribution of \(S_t^- \).
System in expectation

Theorem

Let \(\lambda_t \) be some non negative predictable process which is \(L_{loc}^1 \) in expectation. The measure \(u \) satisfies the following system,

\[
\begin{align*}
\frac{\partial}{\partial t} u(dt, ds) + \frac{\partial}{\partial s} u(dt, ds) + \rho_{\lambda, P_0}(t, s) u(dt, ds) &= 0, \\
u(dt, 0) &= \int_{s \in \mathbb{R}_+} \rho_{\lambda, P_0}(t, s) u(t, ds) dt,
\end{align*}
\]

(PPS-\(\rho \))

in the weak sense where \(\rho_{\lambda, P_0}(t, s) = \mathbb{E}[\lambda_t | S_{t-} = s] \) for almost every \(t \).
Theorem

Let λ_t be some non negative predictable process which is L^1_{loc} in expectation. The measure u satisfies the following system,

\[
\begin{cases}
\frac{\partial}{\partial t} u(dt, ds) + \frac{\partial}{\partial s} u(dt, ds) + \rho_{\lambda, P_0}(t, s) u(dt, ds) = 0, \\
u(dt, 0) = \int_{s \in \mathbb{R}^+} \rho_{\lambda, P_0}(t, s) u(t, ds) dt,
\end{cases}
\]

in the weak sense where $\rho_{\lambda, P_0}(t, s) = \mathbb{E}[\lambda_t | S_{t^-} = s]$ for almost every t.

Corollary (LLN)

The empirical measure $\frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i^-}}(ds)$ of the age processes associated to some i.i.d. point processes converges (in some weak sense) as $n \to \infty$ towards the mean measure u.
The system in expectation

\[
\begin{cases}
\frac{\partial}{\partial t} u(dt, ds) + \frac{\partial}{\partial s} u(dt, ds) + \rho_{\lambda, P_0}(t, s) u(dt, ds) = 0, \\
 u(dt, 0) = \int_{s \in \mathbb{R}^+} \rho_{\lambda, P_0}(t, s) u(t, ds) \, dt,
\end{cases}
\]

where \(\rho_{\lambda, P_0}(t, s) = \mathbb{E}[\lambda_t | S_{t^-} = s] \).

- This result may seem OK, but \(\rho \) is not explicit.
- In particular, this system may seem linear, but it is non-linear in general.
Review of the examples

The system in expectation

\[
\begin{cases}
\frac{\partial}{\partial t} u(dt, ds) + \frac{\partial}{\partial s} u(dt, ds) + \rho_{\lambda, P_0}(t, s) u(dt, ds) = 0, \\
 u(dt, 0) = \int_{s \in \mathbb{R}_+} \rho_{\lambda, P_0}(t, s) u(t, ds) \, dt,
\end{cases}
\]

where \(\rho_{\lambda, P_0}(t, s) = \mathbb{E}[\lambda_t | S_{t-} = s] \).

- This result may seem OK, but \(\rho \) is not explicit.
- In particular, this system may seem linear, but it is non-linear in general.

- \(\lambda_t = f(t, S_{t-}) \) (Poisson, renewal).

\[\rightarrow \rho_{\lambda, P_0}(t, s) = f(t, s) \] and the system admits a unique solution.
Review of the examples

The system in expectation

\[
\begin{cases}
\frac{\partial}{\partial t} u(dt, ds) + \frac{\partial}{\partial s} u(dt, ds) + \rho_{\lambda, P_0}(t, s) u(dt, ds) = 0, \\
 u(dt, 0) = \int_{s \in \mathbb{R}_+} \rho_{\lambda, P_0}(t, s) u(t, ds) \ dt,
\end{cases}
\]

where \(\rho_{\lambda, P_0}(t, s) = \mathbb{E}[\lambda_t | S_{t-} = s] \).

- This result may seem OK, but \(\rho \) is not explicit.
- In particular, this system may seem linear, but it is non-linear in general.

- \(\lambda_t = f(t, S_{t-}) \) (Poisson, renewal).
- Linear Hawkes process.

\[\rightarrow \rho_{\lambda, P_0}(t, s) = f(t, s) \text{ and the system admits a unique solution.}\]

\[\rightarrow \rho_{\lambda, P_0} \text{ is much more complex.}\]
Review of the examples

The system in expectation

\[
\begin{aligned}
\frac{\partial}{\partial t} u(dt, ds) + \frac{\partial}{\partial s} u(dt, ds) + \rho_{\lambda, P_0}(t, s) u(dt, ds) &= 0, \\
\end{aligned}
\]

\[
\begin{aligned}
u(dt, 0) = \int_{s \in \mathbb{R}_+} \rho_{\lambda, P_0}(t, s) u(t, ds) \, dt,
\end{aligned}
\]

where \(\rho_{\lambda, P_0}(t, s) = \mathbb{E}[\lambda_t | S_{t^-} = s] \).

- This result may seem OK, but \(\rho \) is not explicit.
- In particular, this system may seem linear, but it is non-linear in general.
- \(\lambda_t = f(t, S_{t^-}) \) (Poisson, renewal).
- Linear Hawkes process.

\[
\rightarrow \quad \rho_{\lambda, P_0}(t, s) = f(t, s) \text{ and the system admits a unique solution.}
\]

\[
\rightarrow \quad \rho_{\lambda, P_0} \text{ is much more complex.}
\]

The integral \(v(t, s) := \int_s^{+\infty} u(t, d\sigma) \) satisfies a closed system.
Outline

1 Introduction

2 A key tool: The thinning procedure

3 First approach: Mathematical expectation

4 Second approach: Mean-field interactions
 - Generalities
 - Actual and limit dynamics
 - Coupling of these two dynamics
 - Mean-field approximation
Propagagation of chaos: a tool to link the two scales

Mean-field n-particle system

- The particles are dependent, but they are exchangeable.
- Homogeneous weak interactions.
- The dynamics is described by a system of n equations.
Propagtion of chaos: a tool to link the two scales

Mean-field n-particle system

- The particles are dependent, but they are exchangeable.
- Homogeneous weak interactions.
- The dynamics is described by a system of n equations.

Asymptotic when $n \to +\infty$

- The particles become independent.
- Their distribution is described by one non-linear PDE.
Thinning procedure

1/ Expectation

2/ Mean-field

Summary

Propagation of chaos: a tool to link the two scales

Mean-field n-particle system

- The particles are dependent, but they are exchangeable.
- Homogeneous weak interactions.
- The dynamics is described by a system of n equations.

Asymptotic when $n \to +\infty$

- The particles become independent.
- Their distribution is described by one non-linear PDE.

Mean-field in biology

- Neuroscience: Intrinsic spiking (Stannat et al. 2014), I&F (Delarue et al. 2015), point processes models (Galves and Löcherbach 2015).
Multivariate Hawkes processes

- Multivariate HP: \((i = 1, \ldots, n) \)

\[
\lambda^i_t = \Phi \left(\int_0^{t-} h_{i \rightarrow i}(t-x)N^i(dx) + \sum_{j \neq i} \int_0^{t-} h_{j \rightarrow i}(t-x)N^j(dx) \right).
\]
Multivariate Hawkes processes

- **Multivariate HP:** \(i = 1, \ldots, n \)

\[
\lambda_t^i = \Phi \left(\int_0^{t^-} h_{i \to i}(t-x) \mathcal{N}^i(dx) + \sum_{j \neq i} \int_0^{t^-} h_{j \to i}(t-x) \mathcal{N}^j(dx) \right).
\]
Multivariate Hawkes processes

- Multivariate HP: \((i = 1, \ldots, n)\)

\[
\lambda_t^i = \Phi \left(\int_0^{t-} h_{i \rightarrow i}(t - x) N^i(dx) + \sum_{j \neq i} \int_0^{t-} h_{j \rightarrow i}(t - x) N^j(dx) \right).
\]

Interaction function \(h_{j \rightarrow i} \leftrightarrow\) synaptic weight of neuron \(j\) over neuron \(i\).
Generalized Hawkes processes

Renewal process

\[\lambda_t = f(S_t) \]

Multivariate HP

\[\lambda^i_t = \Phi \left(\sum_{j=1}^{n} \int_{0}^{t} h_{j \rightarrow i}(t-x) N^j(dx) \right) \]
Generalized Hawkes processes

Renewal process

$$\lambda_t = f(S_{t^-})$$

Multivariate HP

$$\lambda^i_t = \Phi\left(\sum_{j=1}^{n} \int_{0}^{t-} h_{j \rightarrow i}(t-x) N^j(dx) \right)$$

Example:
$$\Psi(s, x) = \Phi(x) 1_{s \geq \delta} \Rightarrow \text{strict refractory period of length } \delta$$
Generalized Hawkes processes

Renewal process
\[\lambda_t = f(S_{t^-}) \]

Multivariate HP
\[\lambda^i_t = \Phi \left(\sum_{j=1}^{n} \int_{0}^{t^-} h_{j \rightarrow i}(t-x) N^{j}(dx) \right) \]

Age dependent Hawkes process \((n\text{-neurons system})\)

It is a multivariate point process \((N^{n,i})_{i=1,\ldots,n}\) with intensity given for all \(i = 1,\ldots,n\) by
\[\lambda^{n,i}_t = \psi \left(S^{n,i}_{t^-}, \frac{1}{n} \sum_{j=1}^{n} \int_{0}^{t^-} h(t-z) N^{n,j}(dz) \right), \quad "h_{j \rightarrow i} = \frac{1}{n} h". \]

- Example: \(\psi(s,x) = \Phi(x)1_{s \geq \delta} \rightsquigarrow \) strict refractory period of length \(\delta\).
The idea is to find a suitable coupling between the particles of the n-particle system and n i.i.d. copies of a \textit{limit process}.
The idea is to find a suitable coupling between the particles of the n-particle system and n i.i.d. copies of a limit process.

1. Find a good candidate for the limit process.

2. Show that it is well-defined (McKean-Vlasov fixed point problem).

3. Couple the dynamics in the right way.

4. Show the convergence.
Scheme of the coupling method

Idea of coupling

The idea is to find a suitable coupling between the particles of the n-particle system and n i.i.d. copies of a limit process.

1. Find a good candidate for the limit process.
1’. Use the PDE to find the distribution of the limit process.
2. Show that it is well-defined (McKean-Vlasov fixed point problem).
3. Couple the dynamics in the right way.
4. Show the convergence.
1/ Limit process (heuristic)

Recall the intensities of the \(n \)-neurons system

\[
\lambda_t^{n,i} = \psi\left(S_{t^-}^{n,i}, \frac{1}{n} \sum_{j=1}^{n} \int_{0}^{t^-} h(t - z) N_j^n(dz) \right).
\]
1/ Limit process (heuristic)

Recall the intensities of the \(n \)-neurons system

\[
\lambda^{n,i}_t = \psi \left(S^{n,i}_t, \frac{1}{n} \sum_{j=1}^{n} \int_{0}^{t-} h(t-z) N^{n,j}(dz) \right).
\]

- Independence at the limit \(\Rightarrow \) Law of Large Numbers.
1/ Limit process (heuristic)

Recall the intensities of the n-neurons system

$$\lambda_{t,i}^n = \psi \left(S_{t^-}^n, \frac{1}{n} \sum_{j=1}^{n} \int_{0}^{t^-} h(t-z) \mathbb{N}^n_j(dz) \right).$$

- Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \psi \left(\overline{S}_{t^-}, \int_{0}^{t^-} h(t-z) \mathbb{E} [\mathbb{N}(dz)] \right).$$
Recall the intensities of the n-neurons system

$$\lambda_{t,i}^{n,i} = \psi\left(S_{t-}^{n,i}, \frac{1}{n} \sum_{j=1}^{n} \int_{0}^{t-} h(t-z) N_{j}^{n,j}(dz) \right).$$

- Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \bar{N} with intensity given by

$$\bar{\lambda}_t = \psi\left(\bar{S}_{t-}, \int_{0}^{t-} h(t-z) \mathbb{E}[\bar{N}(dz)] \right).$$
Recall the intensities of the n-neurons system

$$\lambda_t^{n,i} = \psi\left(S_{t-}^{n,i}, \frac{1}{n} \sum_{j=1}^{n} \int_{0}^{t-} h(t-z) N_{n,j}^{n,j}(dz) \right).$$

- Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \psi\left(\overline{S}_{t-}, \int_{0}^{t-} h(t-z) \mathbb{E}[\overline{N}(dz)] \right).$$

- The intensity of \overline{N} depends on the time and the age.
1’/ Study the associated PDE system

Limit system

\[
\begin{align*}
&\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\
&u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t)) u(t,s) \, ds,
\end{align*}
\]

(PPS-NL)

where for all \(t \geq 0, \ X(t) = \int_0^t h(t - z) u(z,0) \, dz.\)

Main assumption

The rate function \(\Psi \) is bounded and uniformly Lipschitz w.r.t. \(X(t) \).
1’/ Study the associated PDE system

Limit system

\[
\begin{aligned}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \psi(s,X(t))u(t,s) &= 0, \\
\int_{s \in \mathbb{R}_+} \psi(s,X(t))u(t,s) \, ds
\end{aligned}
\]

(PPS-NL)

where for all \(t \geq 0 \), \(X(t) = \int_0^t h(t-z)u(z,0) \, dz \).

Main assumption

The rate function \(\psi \) is bounded and uniformly Lipschitz w.r.t. \(X(t) \).

Linear version:

\[
\begin{aligned}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + f(t,s)u(t,s) &= 0, \\
u(t,0) &= \int_{s \in \mathbb{R}_+} f(t,s)u(t,s) \, ds.
\end{aligned}
\]

(PPS-L)
1’/ Study the associated PDE system 2

\[
\begin{align*}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + f(t,s)u(t,s) &= 0, \\
u(t,0) &= \int_{s \in \mathbb{R}^+} f(t,s)u(t,s) \, ds,
\end{align*}
\]

(PPS-L)

Proposition

Assume that \(f : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R} \) is bounded and continuous (uniformly in the second variable) with respect to the first variable. Assume that \(u^{\text{in}} \) belongs to \(\mathcal{M}(\mathbb{R}^+) \).

Then, there exists a unique solution in the weak sense \(u \) such that \(t \mapsto u(t, \cdot) \) belongs to \(BC(\mathbb{R}^+, \mathcal{M}(\mathbb{R}^+)) \) with initial condition \(u(0, \cdot) = u^{\text{in}} \).

1' Study the associated PDE system 2

\[
\begin{align*}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + f(t,s)u(t,s) &= 0, \\
u(t,0) &= \int_{s \in \mathbb{R}^+} f(t,s)u(t,s) \, ds,
\end{align*}
\] (PPS-L)

Proposition

Assume that \(f : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R} \) is bounded and continuous (uniformly in the second variable) with respect to the first variable. Assume that \(u^{\text{in}} \) belongs to \(\mathcal{M}(\mathbb{R}_+) \).

Then, there exists a unique solution in the weak sense \(u \) such that \(t \mapsto u(t,\cdot) \) belongs to \(BC(\mathbb{R}_+, \mathcal{M}(\mathbb{R}_+)) \) with initial condition \(u(0,\cdot) = u^{\text{in}} \).

- Mass-conservative and conservation of positivity.
- Conservation of a probability density.
1’/ Study the associated PDE system

\[
\begin{cases}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) = 0, \\
u(t,0) = \int_{s\in\mathbb{R}_+} \Psi(s,X(t))u(t,s) \, ds,
\end{cases}
\]

(PPS-NL)

where for all \(t \geq 0 \), \(X(t) = \int_0^t h(t - z)u(z,0) \, dz \).

Theorem

Assume that \(h : \mathbb{R}_+ \rightarrow \mathbb{R} \) is locally integrable and that \(u^\text{in} \) is a non-negative function such that both \(\int_0^{+\infty} u^\text{in}(s) \, ds = 1 \) and there exists \(M > 0 \) such that for all \(s \geq 0 \), \(0 \leq u^\text{in}(s) \leq M \).

Then, there exists a unique solution in the weak sense \(u \) such that \(t \mapsto u(t,\cdot) \) belongs to \(BC(\mathbb{R}_+, \mathcal{P}(\mathbb{R}_+)) \) (Moreover, the solution is in \(C(\mathbb{R}_+, L^1(\mathbb{R}_+)) \)).
1'/ Study the associated PDE system

\[
\begin{cases}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\
u(t,0) = \int_{s \in \mathbb{R}^+} \Psi(s,X(t)) u(t,s) \, ds,
\end{cases}
\]

(PPS-NL)

where for all \(t \geq 0, X(t) = \int_0^t h(t-z) u(z,0) \, dz \).

Theorem

Assume that \(h : \mathbb{R}_+ \to \mathbb{R} \) is locally integrable and that \(u^{in} \) is a non-negative function such that both \(\int_0^{+\infty} u^{in}(s) \, ds = 1 \) and there exists \(M > 0 \) such that for all \(s \geq 0, 0 \leq u^{in}(s) \leq M \).

Then, there exists a unique solution in the weak sense \(u \) such that \(t \mapsto u(t,\cdot) \) belongs to \(BC(\mathbb{R}_+, \mathcal{P}(\mathbb{R}_+)) \) (Moreover, the solution is in \(C(\mathbb{R}_+, L^1(\mathbb{R}_+)) \)).

Sketch of Proof

1. For any continuous function \(Y \), consider the system with \(Y \) replacing \(X \).
1’ Study the associated PDE system

\[
\begin{align*}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) &= 0, \\
u(t,0) &= \int_{s \in \mathbb{R}^+} \Psi(s,X(t))u(t,s)
\end{align*}
\]

(PPS-NL)

where for all \(t \geq 0 \), \(X(t) = \int_0^t h(t-z)u(z,0)dz \).

Theorem

Assume that \(h : \mathbb{R}^+ \rightarrow \mathbb{R} \) is locally integrable and that \(u^\text{in} \) is a non-negative function such that both \(\int_0^{+\infty} u^\text{in}(s)ds = 1 \) and there exists \(M > 0 \) such that for all \(s \geq 0 \), \(0 \leq u^\text{in}(s) \leq M \).

Then, there exists a unique solution in the weak sense \(u \) such that \(t \mapsto u(t,\cdot) \) belongs to \(BC(\mathbb{R}^+, \mathcal{P}(\mathbb{R}^+)) \) (Moreover, the solution is in \(C(\mathbb{R}^+, L^1(\mathbb{R}^+)) \)).

Sketch of Proof

1. For any continuous function \(Y \), consider the system with \(Y \) replacing \(X \).
2. This new system is linear. Apply the previous results.
1’/ Study the associated PDE system

\[
\begin{align*}
 \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) &= 0, \\
u(t,0) &= \int_{s \in \mathbb{R}_+} \Psi(s,X(t))u(t,s)\,ds,
\end{align*}
\]

(PPS-NL)

where for all \(t \geq 0 \), \(X(t) = \int_0^t h(t-z)u(z,0)\,dz \).

Theorem

Assume that \(h : \mathbb{R}_+ \to \mathbb{R} \) is locally integrable and that \(u^{\text{in}} \) is a non-negative function such that both \(\int_0^{+\infty} u^{\text{in}}(s)\,ds = 1 \) and there exists \(M > 0 \) such that for all \(s \geq 0 \), \(0 \leq u^{\text{in}}(s) \leq M \).

Then, there exists a unique solution in the weak sense \(u \) such that \(t \mapsto u(t,\cdot) \) belongs to \(BC(\mathbb{R}_+, \mathcal{P}(\mathbb{R}_+)) \) (Moreover, the solution is in \(C(\mathbb{R}_+, L^1(\mathbb{R}_+)) \)).

Sketch of Proof

1. For any continuous function \(Y \), consider the system with \(Y \) replacing \(X \).
2. This new system is linear. Apply the previous results.
3. Study the fixed point of \(Y \mapsto \int_0^t h(t-z)u_Y(z,0)\,dz \) (\(u_Y \): solution associated to \(Y \)).
2/ Show that the limit process is well-posed

Recall the intensity of the limit process

\[\bar{\lambda}_t = \Psi \left(S_t, \int_0^t h(t-z) \mathbb{E} \left[N(dz) \right] \right). \]

Recall the associated system (PPS-NL),

\[
\begin{cases}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\
u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s,X(t)) u(t,s) \, ds,
\end{cases}
\]

where for all \(t \geq 0 \), \(X(t) = \int_0^t h(t-z)u(z,0) \, dz \).
2/ Show that the limit process is well-posed

Recall the intensity of the limit process

$$\bar{\lambda}_t = \Psi \left(\bar{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E} \left[N(dz) \right] \right).$$

Recall the associated system (PPS-NL),

$$\begin{cases}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s, X(t)) u(t,s) = 0, \\
u(t,0) = \int_{s \in \mathbb{R}_+} \Psi(s, X(t)) u(t,s) \, ds,
\end{cases}$$

where for all $t \geq 0$, $X(t) = \int_0^t h(t-z) u(z,0) \, dz$.

Proposition

- The distribution of the age \bar{S}_{t-} is the unique solution of (PPS-NL).
2/ Show that the limit process is well-posed

Recall the intensity of the limit process

\[\bar{\lambda}_t = \Psi \left(\bar{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E} [\mathcal{N}(dz)] \right) . \]

Recall the associated system (PPS-NL),

\[
\begin{align*}
\frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) &= 0, \\
u(t,0) &= \int_{s \in \mathbb{R}_+} \Psi(s,X(t))u(t,s) \, ds,
\end{align*}
\]

where for all \(t \geq 0 \), \(X(t) = \int_0^t h(t-z)u(z,0) \, dz \).

Proposition

- The distribution of the age \(\bar{S}_{t-} \) is the unique solution of (PPS-NL).
- The intensity of the limit process is given by

\[\bar{\lambda}_t = \Psi \left(\bar{S}_{t-}, \int_0^{t} h(t-z)u(z,0) \, dz \right) . \]

- Hence the limit process is well-defined.
3/ The coupling

Six realizations of a Poisson process with intensity 2 on [0, 1].
3/ The coupling

- \mathbb{R}^+
- t_0

- \times: Poisson process Π^i
- \circ: Point process $N_{n,i}^n$
- \bullet: Limit process \overline{N}^i

- 1/ Expectation
- 2/ Mean-field
- 3/ The coupling
- Summary

Introduction

Thinning procedure
3/ The coupling

\(\mathbb{R}_+ \)

\(\lambda_{n,i} \)

\(\Pi^i \)

\(N_{n,i} \)

\(\overline{N}^i \)

- Poisson process
- Point process
- Limit process
3/ The coupling

\[\mathbb{R}_+ \]

- \(\lambda_{n,i}^t \)
- \(\bar{\lambda}_t^i \)
- \(\Pi^i \)
- \(\lambda_{t}^n \)
- \(N^{n,i} \)
- \(\overline{N}^i \)

\(\times \): Poisson process \(\Pi^i \)
\(\bullet \): Point process \(N^{n,i} \)
\(\bigcirc \): Limit process \(\overline{N}^i \)
4/ Control/Convergence 1

Theorem

The coupling described in the previous slide is such that

\[
E \left[\text{Card} \left((\mathcal{N}^{n,i} \triangle \overline{\mathcal{N}}^i) \cap [0, \theta] \right) \right] = \int_0^\theta E \left[|\lambda_{t}^{n,i} - \lambda_{t}^{i}| \right] dt \lesssim n^{-1/2}.
\]

The constant depends on \(\theta, \Psi \) and \(h \).
Theorem

The coupling described in the previous slide is such that

$$\mathbb{E} \left[\text{Card} \left((\mathcal{N}^{n,i} \triangle \overline{\mathcal{N}}^i) \cap [0, \theta] \right) \right] = \int_0^\theta \mathbb{E} \left[|\lambda_t^{n,i} - \overline{\lambda}_t^i| \right] dt \lesssim n^{-1/2}.$$

The constant depends on θ, Ψ and h.

Corollary

If the distribution of the initial value of the age is bounded then the coupling described in the previous slide is such that

$$\mathbb{E} \left[\sup_{t \in [0,\theta]} |S_t^{n,i} - \overline{S}_t^i| \right] \lesssim n^{-1/2}.$$
Propagation of chaos

Fix k in \mathbb{N}. Then, the processes $N^{n,1}, \ldots, N^{n,k}$ of the n-neurons system behave (when $n \to +\infty$) as i.i.d. copies of the limit process \bar{N}.

```latex
If the ages at time 0 are i.i.d. with common density $\nu$ in $\mathbb{R}$, then for all $t \geq 0$,
\[
\frac{1}{n} \sum_{i=1}^{n} \delta_{S^{n,i}(t)} \to_{n \to \infty} \nu(t, \cdot),
\]
where $\nu$ is the unique solution of the (PPS-NL) system with initial condition $\nu$.

Link between (PPS) and a well-designed microscopic model.

Goodness-of fit tests: Renewal and Hawkes processes.
4/ Control/Convergence 2

Propagation of chaos

Fix $k$ in $\mathbb{N}$. Then, the processes $N^{n,1}, \ldots, N^{n,k}$ of the $n$-neurons system behave (when $n \to +\infty$) as i.i.d. copies of the limit process $\overline{N}$.

Theorem

If the ages at time 0 are i.i.d. with common density $u^{\text{in}}$, then for all $t \geq 0$, $\frac{1}{n} \sum_{i=1}^{n} \delta_{S_{t-i}^{n,i}} \xrightarrow{n \to \infty} u(t, \cdot)$,

where $u$ is the unique solution of the (PPS-NL) system with initial condition $u^{\text{in}}$. 
4/ Control/Convergence 2

Propagation of chaos

Fix $k$ in $\mathbb{N}$. Then, the processes $N^{n,1}, \ldots, N^{n,k}$ of the $n$-neurons system behave (when $n \to +\infty$) as i.i.d. copies of the limit process $\bar{N}$.

Theorem

If the ages at time 0 are i.i.d. with common density $u^{in}$, then for all $t \geq 0$,

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{s_{t-i}^{n,i}} \xrightarrow{n \to \infty} u(t, \cdot),$$

where $u$ is the unique solution of the (PPS-NL) system with initial condition $u^{in}$.

- Link between (PPS) and a well-designed microscopic model.
Introduction

Thinning procedure

1/ Expectation

2/ Mean-field

Summary

4/ Control/Convergence 2

Propagagation of chaos

Fix $k$ in $\mathbb{N}$. Then, the processes $N^{n,1}, \ldots, N^{n,k}$ of the $n$-neurons system behave (when $n \to +\infty$) as i.i.d. copies of the limit process $\bar{N}$.

Theorem

If the ages at time 0 are i.i.d. with common density $u^{\text{in}}$, then for all $t \geq 0$,

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{S_{t}^{n,i}} \xrightarrow{n \to \infty} u(t, \cdot),$$

where $u$ is the unique solution of the (PPS-NL) system with initial condition $u^{\text{in}}$.

- Link between (PPS) and a well-designed microscopic model.
- Goodness-of fit tests: Renewal and Hawkes processes.
Summary

- First approach:
  - Link with an i.i.d. network.
  - Ends up with (PPS) for Renewal or Poisson processes.
  - Ends up with a more intricate system with linear Hawkes processes.
Summary

- **First approach:**
  - Link with an i.i.d. network.
  - Ends up with (PPS) for Renewal or Poisson processes.
  - Ends up with a more intricate system with linear Hawkes processes.

- **Second approach:**
  - Network of weakly dependent neurons (asymptotically independent).
  - Refractory period possible for the limit process. Its distribution is given by (PPS).

Remark: The $h_j \rightarrow i$'s can be i.i.d. Dependence with respect to the past before time 0 can be added.

Outlook:
- Study of the system in expectation for linear Hawkes processes.
- Fluctuations around the mean limit behaviour (Central Limit Theorem).
- Goodness of fit tests for both micro and macro models at the same time.
First approach:
- Link with an i.i.d. network.
- Ends up with (PPS) for Renewal or Poisson processes.
- Ends up with a more intricate system with linear Hawkes processes.

Second approach:
- Network of weakly dependent neurons (asymptotically independent).
- Refractory period possible for the limit process. Its distribution is given by (PPS).
- Remark: The $h_{j\rightarrow i}$’s can be i.i.d. Dependence with respect to the past before time 0 can be added.
Summary

First approach:
- Link with an i.i.d. network.
- Ends up with (PPS) for Renewal or Poisson processes.
- Ends up with a more intricate system with linear Hawkes processes.

Second approach:
- Network of weakly dependent neurons (asymptotically independent).
- Refractory period possible for the limit process. Its distribution is given by (PPS).
- Remark: The $h_{j \rightarrow i}$’s can be i.i.d. Dependence with respect to the past before time 0 can be added.

Outlook:
- Study of the system in expectation for linear Hawkes processes.
First approach:
- Link with an i.i.d. network.
- Ends up with (PPS) for Renewal or Poisson processes.
- Ends up with a more intricate system with linear Hawkes processes.

Second approach:
- Network of weakly dependent neurons (asymptotically independent).
- Refractory period possible for the limit process. Its distribution is given by (PPS).
- Remark: The $h_{j→i}$’s can be i.i.d. Dependence with respect to the past before time 0 can be added.

Outlook:
- Study of the system in expectation for linear Hawkes processes.
- Fluctuations around the mean limit behaviour (Central Limit Theorem).
Summary

First approach:
- Link with an i.i.d. network.
- Ends up with (PPS) for Renewal or Poisson processes.
- Ends up with a more intricate system with linear Hawkes processes.

Second approach:
- Network of weakly dependent neurons (asymptotically independent).
- Refractory period possible for the limit process. Its distribution is given by (PPS).
- Remark: The $h_{j\rightarrow i}$’s can be i.i.d. Dependence with respect to the past before time 0 can be added.

Outlook:
- Study of the system in expectation for linear Hawkes processes.
- Fluctuations around the mean limit behaviour (Central Limit Theorem).
- Goodness of fit tests for both micro and macro models at the same time.