

$$
\begin{aligned}
& \square\left\{x: \operatorname{prox}_{\gamma \text { max }}(c(x)) \in \mathcal{M}_{\{1,2,3\}}^{\max }\right\} \\
& \square\left\{x: \operatorname{prox}_{\gamma \text { max }}(c(x)) \in \mathcal{M}_{\{1,2\}}^{\max }\right\} \\
& \square\left\{x: \operatorname{prox}_{\gamma \text { max }}(c(x)) \in \mathcal{M}_{\{1,3\}}^{\max }\right\} \\
& \square\left\{x: \operatorname{prox}_{\gamma \text { max }}(c(x)) \in \mathcal{M}_{\{2,3\}}^{\max }\right\}
\end{aligned}
$$

Fig. 4: Illustration of the main result on a maximum of three quadratic functions, with $\bar{x} \in \mathcal{M}_{\{1,2\}}^{\max }$ and a point x near \bar{x}. The three figures show the areas where $\operatorname{prox}_{\gamma g} \circ c$ detects manifolds for three stepsizes: $\gamma=0.4$ (upper left), $\gamma=1$ (upper right) and $\gamma=2.3$ (lower left). We see on the upper left fig. that prox $_{\gamma g} \circ c$ detects no structure from x because γ is too small, and in contrast, on the lower fig., that it wrongly detects too much structure $\left(\mathcal{M}_{\{1,2,3\}}^{\max }\right)$ because γ is too large. On the upper right fig., the optimal manifold is detected with γ chosen in the right interval.

