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Figure 8: Constructing in S an unbounded sequence “tending to” V

Obtaining rk and uk is a fairly complicate operation, which we divide into a series of lemmas. For a
reason that will appear in (39) below, we may assume 0 /∈ V •. Then we enlarge V to V k by chopping off
a bit of V • as follows. Take an extreme ray R+dV of V ◦

∞. By (28), its intersection with V • is a nonempty
segment [dV , tV dV ], with 1 ! tV < +∞. Given a positive integer k, we introduce the open neighborhood
of [dV , tV dV ]:

Nk := [dV , tV dV ] +B
(
0,

1

k

)
=

⋃

1!t!tV

B
(
tdV ,

1

k

)
, (32)

where B(d, δ) is the open ball of center d and radius δ. We remove Nk from V •, thus obtaining a set C,
closed hence compact; its convex hull

Gk := convC , with C := V •\Nk =
{
d ∈ V • : ‖d− tdV ‖ "

1

k
for all t ∈ [1, tV ]

}
(33)

is convex compact. Figure 9 illustrates our construction.
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Figure 9: Chopping off V • near an extreme ray

Note for future use that the distance from every d ∈ [dV , tV dV ] to C does not exceed 1/k; and the
same holds for Gk ⊃ C. Formally:

∀d̄ ∈ [dV , tV dV ] , ∃dk ∈ Gk such that ‖dk − d̄‖ !
1

k
. (34)

Remark 5.2 The above construction would become substantially simpler and Nk would reduce to the
open ball B

(
dV , 1

k

)
if V • ∩ R+dV reduced to a singleton, i.e. if tV = 1; but this property need not hold

when σV is not continuous.

To make a counterexample, start from the parabola of Figure 5. We already know that σP (dk) can
tend to any nonnegative value when dk → 0. However 0 ∈ P •, the example needs modification to meet
our assumption. To this aim, we first bound σP (on its domain near 0) by defining

f(d) := 1 +

{
σP (d) if σP (d) ! 1 ,
+∞ otherwise .

Although no longer positively homogeneous, this function is still convex, its domain is the compact convex
set P •, on which 1 ! f ! 2; when dk ∈ P • tends to 0, f(dk) can tend to any value in [1, 2]. To complete
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Thus, (V k
∞

)◦
! V ◦

∞, which implies (i) since polarity is an involution between closed convex cones.

To prove (ii), take r̄ in ∩kV k; we have to prove that r̄ ∈ V (the other inclusion being obvious). If
r̄ /∈ V there is a separating hyperplane d̄: σV (d̄) < d̄$r̄. Normalizing d̄ via (28), we have altogether

r̄ ∈
⋂

k

V k , d̄ ∈ V̂ ◦ , d̄$r̄ > 1 ; (37)

but σGk represents V k, so (37) gives

σGk(r̄) ! 1 < d̄$r̄ , hence d̄ /∈ Gk .

Then d̄ ∈ V • ∩Nk for all k (large enough), i.e. d̄ ∈ [dV , tV dV ]. Introduce dk ∈ Gk from (34):

‖dk − d̄‖ !
1

k
and d$k r̄ ! σGk(r̄) ! 1 .

Passing to the limit, d̄$r̄ ! 1; a contradiction to (37). Therefore r̄ ∈ V . "

Now we assume the existence of an S-free set W containing V ; it satisfies in particular

W • ⊂ W ◦ ⊂ V ◦ = [0, 1]V • . (38)

If W • ⊂ V •, this W is of no use to disprove maximality of V (Proposition 4.8). We are therefore in the
situation

W • &⊂ V • , which implies from (38): 0 /∈ V • . (39)

Thus, W • contains some points out of V •. The key argument for our analysis is that one of these points
lies on an extreme ray of V ◦

∞ – which will be the dV of Lemma 5.3, crucial to construct the unbounded
sequence {rk} of Figure 8.

Lemma 5.4 (Constructing an appropriate extreme ray) Let W ⊃ V satisfy (39). There is an
extreme ray R+dV of V ◦

∞ such that the set Nk defined by (32) satisfies W ◦ ∩Nk = ∅ for k large enough.

Proof. From (39), we are in the framework of Corollary 3.10; Figure 10 is helpful to follow the

proof. If Ŵ ◦ ⊂ V • then W • = conv
(
Ŵ ◦

)
⊂ V •, contradiction. So there is e ∈ Ŵ ◦ (hence σW (e) = 1)

which does not lie in V •; because V ⊂ W , i.e. σV ! σW , this e satisfies σV (e) < 1 (otherwise σV (e) = 1,
hence e ∈ V̂ ◦ ⊂ V •).

Ŵ ◦ e

de

b̄

V •B

bj0

Figure 10: The extreme ray R+bj0 contains some point in V •\W •

Then construct de := 1
σV (e)e ∈ V̂ ◦ (remember (21): σV (e) > 0). For every e′ ∈ [0, e], the segment

[e′, de] contains e. Being a convex set, V • cannot contain such an e′ (otherwise it would contain e as
well). As a result, the compact convex sets V • and [0, e] can be separated: there is " ∈ Rq (appropriately
scaled) such that

max
{
0, e$"

}
< 1 < min

d∈V •
d$" . (40)

Observe that
1 > e$" = σV (e)d

$
e " > 0 . (41)

Now introduce the closed convex set

B :=
{
b ∈ V ◦

∞ : b$" = 1
}
.
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where B(d, δ) is the open ball of center d and radius δ. We remove Nk from V •, thus obtaining a set C,
closed hence compact; its convex hull

Gk := convC , with C := V •\Nk =
{
d ∈ V • : ‖d− tdV ‖ "

1

k
for all t ∈ [1, tV ]

}
(33)

is convex compact. Figure 9 illustrates our construction.
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Note for future use that the distance from every d ∈ [dV , tV dV ] to C does not exceed 1/k; and the
same holds for Gk ⊃ C. Formally:

∀d̄ ∈ [dV , tV dV ] , ∃dk ∈ Gk such that ‖dk − d̄‖ !
1

k
. (34)

Remark 5.2 The above construction would become substantially simpler and Nk would reduce to the
open ball B

(
dV , 1

k

)
if V • ∩ R+dV reduced to a singleton, i.e. if tV = 1; but this property need not hold

when σV is not continuous.

To make a counterexample, start from the parabola of Figure 5. We already know that σP (dk) can
tend to any nonnegative value when dk → 0. However 0 ∈ P •, the example needs modification to meet
our assumption. To this aim, we first bound σP (on its domain near 0) by defining

f(d) := 1 +

{
σP (d) if σP (d) ! 1 ,
+∞ otherwise .

Although no longer positively homogeneous, this function is still convex, its domain is the compact convex
set P •, on which 1 ! f ! 2; when dk ∈ P • tends to 0, f(dk) can tend to any value in [1, 2]. To complete
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Figure 7: The mapping V !→ V • is not monotonic

Now shrink V to Vt (left part of Figure 7) by moving its right vertical boundary to φ ! 1− t. Then A
is moved to At =

(
1

1−t
, 0
)
; there is no inclusion between the new V •

t = conv{At, B, C} and the original
V • = conv{A,B,C}; this is the key to our example.

Let us show that µVt
is minimal, even though Vt is not maximal. Take for this a cgf ρ ! µVt

, which
represents an S-free set W ; by (14), W ⊃ Vt. We therefore have

σW• = µW ! ρ ! µVt
= σV •

t
, i.e., W • ⊂ V •

t

and we proceed to show that equality does hold, i.e. the three extreme points of V •
t do lie in W •.

– If At /∈ W •, the right part of Figure 7 shows that W • is included in the open upper half-space. Knowing
that

W =
(
W •

)◦
=

{
r : d$r ! 1 for all d ∈ W •

}
,

this implies that W∞ has a vector of the form rA = (ε,−1) (ε > 0); W cannot be S-free.

– If C /∈ W •, there is rC ∈ R2 such that C$rC > σW•(rC) = µW (rC) (we denote also by C the 2-vector
representing C). For example rC = (−2, 0) ∈ bd (V ) (see the right part of Figure 7), so that

C$rC = 1 > σW•(−2, 0) = µW (−2, 0) .

By continuity, µW (−2 − ε, 0) ! 1 for ε > 0 small enough. Since µW represents W , this implies that
(−2− ε, 0) ∈ W ; W (which contains Vt) is not S-free.

– By the same token, we prove that B ∈ W • (the separator rB = (0, 1) ∈ bd (V ) does the job).

We have therefore proved that W • = V •
t , i.e µW = µVt

, i.e. µVt
is minimal. "

The next section makes a first step toward a theory relating small cgf’s and large S-free sets.

4.2 Strong minimality, asymptotic maximality. First, let us give a name to those minimal
cgf’s corresponding to maximal S-free sets.

Definition 4.6 (Strongly minimal cgf) A cgf ρ is called strongly minimal if it is the smallest rep-
resentation of a maximal S-free set.

The strongly minimal cgf’s can be characterized without any reference to the geometric space.

Proposition 4.7 A cgf ρ is strongly minimal if and only if, for every cgf ρ′,

ρ′ ! max {0, ρ}
[
= γV (ρ) = σV (ρ)◦

]
=⇒ ρ′ # ρ . (30)

Proof. Take first a maximal V . Every cgf ρ′ ! γV represents an S-free set V ′, which contains V –
see (13) – so that V ′ = V by maximality, i.e. ρ′ represents V as well; hence ρ′ # µV by Proposition 3.6.
Thus, ρ(= µV ) satisfies (30).

Let now ρ satisfy (30), we have to show that V := V (ρ) is maximal. Taking in particular ρ′ = µV in
(30) shows that ρ must equal µV . Let V ′ ⊃ V be S-free; we have (V ′)◦ ⊂ V ◦, i.e.

γV ′ = σ(V ′)◦ ! σV ◦ = γV = max {0, ρ} .

Now ρ′ := γV ′ is a cgf, so ρ′ # ρ = µV by (30); by Theorem 3.8, ρ′ represents not only V ′ but also V ,
i.e. V ′ = V : V is maximal. "
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