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Abstract. This article reviews the use of first order convex optimization schemes to solve the discretized
dynamic optimal transport problem, initially proposed by Benamou and Brenier. We develop a staggered grid
discretization that is well adapted to the computation of the L2 optimal transport geodesic between distributions
defined on a uniform spatial grid. We show how proximal splitting schemes can be used to solve the resulting large
scale convex optimization problem. A specific instantiation of this method on a centered grid corresponds to the
initial algorithm developed by Benamou and Brenier. We also show how more general cost functions can be taken
into account and how to extend the method to perform optimal transport on a Riemannian manifold.

1. Introduction. Optimal transport is a well developed mathematical theory that defines a
family of metrics between probability distributions [54]. These metrics measure the amplitude of
an optimal displacement according to a so-called ground cost defined on the space supporting the
distributions. The resulting distance is sometimes referred to as the Wasserstein distance in the
case of Lp ground costs. The geometric nature of optimal transportation, as well as the ability to
compute optimal displacements between densities, make this theory progressively mainstream in
several applicative fields such as economic modeling and image processing. However, the numerical
resolution of the optimal transportation problem raises several challenges. This article is focused
on the computation of geodesics for the optimal transport metric associated to the L2 cost. It
reviews and extends the approach pioneered by Benamou and Brenier [7] from the perspective of
proximal operator splitting in convex optimization. This shows the simplicity and efficiency of
this method, which can easily be extended beyond the setting of optimal transport by considering
various convex cost functions.

1.1. Previous Works.

Discrete optimal transport. The easiest way to discretize and compute numerically optimal
transports is to consider finite sums of weighted Diracs. In this specific case, the optimal transport is
a multi-valued map between the Diracs locations. Specific linear solvers can be used in this context,
and in particular network and transportation simplexes [22] can scale up to a few thousands of Dirac
masses. Dedicated combinatorial optimization methods have been proposed, such as the auction
algorithm [10], which can handle integer costs between the Diracs. In the even more restricted
case of two distributions with the same number of Diracs with equal weights, the transportation
is a bijection between the points, and thus corresponds to the optimal assignment problem [16].
Combinatorial optimization methods such as the Hungarian algorithm [32] have roughly cubic
complexity in the number of Diracs. Faster schemes exist for specific cost functions, such as for
instance convex cost of the distance on the line (where it boils down to a sorting of the positions)
and the circle [25], concave costs on the line [26], the `1 distance [39]. The computation can
be accelerated using multi-scale clustering [42]. Note also that various approximations of the
transportation distance have been proposed, see for instance [50].

Despite being numerically intensive for finely discretized distributions, this discrete transport
framework have found many applications, such as for instance color transfer between images [46],
shape retrieval [48], surface reconstruction [23] and interpolation for computer graphics [11]

Optimal transport via PDE’s. The optimal transport for the L2 ground cost has a special
structure. It can be shown to be uniquely defined and to be the gradient of a convex function [13].
This implies that it is also the solution of the fully non-linear Monge-Ampère partial differential
equation.

Several methods have been proposed to discretize and solve this PDE, such as for instance the
method of [45] which converges to the Aleksandrov solution, and the one of [44] which converges
to the viscosity solution of the equation. Alternative methods such as [24] and [29] are efficient for
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regular densities. A major difficulty in these approaches is to deal with compactly supported den-
sities, which requires a careful handing of the boundary conditions. [31] proposes to enforce these
conditions by iteratively solving a Monge-Ampere equation with Neumann boundary conditions.
[9] introduces a method requiring the solution of a well-posed Hamilton-Jacobi equation.

Another line of methods iteratively constructs mass preserving mappings converging to the
optimal transport [3]. This explicitly constructs the so-called polar factorization of the initial map,
see also [5] for a different approach. This method is enhanced in [33] to avoid drifting from the
preservation constraint during the iterations.

These PDE’s based approaches to the resolution of the optimal transport have found several
applications, such as image registration [34], density regularization [15], optical flow [19] and grid
generation [52].

Dynamical optimal transport. Instead of computing directly the transport, it is possible to
consider the geodesic path between the two densities according to the Wasserstein metric (the
so-called displacement interpolation). For the L2 ground cost, this geodesic is obtained by linear
interpolation between the identity and the transport. The geodesic can thus be computed by first
obtaining the transport and then evolving the densities. If one considers discrete sums of Diracs,
this corresponds to solving a convex linear program, and can also be understood as a Lagrangian
approximation of the transport between (possibly continuous) densities that have been discretized.
This approach is refined in [36], which considers discretization with mixture of Gaussians.

It is also possible to consider an Eulerian formulation of the geodesic problem, for which
densities along the path are discretized on a fixed spatial grid. Conservation of mass is achieved by
introducing an incompressible velocity field transporting the densities. The breakthrough paper [7]
shows that it is possible to perform a change of variable to obtain a convex problem. They propose
to solve numerically the discretized problem with a first order iterative method (more precisely,
they use the ADMM algorithm on a dual formulation, see bellow).

Geodesics between pairs of distributions can be extended to barycenters between an arbitrary
finite collection of distributions. Existence and uniqueness of this barycenter is studied in [1].
Computing the barycenter between discrete distributions requires the resolution of a convex linear
program that corresponds to a multi-marginal optimal transportation. However, in sharp contrast
with the case of two distributions, the special case of un-weighted sums of Diracs is not anymore
equivalent to an assignment problem, which is known to be NP-hard [16]. Computing numerically
this barycenter for large scale problems thus requires the use of a non-convex formulation to solve
for a Lagrangian discretization, which finds applications in image processing [47].

Generalized transport problems. The formulation of the geodesic computation as a convex
optimization problem initiated by [7] enables the definition of various metrics obtained by changing
the objective function. A penalization of the matching constraint [6] allows one to compute an
unbalanced transport where densities are not normalized to have the same mass. An interpolation
between the L2-Wasserstein and L2 distances is proposed in [8]. Lastly, an interpolation between
L2-Wasserstein and H−1 distances is described in [27]. This extension relies in a crucial manner on
the convexity of the extended objective function, which enables a theoretical analysis to characterize
minimizing geodesics [17]. Convexity also allows one to use the numerical scheme we propose with
only slight modifications with respect to the L2-Wasserstein case.

Optimal transport on Riemannian manifolds. Many properties of the L2-Wasserstein distance
extend to the setting where the ground cost is the square of the geodesic distance on a Riemannian
manifold. This includes in particular the existence and uniqueness of the transport map, which is
the manifold exponential of the gradient of a semi-convex map [41]. Displacement interpolation for
transport on manifolds has the same variational characterization as the one introduced in [8] for
Euclidean transport, see [55] for a detailed review of optimal transport on manifolds. Interpolation
between pairs of measures generalizes to barycenters of a family of measures, see [37].

Displacement interpolation between Dirac measures amounts to computing a single geodesic
curve on the manifold. Discretization and numerical solutions to this problem are numerous.
A popular method is the Fast Marching algorithm introduced jointly by [49, 53] for isotropic
Riemannian metrics (i.e. when the metric at each point is a scalar multiple of the identity)
discretized on a rectangular grid. The complexity of the method is O(N log(N)) operations, where
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N is the number of grid points. This algorithm has been extended to compute geodesics on 2-D
triangular meshes with only acute angles [38]. More general discretizations and the extension to
Finsler metrics require the use of slower iterative schemes, see for instance [12].

Computing numerically optimal transport on manifolds has been less studied. For weighted
sums of Diracs, displacement interpolation is achieved by solving the linear program to compute
the coupling between the Diracs and then advancing the Diracs with the corresponding weights
and constant velocity along the geodesics. In this article, we propose to extend the Eulerian
discretization method [8] to solve for the displacement interpolation on a Riemannian manifold.

First order and proximal methods. The convex problem considered by Benamou and Brenier [7]
can be re-casted as the optimization of a linear functional under second order conic constraints
(see Section 3.6 for more details). This class of programs can be solved in time polynomial with
the desired accuracy using interior points methods, see for instance [43].

However, the special structure of the problem, specially when discretized on an uniform grid,
makes its suitable for first order scheme, and in particular proximal splitting methods. While they
do not reach the same convergence speed for arbitrary conic program, they work well in practice for
large scale problems, in particular when high accuracy is not mandatory, which is a common setup
for problems in image processing. Proximal splitting schemes are first order optimization methods
that allows one to minimize a sum of so-called “simple” functionals, possibly (for some methods)
pre-composed by linear operators. A functional is called “simple” when it is possible to compute
its proximal operator (see expression 1.1 for its precise definition) either in closed form, or with
high accuracy using a few iterations of some sub-routine. In this article, we focus our attention to
the Douglas-Rachford algorithm, introduced by [40] and on primal-dual methods. We make use of
the recently proposed method [18], but other schemes could be used as well, see for instance [14].
We refer the reader to [21] and the references therein for more information about the properties of
proximal maps and the associated proximal splitting schemes.

Note that the algorithm proposed by [7] corresponds to applying the Alternating Direction
Method of Multiplier (ADDM) [30] to the Fenchel-Rockafeller dual of the (primal) dynamical
transport problem. As shown by [28], this corresponds exactly to applying directly (a specific
instanciation of) the Douglas-Rachford method to the primal problem.

Fluid mechanics discretization. While Lagrangian methods utilize a mesh-free discretizations
(see for instance [36]), thats typically tracks the movement of centers of masses during the trans-
portation, Eulerian method requires a fixed discretization of the spacial domain. The most straight-
forward strategy is to use an uniform centered discretization of an axis-aligned domain, which is
used in most previously cited work, see for instance [7, 3]. Because of the close connection between
dynamical optimal transport and fluid dynamics, we advocate in this article the use of staggered
grids [2], which better copes with the incompressibility condition.

1.2. Contributions. Our first contribution is to show how the method initially proposed
in [7] is a specific instance of the Douglas-Rachford algorithm. This allows one to use several
variations on the initial method, by changing the values of the two relaxation parameters. Our
second contribution is the introduction of a staggered grid discretization which is the canonical
way to enforce incompressibility constraints. We show how this discretization fits into our proximal
splitting methodology by introducing an interpolation operator and either making use of auxiliary
variables or primal-dual methods. Our last contribution includes an exploration of several variations
on the original convex transportation objective, the one proposed in [27], and a specially varying
penalization which can be interpreted as replacing the L2 ground cost by a geodesic distance on a
Riemannian manifold. Note that the Matlab source code to reproduce the figures of this article is
available online1.

1.3. Notations. For a closed convex set C, we denote its associated indicator function

ιC(U) =

{
0 if U ∈ C,

+∞ otherwise.

1http://www.ceremade.dauphine.fr/~peyre/codes/
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Given a convex, lower semi-continuous and proper functional F : H → R ∪ {+∞} defined over
some Hilbert space H, its Legendre-Fenchel transform of F is defined as

F ∗(V ) = max
U∈H

〈U, V 〉 − F (U),

while its proximal operator ProxγF : H → H is defined as

ProxγF (U) = argmin
U ′∈H

1

2
||U − U ′||2 + γF (U ′). (1.1)

Being able to compute this proximate mapping is crucial to use various proximal-splitting convex
optimization methods. We call a function F such that ProxγF can be computed in closed form a
simple function. Note that thanks to Moreau’s identity

ProxγF?(U) = U − γ ProxF/γ(U/γ), (1.2)

computing the proximal operator of F ∗ has the same complexity as computing the proximal op-
erator of F . We refer the reader to [21] for a detailed review of the various algebraic properties
enjoyed by proximal maps.

2. Dynamical Optimal Transport Formulation.

2.1. Optimal Transport. In the following, we will restrict our exposition to maps T :
[0, 1]2 7→ [0, 1]2 which satisfy homogeneous Dirichlet boundary conditions, and that are smooth. A
valid transport map is a map that pushes forward the measure f0(x)dx onto f1(x)dx. In term of
densities, this corresponds to the constraint

f0(x) = f1(T (x))|det(∂T (x))|

where ∂T (x) ∈ R2×2 is the differential of T at x. This is known as the gradient equation. We call
T (f0, f1) the set of transport that satisfies this constraint. An optimal transport T solves

min
T∈T (f0,f1)

∫
C(x, T (x))dx (2.1)

where C(x, y) > 0 is the cost of assigning x ∈ [0, 1]2 to y ∈ [0, 1]2. In the case C(x, y) = ||x − y||2
the optimal transport distance is called the L2-Wasserstein distance between f0 and f1.

2.2. Fluid Mechanics Formulation. The geodesic path between the measures with densi-
ties f0(x) and f1(x) can be shown to have density t 7→ f(x, t) where t ∈ [0, 1] parameterize the
path, where

f(x, t) = f0((1− t)Idd + tT (x))|det((1− t)Idd + t∂T (x))|.

Benamou and Brenier showed in [7] that this geodesic solves the following non-convex problem
over the densities f(x, t) ∈ R and a velocity field v(x, t) ∈ R2

min
(v,f)∈Cv

∫
[0,1]d

∫ 1

0

f(x, t)||v(x, t)||2dtdx, (2.2)

under the set of non-linear constraints

Cv =
{

(v, f) \ ∂tf + divx(fv) = 0, v(0, ·) = v(1, ·) = 0, f(·, 0) = f0, f(·, 1) = f1
}
.

where the first relation in Cv is the continuity equation. We impose homogeneous Dirichlet con-
ditions on the velocity field v and the temporal boundary constraints on f give the link with the
density data.

Following [7], introducing the change of variable (v, f) 7→ (m, f), where m is the momentum
m = fv, one obtains a convex optimization problem over the couple (f,m)

min
(m,f)∈C

J (m, f) =

∫
[0,1]d

∫ 1

0

J(m(x, t), f(x, t))dtdx, (2.3)
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where ∀ (m, f) ∈ Rd × R, J(m, f) =


||m||2
f if f > 0,

0 if (m, f) = (0, 0),
+∞ otherwise.

(2.4)

and the set of linear constraints reads

C =
{

(m, f) \ ∂tf + divx(m) = 0, m(0, ·) = m(1, ·) = 0, f(·, 0) = f0, f(·, 1) = f1
}
.

3. Discretized Dynamic Optimal Transport. For simplicity of exposure, we describe the
discretization for the 1-D case. It extends verbatim to higher dimensional discretization d > 1.

3.1. Centered Grid. We denote N + 1 the number of discretization points in space, and
P + 1 the number of discretization points in time. We introduce the centered grid discretizing the
space-time square [0, 1]2 in (N + 1)× (P + 1) points as

Gc =
{

(xi = i/N, tj = j/P ) ∈ [0, 1]2 \ 0 6 i 6 N, 0 6 j 6 P
}
.

We denote

V = (m, f) ∈ Ec = (mi,j , fi,j))
06j6P
06i6N

the variables discretized on the centered grid, where Ec = (Rd+1)Gc = (R2)Gc is the finite dimen-
sional space of centered variables.

3.2. Staggered Grid. Similarly to the discretization of PDE’s in incompressible fluid dy-
namics (see for instance [35]), we consider a staggered grid discretization which is more relevant to
deal with the continuity equation:

Gxs =

{(
xi+1/2 = (i+ 1/2)/N, tj = j/P

)
∈ [−1, N + 1]

N
× [0, 1] \− 1 6 i 6 N, 0 6 j 6 P

}
,

Gts =

{(
xi = i/N, tj+1/2 = (j + 1/2)/P

)
∈ [0, 1]× [−1, P + 1]

P
\ 0 6 i 6 N,−1 6 j 6 P

}
.

From these definitions, we see that Gxs contains (N + 2) × (P + 1) points and Gts corresponds
to a (N + 1)× (P + 2) discretization. We finally denote

U = (m̄, f̄) ∈ Es = ((m̄i,j)
06j6P
−16i6N , (f̄i,j)

−16j6P
06i6N )

the variables discretized on the staggered grid, where Es = RGxs × RGts is the finite dimensional
space of staggered variables.

3.3. Interpolation and Divergence Operators. We introduce a midpoint interpolation
operator I : Es → Ec, where, for U = (m̄, f̄) ∈ Es, we define I(U) = (m, f) ∈ Ec as

∀ 0 6 i 6 N, ∀ 0 6 j 6 P,

{
mi,j = (m̄i+1/2,j + m̄i−1/2,j)/2,
fi,j = (f̄i,j+1/2 + f̄i,j−1/2)/2.

(3.1)

The space-time divergence operator div : Es → RGc is defined, for U = (m̄, f̄) ∈ Es as

∀ 0 6 i 6 N, ∀ 0 6 j 6 P, div(U)i,j = (m̄i+1/2,j − m̄i−1/2,j) + (f̄i,j+1/2 − f̄i,j−1/2).

3.4. Boundary Constraints. We extract the boundary values on the staggered grid using
the linear operator b, defined, for U = (m̄, f̄) ∈ Es as

b(U) =
(

(m̄− 1
2 ,j
, m̄N+ 1

2 ,j
)Pj=0, (f̄i,−1/2, f̄i,P+1/2)Ni=0

)
∈ RP+1 × RP+1 × RN+1 × RN+1.

We impose the following boundary values

b(U) = b0 where b0 = (0, 0, f0, f1) ∈ RP+1 × RP+1 × RN+1 × RN+1,

where f0, f1 ∈ RN+1 are the discretized initial (time t = 0) and final (time t = 1) densities and
the spatial boundary constraint 0 ∈ RP on the momentum m = fv comes from the discretized
Dirichlet boundary conditions on the velocity field v.

5
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3.5. Discrete Convex Problem. The initial continuous problem (2.3) is approximated on
the discretization grid by solving the finite dimensional convex problem

min
U∈Es

J (I(U)) + ιC(U). (3.2)

The discrete objective functional J reads for V = (m, f) ∈ Ec:

J (V ) =
∑
k∈Gc

J(mk, fk), (3.3)

where we denote k = (i, j) ∈ Gc the indexes on the centered grid, and the functional J is defined
in (2.4).

The constraint set C corresponds to the divergence-free constraint together with the boundary
constraints

C = {U ∈ Gs \ div(U) = 0 and b(U) = b0} .

3.6. Second Order Cone Programming Formulation. The discretized problem (3.2) can
be equivalently solved as the following minimization over variables (U, V,W ) ∈ Es × Ec × RGc

min
(V,W )∈K,V=I(U)

∑
k∈Gc

Wk (3.4)

where K is the product of (rotated) Lorentz cones

K =
{

(V = (m̄, f̄)),W ) ∈ Ec × RGc \ ∀ k ∈ Gc, ||m̄k||2 −Wkf̄k 6 0
}
.

Problem (3.4) is a specific instance of so-called second-order cone program (SOCP), that can be
solved in time polynomial with the accuracy using interior point methods (see Section 1.1 for
more details). As already mentioned in Section 1.1, we focus in this article on proximal splitting
methods, that are more adapted to large scale imaging problems.

4. Proximal Splitting Algorithms. In this section, we first compute the proximal operators
of the cost function J and of indicator of the constraint set C. We then present some proximal
splitting algorithms that can be used to solve (3.2).

4.1. Computing ProxγJ . The following proposition shows that the functional J defined
in (3.3) is simple, in the sense that its proximal operator can be computed in closed form.

Proposition 1. One has

∀V ∈ Ec, ProxγJ (V ) = (ProxγJ(Vk))k∈Gc

where, for all (m̃, f̃) ∈ Rd × R,

ProxγJ(m̃, f̃) =

{
(µ(f?), f?) if f? > 0,

(0, 0) otherwise.

where ∀ f > 0, µ(f) =
fm̃

f + 2γ
(4.1)

and f? is the largest real root of the third order polynomial equation in X

P (X) = (X − f̃)(X + 2γ)2 − γ||m̃||2 = 0. (4.2)

Proof. This proposition is a special case of Proposition 2.
Note that since J is a positive 1-homogenous functional, its Legendre-Fenchel transform is the

indicator of a convex set

J∗ = ιCJ where CJ =
{

(a, b) ∈ Rd × R \ 2||a||2 + b 6 0
}
.

6
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This allows to re-write the functional J as

J(m, f) = sup
(a,b)∈CJ

〈a, m〉+ b f

which is essentially the approach used in [7] to apply the ADMM algorithm on a dual problem.
Note that to relate this approach to the Douglas-Rachford algorithm described bellow, one can
directly use the Moreau’s identity (1.2) to compute the proximal operator of J using the orthogonal
projection on Cj

ProxγJ(v) = v − γ ProjCJ (v/γ).

4.2. Computing ProjC. The proximal mapping of ιC is ProjC the orthogonal projector on
the convex set C. This is an affine set that can be written as

C = {U = (m, f) ∈ Es \ AU = y} where AU = (div(U), b(U)) and y = (0, b0).

This projection can be computed by solving a linear system as

ProjC = (Id−A∗∆−1A) +A∗∆−1y

where applying ∆−1 = (AA∗)−1 requires solving a Poisson equation on the centered grid Gc

with the prescribed boundary condition. This can be achieved with Fast Fourier Transform in
O(NP log(NP )) operations where N and P are number of spatial and temporal points, see [51].

4.3. Douglas-Rachford Solver. The Douglas-Rachford (DR) algorithm [40] is a proximal
splitting method that allows one to minimize the sum of two simple functions.

Splitting reformulation.. We recast the initial optimal transport problem (3.2) as

min
z=(U,V )∈Es×Ec

G1(z) +G2(z) (4.3)

where we have defined the functionals

∀ z = (U, V ) ∈ Es × Ec, G1(z) = J (V ) + ιC(U) and G2(z) = ιCs,c(z).

In this expression, Cs,c is the constraint set that couples staggered and centered variables

Cs,c = {z = (U, V ) ∈ Es × Ec \ V = I(U)}

and I is the interpolation operator defined in (3.1).
Proximal operators for DR.. Both G1 and G2 are simple since

ProxγG1(U, V ) = (ProjC(U),ProxγJ (V )),

ProxγG2
(U, V ) = ProjCs,c(U, V ) = (Ũ , I(Ũ)) where Ũ = (Id + I∗I)−1(U + I∗(V ))

where I∗ is the adjoint of the linear interpolation operator. Note that computing ProjCs,c requires
solving a linear system, but this system is separable along each dimension of the discretization grid,
so it only requires solving a series of small linear systems. Furthermore, since the corresponding
inverse matrix is the same along each dimension, we pre-compute explicitly the inverse of these
d+ 1 matrices.

DR iterations.. The iterates of the DR algorithm defines a sequence (z(`), w(`)) ∈ (Es × Ec)×
(Es × Ec) using a initial w(0) and

z(`) = ProxγG2
(w(`)), (4.4)

w(`+1) =
(

1− α

2

)
w(`) +

α

2
RProxγG2

◦RProxγG1
(w(`)) (4.5)

and where we used the following shortcut notation for the reflexive proximal mapping

RProxγG(z) = 2 ProxγG(z)− z.

7
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If 0 < α < 2 and γ > 0, one can show that z(`) → z? a solution of (4.3), see [20] for more details.
In our case, the iterates reads z(`) = (U (`), V (`)), which allows one to retrieve an approximation
f (`) of the transport geodesic as U (`) = (m(`), f (`)).

In the case that α = 1 (no relaxation), one can show that the DR algorithm is equivalent to
the ADMM on the dual [28] and to the ALG2 [30] used by Benamou and Brenier in [7] to solve
the optimal transport problem on a centered grid. Since we consider a staggered grid, the use of
the interpolation operator makes our optimization problem (4.3) different from the original ALG2
and requires the introduction of an auxiliary variable V . Furthermore, the introduction of an extra
relaxation parameter α is useful to speed-up the convergence of the method, as will be established
in the experimentations.

The iteration (4.4) guarantees that the iterates satisfy U (`) = I(V (`)). It is also possible to
exchange the roles of G1 and G2, which defines a different algorithm, for which the iterates satisfy
div(U (`)) = 0 and V (`) is a positive density (but condition U (`) = I(V (`)) does not hold in general).

4.4. Primal-Dual Solver. Primal dual (PD) algorithm such as the relaxed Arrow-Hurwitz
method introduced in [18] allows one to minimize functionals of the form G1 + G2 ◦ A where A
is a linear operator and G1, G2 are simple functions. One can thus directly apply this method to
problem (3.2) with G2 = J , A = I and G1 = ιC .

The iterations compute a sequence (U (`),Υ(`), V (`)) ∈ Es × Es × Ec of variables from an initial
(Υ(0), V (0)) according to

V (`+1) = ProxσG∗2 (V (`) + σIΥ(`)),

U (`+1) = ProxτG1(U (`) − τI∗V (`+1)),

Υ(`+1) = U (`+1) + θ(U (`+1) − U (`)).

Note that ProxσG∗2 can be computed using ProxG2
following equation (1.2). If 0 6 θ 6 1 and

στ ||I||2 < 1 then one can prove that U (`) → U? which is a solution of (3.2).
The case θ = 0 corresponds to the Arrow-Hurwicz algorithm [4], and the general case can be

interpreted as a preconditioned version of the ADDM algorithm.

5. Generalized Cost Functions. Following [27, 17], we propose to use a generalized cost
function that allows one to compute geodesics that interpolate between the L2-Wasserstein and
the H−1 geodesics. To introduce further flexibility, we introduce a spacial varying weight.

5.1. Spatially Varying Interpolation between L2-Wasserstein and H−1 . We define
our new general finite dimensional convex problem as

min
U∈Es

J wβ (I(U)) + ιC(U), (5.1)

where the vector of weights w = (wk)k∈Gc satisfies c < wk 6 +∞ and c > 0 is a small constant.
The generalized functional reads, for β > 0

J wβ (V ) =
∑
k∈Gc

wkJβ(mk, fk), (5.2)

∀ (m, f) ∈ Rd × R, Jβ(m, f) =


||m||2
fβ

if f > 0,

0 if (m, f) = (0, 0),
+∞ otherwise.

(5.3)

Note that J 1
1 = J and that for β ∈ [0, 1], J wβ is convex. Furthermore, one has, for f > 0

det(∂2Jβ(m, f)) =
4β(1− β)||m||2

f3β+2
. (5.4)

This shows that Jβ is strictly convex on R∗,d × R+,∗ for β ∈]0, 1[.
When β = 1 and the weights wk are constant in time, the solution of (5.2) discretizes the

displacement interpolation between the densities (f0, f1) for a ground cost being the squared
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geodesic distance on a Riemannian manifold (see Section 1.1 for more details). Note that we
restrict our attention to isotropic Riemannian metrics (being propositional to the identity at each
point), but this extends to arbitrary Riemannian or even Finsler metrics. Studying the properties
of this transportation distance is however not the purpose of this work, and we show in Section 6.3
numerical illustrations of the influence of w.

5.2. Computing ProxγJβ . The following proposition, which generalizes Proposition 1, shows
how to compute ProxγJwβ .

Proposition 2. One has

∀V ∈ Ec, ProxγJwβ (V ) = (ProxγwkJβ (Vk))k∈Gc

where, for all (m̃, f̃) ∈ Rd × R,

ProxγJβ (m̃, f̃) =

{
(µ(f?), f?) if f? > 0 and γ <∞,

(0, 0) otherwise.

where ∀ f > 0, µ(f) =
fβm̃

fβ + 2γ
∈ Rd (5.5)

and f? is the largest real root of the following equation in X

Pβ(X) = X1−β(X − f̃)(Xβ + 2γ)2 − γβ||m̃||2 = 0 (5.6)

Proof. We denote (m̄, f̄) = ProxγJβ (m̃, f̃), and

∀ (m, f) ∈ Rd × R, Φβ(m, f) =
1

2
||(m, f)− (m̃, f̃)||2 + γJβ(m, f).

If f̄ > 0, since J is C1 and is strongly convex on Rd×R+,∗, necessarily (m̄, f̄) is the unique solution
of ∇Φβ(m̄, f̄) = 0, which reads {

2γ m̄
f̄β

+ m̄− m̃ = 0

−γβ ||m̄||
2

f̄β+1 + f̄ − f̃ = 0.

Reformulating these equations leads to the following equivalent conditions

Pβ(f̄) = 0 and m̄ = µβ(f̄).

This shows that if Pβ as at least a strictly positive real root f?, it is necessarily unique and that
(f̄ = f?, m̄ = µβ(f?)). Otherwise, necessarily (f̄ = 0, m̄ = 0).

Note that when β = p/q ∈ Q is a rational number, equation Pβ(X) = 0 corresponds to finding
the root of a polynomial. It can be solved efficiently using a few Newton descent iterations starting
from a large enough value of f .

6. Numerical Simulations.

6.1. Comparison of Proximal Schemes. This Section compares the following algorithms
introduced in Section 4:

• Douglas-Rachford (DR in the following) as exposed in Section 4.3, parameterized with α
and γ ;

• ADDM on the dual (ADDM in the following) introduced in [7], (which is DR with α = 1)
parameterized with γ ;

• Primal-dual (PD in the following) as exposed in Section 4.4, parameterized with σ and τ .
The comparison is done on a simple example with two 2-D isotropic Gaussian distributions

(f0, f1) with the same variance. In the continuous case, the solution is known to be a translation
between the mean of the Gaussians. The spatial domain is here of dimension d = 2 and it is
discretized on a grid with (N = P = 31) points for both each dimension. We compute an (almost)
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Fig. 6.1. Display of f?(·, t) for several value of t (note that for t = 0 and t = 1, this corresponds to f0 and
f1). The grayscale values are linearly interpolating from black to white between 0 and the maximum value of f?.

exact reference solution (m?, f?) of the discrete problem with 106 iterations of the DR. The obtained
transported mass f?(·, t) is illustrated in Figure 6.1.

For each algorithm, we perform an exhaustive search of the best possible set of parameters.
These optimal parameters are those minimizing ||(m?, f?) − (m(`), f (`))||, the `2 distance between
f? and the output of the algorithm after ` = 100 iterations. The obtained parameters for this data
set are: γ = 1/350 for ADMM on the dual, (γ = 1/240, α = 1.983) for DR and σ = 85 for PD. For
PD, we found that simply setting τ = 0.99

σ||I||2 leads to almost optimal convergence rate in our tests,

so we use this rule to only introduce a single parameter σ. Note that this parameter choice is within
the range of parameters στ ||I||2 < 1 that guaranties convergence of the PD method. Figure 6.2
displays, for this optimal choice of parameters, the evolution of the cost function value as well as
the convergence toward (m?, f?) as a function of the iteration number `.

One can observe that the quality of the estimation can not be deduced from the cost function
evolution since the functional is very flat. Indeed, an almost minimal value of the function minimum
is reached by all the algorithms after roughly 103 iterations, whereas the `2 distance to the reference
solution continue to decrease almost linearly in log-log scale.
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Fig. 6.2. At each iteration `, we plot the value of the cost function J and the distance between the reference
solution (m?, f?) and the estimation (m(`), f (`)) for the different proximal splitting algorithms with the best found
parameters.

When comparing the three approaches, PD presents the fastest convergence rate to the refer-
ence solution and the relaxed DR algorithm performs better than ADDM on the dual, which shows
the advantage of introducing the α parameter. Note also that the computational cost is smaller
for PD, as it takes2 0.13s for one PD iteration and 0.2s for one DR or ADMM iteration for this
example.

6.2. Interpolation Between L2-Wasserstein and H−1. We first apply the PD algorithm
for different values of β on the bump example introduced in the previous section. The results
are presented in the Figure 6.3, which shows the level-lines of the estimated densities f (`)(·, t) for
` = 1000 iterations. It shows the evolution of the solution between a H−1 linear interpolation
(β = 0) and a displacement interpolation with transport (β = 1).

Figure 6.4 shows for β = 1/2 and β = 3/4 the evolution of the cost function with the iterations
index `, together with the convergence of the estimate to the reference solution (m?, f?) (obtained
after 105 iterations of the PD algorithm). We can observe that the behavior of the process with

2For our Matlab implementation on a standard laptop computer.
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β
=

0
β

=
1/

4
β

=
1/

2
β

=
3/

4
β

=
1

t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2 t = 5/8 t = 3/4 t = 7/8 t = 1

Fig. 6.3. Display of the level sets of f (`)(·, t) for several value of t and β (note that for t = 0 and t = 1, this
corresponds to f0 and f1).

β ∈]0, 1[ is different than the one observed for β = 1 in Figure 6.2. Indeed, we observe a faster
convergence of the algorithms, which is consistent with the fact that Jβ becomes more and more
strongly convex as β approaches 1/2 (see (5.4)).
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Fig. 6.4. At each iteration `, we plot the value of the cost function Jβ(m(`), f (`)) and the distance between

the reference solution (m?, f?) and the estimation (m(`), f (`)). The first (resp. second) row presents the result with
β = 1/2 (resp. β = 3/4).

As a second example, we show in Figure 6.5 the different morphings obtained between pictures
of Gaspard Monge and Leonid Kantorovich. The grayscale representation scales linearly between
black (value of 0) and white (value of 1) and the dimensions are N + 1 = 75, M + 1 = 100,
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P + 1 = 60, M being the number of discrete points in the second spatial dimension.

β
=

0
β

=
0.

2
5

β
=

0.
5

β
=

3/
4

β
=

1

t = 0 t = 1/6 t = 1/3 t = 1/2 t = 2/3 t = 5/6 t = 1

Fig. 6.5. Evolution of f (`)(·, t) for several value of t and β. The first and last columns represent the data f0

and f1. The intermediate ones present the reference solution f∗(t) for successive times t = i/6, i = 1 · · · 5. Each
line illustrates f∗ for different values β = j/4, j = 0 · · · 4 of the generalized cost function.

6.3. Riemannian Transportation. We investigate in this section the approximation of a
displacement interpolation for a ground cost being the squared geodesic distance on a Riemannian
manifold. This is achieved by solving (5.1) with β = 1 but a non-constant weight map w.

We exemplify this setting by considering optimal transport with obstacles, which corresponds
to choosing weights w that are infinity on the obstacle O ⊂ Rd × R, i.e.

∀ k ∈ Gc, wk = 1 + ιC(xk, tk) ∈ {1,+∞}.

Note that the obstacles can be dynamic, i.e. the weight w needs not to be constant in time.
Figure 6.6 shows a first example where O is a 2-D (d = 2) static labyrinth map (the walls of

the labyrinth being the obstacles, and are displayed in black). We use a 50×50×100 discretization
grid of the space-time domain [0, 1]3 and the input measures (f0, f1) are Gaussians with standard
deviations equal to 0.04. For Gaussians with such a small variance, this example shows that
the displacement interpolation is located closely to the geodesic path between the centers of the
gaussians.

Figure 6.7 shows a more complicated setting that includes a labyrinth with moving walls: a wall
appears at time t = 1/4 and another one disappears at time 1/2. The difference with respect to the
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t = 0 t = 1/9 t = 2/9 t = 1/3 t = 4/9

t = 5/9 t = 2/3 t = 7/9 t = 8/9 t = 1

Fig. 6.6. Evolution of f (`)(·, t) for several values of t, using a Riemannian manifold with weights wk (constant
in time) restricting the densities to lie within a 2-D static labyrinth map.

previous example is the fact that w is now time dependent. This simple modification has a strong
impact on the displacement interpolation. Indeed, the speed of propagation of the mean of the
density is not constant anymore since the density measure is confined in a small area surrounded
by walls for t ∈ [1/4, 1/2].

t = 0 t = 1/9 t = 2/9 t = 1/3 t = 4/9

t = 5/9 t = 2/3 t = 7/9 t = 8/9 t = 1

Fig. 6.7. Evolution of f (`)(·, t) for several values of t, using a Riemannian manifold with weights wk (evolving
in time) restricting the densities to lie within a 2-D dynamic labyrinth map (i.e. with moving walls).

Conclusion. In this article, we have shown how proximal splitting schemes offer an elegant and
unifying framework to describe computational methods to solve the dynamical optimal transport
with an Eulerian discretization. This allowed use to extend the original method of Benamou
and Brenier in several directions, most notably the use of staggered grid discretization and the
introduction of generalized, spatially variant, cost functions.
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