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LOCAL MINIMIZERS OF FUNCTIONALS
WITH MULTIPLE VOLUME CONSTRAINTS *

Epouarb Oupet! AND M arRc OLIVER RIEGER 2

Abstract. We study variational problems with volume constraints,, iwith level sets of prescribed measure.
We introduce a numerical method to approximate local minérs and illustrate it with some two-dimensional
examples. We demonstrate numerically nonexistence seatlich had been obtained analytically in previous
work. Moreover, we show the existence of discontinuous dégece of global minimizers from the data by using
aT-limit argument and illustrate this with numerical comgidas. Finally we construct explicitly local and global

minimizers for problems with two volume constraints.
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1. INTRODUCTION

Let Q be a bounded open setitf. The general form of a variational problem @nwith two level set constraints is
given by the minimization of

Minimize E(u) := f f(x u(x), Vu(x)) dx,
Q
l{xeQ, ux) =aj| = a,
l{x € Q, u(x) = b}l =B, 1)

whereu € HY(Q) anda,8 > 0, a + 8 < |Q|. Problems of this class have been encountered in the casftéximissible
fluids [?] and mixtures of micromagnetic materialg.[ The dificulty of such problems is the special structure of their
constraints: A sequence of functions satisfying thesetcainss can have a limit which fails to satisfy the consttsin

Such minimization problems but with only one volume corietrhave been studied by various authors, see €lg. [
Problems with two or more constraints have a vefjedent nature than problems with only one volume constréirthe
case of one volume constraint, only additional boundanditams or the design of the energy can induce transitions of
the solution between fierent values. Two or more volume constraints, on the othed Harce transitions of the solution
by their very nature. Such problems have been studiedrsgaittom the fundamental work by Ambrosio, Marcellini,
Fonseca and TartaP]. Their results have been generalized by various authorapare e.g.,7,?,?]. It turned out that
existence can only be guaranteed for functibrsaitisfying quite specific conditions, and that there arg eaamples of
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nonexistence, e.g. if = 1, f(x,u, u’) = |U'|? + |u and|Q| — & — 8 sufficiently large [?]. Whereas the one dimensional case
by now is relatively well understood (compare [?, ?]), thare few sharp results on existence in the higher dimensional
case P]. There are in addition some results on local minimizershim dne-dimensional case [?], but there were so far
no rigorous results in the higher dimensional case. By cdmguhe shape derivative of the functional it is, however,
possible to give a necessary condition for minimizers, adideen done in [?]:

Theorem 1.1. Letue W*2(Q, [0, 1]) be a solution of (1). Assume thatS d{u = 0}nQ s Ct, thenZ is locally constant
onsS.

There is also very little known about explicit examples ohmiizers in two dimensions, compare [?, ?].

In this article we are introducing a numerical method for #&pproximation of local minimizers of (1). We apply
this method to various examples and obtain a first picturé®fshape of local and global minimizers for some simple
domains inR?. Guided by the numerical results, we prove rigorously thaneon the unit square solutions are not
depending continuously on the parametemdg and illustrate this with numerical results. Moreover, wewlthat even
on convex domains iR nontrivial local minimizers can exist.

2. NUMERICAL APPROXIMATIONS

2.1. General approach and level-set methods

We suppose in this section the existence of a solution of.€l)that there exists a functiane H1(Q) minimizing the
problem (1). Our goal is to find a numerical method for the catapon of this solution.

We will first explain our ideas in the simplest situation wéaé(x, u(x), Vu(x)) = [Vu(x)|>. In this situation existence
of a solution for problem (1) has been already found in [?].r @aproach is based on the following fact: Létbe an
optimal function for the problem, and denote

Qa={XxeQ, u'(X)=al, Qp={xeQ, u(x)=Dhb}.

Qa4 andQy, are closed sets, sincas Holder continuous, for a proof see [?, Theorem 3.3]. Thtéspossible to reconstruct
u* by solving the elliptic boundary value problem:

Au=0, in Q\(QaUQy),

U=a on 09dQ,,

u=g on 0Qy, @
M=0 on 9Q\(QaUQp).

The numerical approximation of an optimal functiohis hence reduced to an optimization problem for the two sets
Q4 andQp. Unfortunately, very few results are known concerning tpémal setsQ, andQy,. In particular, it is not
possible to restrict the optimization process to connesgdsi since disconnected sets can be optimal. We propose belo
an approach based on level set methods which makes it ppssipenerate also disconnected sets.

Before this, we recall briefly the standard tools of levelrsethods in a simplified context where only one single shape
is unknown (see for instanc@][for numerical details closely related to our approach).aiplain later how to deal with
more than one unknown shape.

Let Q be a subset dk?, we consider an optimization problem where we want to find@gineal setO c Q for a given
functional. The main idea of the method is to parameifizgy a function®, the so-calledevel set functionthat satisfies

d(x) <0 ifxeO,
O(x) >0 if xe Q\0,
O(x)=0 if xedo.
For numerical convenience which will be explain below, txeel set functionb is always defined on a cartesian grid
defined on a square containaing theQet
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As suggested in?], such a function will be initialized with the signed-dista which is given by

d(x) = —dist(x,00) if xe O,
{ d(x) = dist(x,00) if xe Q\O.

We remark that the constructed distance is generally ngt sasompute. In our case, for the cartesian meshon
deduced by the cartesian grid whares defined, we choose an approximate signed-distance fumwetiich is constant
on each triangle of the mesh. Its value in the triarigle computed by evaluating the distance between the centeassé
of T and the center of mass of the closest triangle lying on thadaty of the initial shape.

Once® is defined, we can let its level set at 0 (i.€0) fluctuate with time under the vector fieldh (wherev is a
real-valued function and is the normal vector oA0). In other words, ifx(t) describes the evolution of a point @
under such a transformation, it has to satisfy

D(t,x(t)) =0
for all t. Differentiating this expression, we obtain
o0
2t (LX) + VXOIN(X(D) - Vx@(t, X(1)) = 0. ®3)
Now the normal to a level set in a non-stationary point is gilg
VX(D
n(x(t)) = t, X(t)).
(X) = 15 & X(O)
Hence, using (3), we derive
oo
¢ (&X(0) + V(D) V@I (& x(1) = 0. 4)

In order to compute the evolution &, we thus have to solve a Hamilton-Jacobi equation. We rethatkhe computation
we have presented only concerns the level set 0, but sinaadatige the vector fielen has a natural extension ¢n we
solve the equation (4) in the whole get

We want to find a good velocity fieldn for the shape optimization problem under investigationeréfore we follow
an approach which has been first introduced?irand choosen as the vector field obtained by boundary variations. Let
O c Q be a connected set witt?-boundary andi a solution of the problem

u=a on 40, 5)

M=0 on Q\O.

{ Au=0, in Q\O,

Itis well known in shape optimization (see for instan2g?[?]) that the shape derivative of the energyadf the direction
of a vector fieldV localized aroundO is given by Hadamard’s formula

dE au\?
W ——\L‘O(%) Vnda'

This computation suggests that the steepest descentidirécgiven by the normal vector field

ou\? N
on/
Moreover, sincel is by definition constant alongO this vector field has a natural extension to the donfaumsing the

relation:
Ne s A0
Vol
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In order to avoid the computation of a new mesh at each iteratve compute an approximation of the solution of (5) via
a penalization method introduced P

2.2. A multi-level set method

As explained before, the numerical approximation of (1) barreduced to the approximation of the two Sets
Q, u(x) = a} and{x € Q, u(x) = b}. In that case, two shapes are unknown and we propose to paintbose sets
with two different level set functions, name®y, and®,. At each step of the algorithm the two sets evolve under the
local vector field given by the shape derivative. The onlynpthiat we have to worry about is the possibility of crossing
of those level sets. Several approaches have already besstigrated for dealing with this kind offiiiculty. The most
standard way to avoid the crossing of the level sets is to guhalization term like

L(H((Da(x)) + H(®p(x)) —1)"dx=0

to the functional , wheréli(y) is equal to 1 foly < 0 and equal to 0 otherwise ang){ stands for the positive part gf
Although we are not able to prove that the crossing of leved géll never happen during the optimization, we did not
need to implement the previous method, since in our sinarlatiwe never observed a crossing of level sets. This fact
is probably a result of the fact that such crossing (or evestiing) of the level sets cannot occur in the limit, i.e. for
minimizers of (1) as the following theorem states:

Theorem 2.1. Let u be a minimizer of (1). Thetist (u = a}, {u = b}) > 0.

Proof. This is an immediate consequence of a regularity result bgddoi and Tilli [?] that ensures thatis Holder
continuous. O

Of course, this idea can be extended to arbitrary numbeevef sets.

We now compute the solution of the above Hamilton-Jacobaggn. Our description will be limited to a simple
algorithm reported in [?] designed to approach the wealogisg solution of Hamilton-Jacobi equation problem. Let us
consider the first order Cauchy system:

{ 2, x) - F() [VO(t, X)| =0 inR, x D,
®(0, X) = Up(x) in D,

whereD is a bounded rectangle & anduy andF are given functions. From now on we shall use the classidalions
for finite difference schemes on regular meshes of points indexgg.bgtarting from®(0, X) = ug(X), then the evolution
of @ after one time stept is given by

I = @ff — At(max(Fij, 0)V*® + min(Fij, 0)V~®),

where
. _ . 1/2
Vi = [max(Dﬁxtl), 0)* + min(D;;*®, 0) + max(@;"®, 0)* + min(D;’ @, 0)2] !
and "
V" = [max(@;®, 0)? + min(D;®, O + max(;*®, 0} + min(D;Y®, 07| ",
with
Djy1j — Djj
D= —5—

for a space step equal tx. The quantitiesDﬂX(D, Drjyd) and DGVCD are easily deduced. Finally, to define completely our
problem, we add the boundary condition
OVO(t, X)

an =0ondD.
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Ficure 1. Initial and optimized level sets for a problem with two straints

The volume of the level set functiaby, at the discrete level is by definition the volume of all thengdats of the mesh
where®, is less or equal than zero. In order to preserve this volumalégqa along the iterations, we use the Lagrange
multiplier technique reported in [?]. According to the detive computed in (4), the level set functidn satisfies the
Hamilton-Jacobi equation

o0 .
—p (X = (VUL X) + 1) [VDa(t, )] = 0 IN R, x D (6)
whereu(t, .) is the solution of the system (2) associatedbtdt, .) and®y(t,.). As suggested by Osher and Santosa [?],
at each iteration we adapt the Lagrange multigliéo preserve the volume constraint. The same projectionadathof
course reproduced for the level set functiby) in case of two volume constraints.

It is now possible to describe all the steps of our algorithm:

1. Initialization of ®, and®y, by the signed distance on a cartesian grid contaifing

2. Computation of the velocity field by a penalization methadaduced in [?] on the fixed triangular mesh deduced
from the cartesian grid. Checking of an exit criterion.

3. Propagation of the level sets solving the Hamilton-Jacqbiagions (6) preserving the volume constraints.

4. Evaluation of the cost function. If the cost decreases tleeto gtep 5Otherwise divide the time step by5land
gotostep 3

5. Redefinition of®, and®y,.

6. Eventually, reinitialization ofb, and®y, with the signed distance. Back to step 2

For more details on the computation of the solution of théeestguation associated @@, and®y, (in the context of one
level set constraint) see [?] or [?].

2.3. Examples

We present the result of our optimization process in the figutes. We first study the problem (1) wi¢ha disc of
radius 045,a = 8 = 0.15%7, a = 0 andb = 1. We obtain the same optimal shape witfiglient initial guesses presented in
Figures 1 and 2. The algorithm which has been presented sateof two constraints can easily be adapted to a situation
with more constraints. We present in Figure 3 our resultsiforoblem with three constraints of equal volume/2.
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Ficure 3. Initial and optimized level sets for a problem with thremstraints

3. SOLUTION PROPERTIES

3.1. lllustration of nonexistence results

It had been pointed out in [?, ?] that problems of the typerflgeéneral do not have solutions. However, the relaxed
problem

Minimize E(u) := L f(x u(x), Vu(x)) dx,

l{xe Q, u(x) =aj}| > a,
l{xe Q, u(x) =b}| > 5, (7)

admits a solutions whenevér satisfies some standard convexity and growth conditions QiJr previous numerical
computations solve (7), and in the casef 6f, u, Vu) = [Vul? it has been proved already in [?] that any solution of (7) also
solves (1).

In this subsection we want to consider a situation where@xég of a solution for (1) fails. To this aim we choose
f(x,u,Vu) = [Vuf?> + |u] and try to compute numerically a solution of the ill-posedigem (7) fora = 0,b = 1 and
« = B = n(0.15Y on the unit diskQ. As we can observe on Fig. 4, the resulting level set of thetraimt corresponding
toa = 0 is strictly larger than the one which is prescribed. Adiydihe area of that level set is approximatively equal to
0.0872> 7(0.15Y. In that sense, our numerical simulation illustrates thut flaat non existence can occur for problem

).
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3.2. Discontinuous parameter dependence

If u*# denotes the solution to a volume constrained problem ofythe (1) then it is a natural question whethg#
depends (in an appropriate sense) continuously andg. It turns out that this is in general not the case, in fact wesha
the following result:

Theorem 3.1. If we set {u,Vu) = [Vu]? andQ = (0, 1) then the minimizers® of the problem (1) do not depend
continuously orr andg, more precisely: There is an> 0 such thair — u®~*=¢ is not continuous i with respect to
the L*-norm.

To prove this result we use thelimit of the problem (1). We briefly recall the definition Bfconvergence and refer
the reader for any details to the books of Braides and Dal Nrast:

Definition 3.2 ([-convergence)Let F, be a sequence of functionals on a Banach spacdhen we say thaF, is
I'-converging inX to the functionaF and denot&X - T —lim F, = F (or F, 5 F) if
(i) For everyu € X and for allu, — uin X we have

IiLn inf Fn(un) > F(U). (8)
(i) For everyu € X there exists a sequenagc X such thau, — uand

lim supF,(un) < F(u). 9)

nN—oo

Inequality (8) is called™-liminf inequalityand (9) is called-limsupinequality. Such &-limit has been derived for the
casex + 8 — 1 andf(u, Vu) = [Vul? in [?]. A generalization can be found in [?]. L& c RN be an bounded open set.

15 L 08

10.6

0.4

0.2

Ficure 4. Computed minimizeu of a relaxed problem (7) which does not satisfy the congsaifithe
exact problem (1), since its zero level set is too big. Thistrates the nonexistence of solutions for (1)
in the two-dimensional case (see text for details).
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Ficure 5. Type | and type Il solutions.

For fixeda, B € (0, |Q]), we define the following functional

yf IVuPdx if ue Ay,
Faﬁ = Q
+00 elsewhere i.}(Q),

wherey = |Q| — (a + B) and
Aup = {ue HYQ) : [{u=0}| = e and|{u = 1}| = g}
Then we can state the theorem from [?] as follows:

Theorem 3.3. Leta € (0,|Q|). Then
F(Ll)' lim FIY,,B = GI;’

a—a

B-lQ-a

with Gz given by

10
+00 elsewhere in Q). (10)

o {%%{u =0})? ifueBV(Q {0,1})and|{u=0}| = &,
This limit problem is much more accessible to analyticakstigations. In particular we can si&t:= {u = 0} and
B := {u = 1)) and then the minimizers @, correspond to minimizers of the Dido’s proble®}:[Minimize s#(I') such
thatI” separates$) in open setdA andB with |A] = a and|B| = |Q| — @. The solutions of this problem can be explicitly
computed. In the following lemma we summarize the situationhe unit square:

Lemma 3.4. LetQ = (0,1)%, a > 0, then there exists a sE€tc Q minimizing.7#*(I") among all sets with the property
that there exist disjoint open setsB\c Q \ I' with |A| = ¢, |B| = 1 - e andQ = AUBUT.
(i) fa <1/rora>1-1/xthenT is the segment of a circle with center in one of the corner {sadfiQ. (Type |
solution, see Fig. 5.)
(i) If1/m <a <1-1/nthenl is a straight line parallel to a side a@. (Type Il solution, see Fig. 5.)
(i) Ifa=1/mora=1-1/rthenl is either a circle segment or a straight line.

This Lemma seems to be folklore, but for the reader’s corarezg we give a proof using the isoperimetric inequality:

Proof. By symmetry we can assume thatis a solution of the problem for € (0,1/2], moreover we assume first
that¢ := #4(') < 1. Denote the four corner points in the squ&ey Q; and the sides b;. Sincef < 1 the
set projectionr; of I onto S; satisfiesri(I) # Si. Letx € S; \ m1(I) andy € S, \ m2(I). Then the cross-shaped set
{(x1, %) € Q|x = xory; =y} does not intersect witl, therefore we can decompogealong this cross into four
disjoint connected open set, ..., V4 such that J; Vi = Q and eachV; contains the corner poir® and none of the
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Ficure 6. The construction for the proof of Lemma 3.4.

other corner points. We observe that sing®pen,dV; N A c 9Q. We can now mirrol; andA NV, three times along
the adjacent sides of the squ&dsee Fig. 6) to obtain a larger s&tc R2. SincedA N dV; was a subset of the mirror
axis, we can now neglect the boundary and apply the isopaiarieequality on the set#;, hence proving that they
minimize their boundary length (under fixed volume) wherythee discs. We can center these disks without loss of
generality onQ; and denote them b; andD := | J; D;. Due to the minimality property of the boundary length, weéda
=) > %Zi AH(0Dy). Sincet < 1, the diskD; must be disjoint. (Otherwise the sum of two of their ragivould
have to exceed the distance between two corner points, ibeit that would imply 1> € > (ry + r2)2x/4 > x/2.) Since
the disks are disjoint, we hay®| = 3;|D;j| = |Al. For the boundary length we have seen that(I') > %Zi H0D))
with equality if and only ifl" consists of at most four arcs with centersQn It is now easy to check that the optimal
configuration among these sets is given by exactly one aftaeiter in som&);. Since our initial assumptiof< 1 is
feasible ifa < 1/7, we have proved the first point of the theorem.

The last two points of the theorem follow easily: We know tindtoth cases there exist§ avith ;#(I') = 1. Suppose
we could do better, theFi would satisfy.7#(I') < 1 and we could apply the argument above, proving Ehaust be an
arc with center in som&);. Such an arc, however, would have a length larger than 1 (iweicaser = 1/ at least not
less) which contradicts the assumption. O
Proof of Theorem 3.1:Assume that for alk > 0 the functiorh,(e) := u»~*~¢ is continuous in th&*-norm. We know by
the'-convergence that*1-~¢ — u® in L' whereu® denotes the minimizer of thig-limit problem. Hence, forr < 1/n
the functionh,(e) converge to a limit functioh(e) of the type | ag — 0 (see Fig. 5), for ira < 1 - 1/x, however, the
functionsh,(a) converge to a function of the type Il (see Fig. 5). kot 1/x we denote the two possible solutions of the
limit problem byu' andu" . TheL!-distance between andu' is larger than @ (as a small computation shows). We do
not necessarily have uniform convergencéoése — 0, hence we need the following construction:

Let us fixat, @ such that! < 1/ < o? and

lIh(e) = u']l, [Ih(e®) - u""|| < 1/100 (11)
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Ficure 7. Global minimizers for the parameters= 0.55,8 = 0.15 (left) ande = 0.5, 8 = 0.2 (right)
on a square with side length Although the parameters are very close, the solutionsate

(We can ensure this by choosiag anda? close to Jx since the minimizers of the limit problem are continuoussale
1/7.)

Next, we choose sequence’ o2 ande,, such thate, < 1/n, ot — ot, @2 — o? and|h,, (al) — h(ab)|| < 1/n,
lIh, (@) — h(a?)|| < 1/n. (By thel-convergence we know that minimizers of the volume constiaioblem converge for
& — 0 to minimizers of the limit problem, hence we can find sucluseges.)

Now we choose a sequencedf that lies in betweem} andae? and prove that the corresponding solutions of the
volume constrained problem cannot converge to a solutidneofimit problem:

Let of satisfya} < o < 2. Using the (supposed) continuity bfwe can apply the intermediate value theorem to
find such am? such thath,, (@2) — h,, (a})|| > 1/10 and||h, (af) - h,(a?)|| > 1/10. Since the sequenef is uniformly
bounded, we can select a converging subsequence and, hsingaonverge, its limi? satisfiegh(a®) - h(a?)|| > 1/10
and||h(a®) — h(a?)|| > 1/10.

Using this together with (11) anj — u"|| > 0.6 leads to a contradiction. Hence at least fdfisiently smalls > 0
the functionh, cannot be continuous. O

We illustrate this behavior with numerical computationig/(F7) using the algorithm introduced in Section 2.

3.3. Existence of local minimizers

Our algorithm searches for minimizers which are not necégsglobal minimizers. In one dimension it was possible
to characterize local minimizer completely with analyticeethods [?]. However, on convex domains of dimensign2
these methods do not work and it had been conjectured thatirefrery minimizer is global. It is relatively simple to
see examples of local minimizers in nonconvex domains (@mpig. 8 for a numerical computation). However, our
computation hinted that also on the square there can bemgplocal minimizers, compare Fig. 9.

In the following we present a proof of the existence of gealyitocal minimizers on a square.
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Ficure 8. Global (left) and local (right) minimizer on a nonconvegiin.

Ficure 9. Global (left) and local minimizer of the same problem asghin the left side of Fig. 7. This
example demonstrates that there are genuinely local neeision a convex domain, in this case a
square.

Theorem 3.5 (Existence of local minimizer) There are convex domair® c R? such that the volume-constrained
minimization problem (1) with (k, u, Vu) = |Vu|?> admits (for appropriate parameters) local minimizers {wiéspect to
the L*°-distance) which are not global.
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Proof. Let Q be the unit square (@) x (0, 1). For simplicity,a = 0 andb = 1. We choos& < % andB = 1-a —y where
v > 0 is chosen small enough such that

a

We define our candidatefor a local minimizer by a one-dimensional piecewifién@ construction:

1 , X<pB
vixy)={ =X, B<x<l-a.
0 , l-a<x

We compute the energy ofas

L (13)
Y

d x

Y
fle|2=f —
Q 0

dx;

Fory — 0, the functiorv converges in.? to a local minimizer of thé&-limit functional which is not a global minimizer,
compare Lemma 3.4. Therefore, fpr>- 0 suficiently small,v cannot be a global minimizer. It is therefordistient to
prove that it is a local minimizer.

Let us suppose that there is another function the neighborhood of with a smaller energy, more precisely suppose

W=~ <1/3 (14)

ande Vw2 < fQ |Vv|? — £ for somes > 0. Assume furthermore thatsatisfies the same volume constrainva priori,
w does not need to be continuous. For the further construittisphowever, pivotal to work with a continuous function.
Therefore we show that it is possible to construct a contisfanctionw with the same properties:

We observe first, thats cannot have a “jump from zero to one”, i.e. there cannot beiit poe Q such that there are
sequences, andx;, both converging tox with w(x,) — 0 andw(x;) — 1: if such a point existed, then (thanks to the
continuity ofv) we havew(xn) — V(Xn) + V(X)) — w(x;)| — 1. On the other hand, using (14), we h&wéx,) — v(x,)| < 1/3
andw(xp) — v(x,)| < 1/3. Together with the triangle inequality, this leads to atcadiction.

_ We denoteg := {x € Q; w(X) = 0} andQ; := {x € Q; w(X) = 1}. Since there is no jump from zero to one, we have
Qo N Q1 = 0 and we can therefore define

0, X € Sg),
w(X), XeQ\ (Qo U Ql) = T.

The setT is open by construction. For eaghe JT \ dQ there iseithera sequence, — x such thatw(x,) — 0 or a
sequencey, — x such thaiv(x;) — 1. Denote the corresponding sets of boundary pointShsndD;, thenDgy andD4
form a disjoint union 0BT \ Q. Moreover, given thatv has no jump from zero to on®, andD; must be apart from
each other, i.eDg N Dy = 0. In other words, odT \ 4Q, wis locally constant.

The functionwis by construction itH(T), whereT is open. Thus we can approximat@n T by continuous functions
in the H-norm, where we respect the boundary conditiondBn Q. Letw, be such an approximating sequence, then
for nlarge enoughw, — Wiyt < £/2.

We can now defingy by

W(x) = 1, xey,

0, Xe @),
Wn(x), XxeT.
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W is continuous by construction. Moreover, its energy i$ letiver than the energy of:

f VW2 = f [Vwn? < f VW2 + = < f VW2 + £ < f IVVi2.
Q T T 2 Q 2 Q

To ease notation, we will writes instead ofw'in what follows.
The L*-constraint obviously forbidg to take a value of one whexds zero and vice versa, in other words:

w>0on(QB) x(0,1) andw < 1 on (1- «, 1) x (0,1). (15)

We definelL(y) := (0,1) x {y} andT := {w € (0, 1)} (the transition layer ofv). Then

1
fo L) N {(xY) € QIW(x.) € 0. )l dy=[T| = .

where the last inequality follows from the assumption thagtisfies the volume constraint.
We denote

G:={ye (0.1)|Ly) n{w= 0} # 0 andL(y) N {w = 1} # 0}
and define o1& the functions
B(y) := max{la- bl|w(a,y) = 0, w(b,y) = 1, w(t,y) € (0,1) for allt € (a, b)}.
anda(y), b(y) as the values ad andb maximizing|a — b| in the above definition oB(y).

In other wordsB(y) is the maximal width of a transition between zero and onéerinheL(y) and the boundary points
of this transition are given bya(y), y) and p(y), y), compare Fig. 10 for an illustration.

If we integrate over all such maximal transitions, we getvedobound for the total area of the transition layer:

f b(y) dy < [T].
G

We estimate the gradient efby its partial derivative irx-direction, as we did in (13), to get the following estimate:

1
f e f w2 > f f Vw(x. )2 dx dy
Q T G JO
1 2
ff dxdy
G JO0

Now, instead of integrating from 0 to 1, we just integraterdhe largest transition layer, i.e. froaty) to b(y). We recall
that|a(y) — b(y)| = B(y). Using Jensen’s Inequality on the inner integral, we obtla¢refore

This estimate is only useful if we find a relation betwdeand the seG. Otherwise, we can choose the €mall or
B large to reduce the energy. Therefore we want to estimatsizbeofG. Let us define some area of the transition layer
T that is situated outside (@) x G by

d
a—XW(x, y)

To:=(0,1)x ((0,1))\G) N T,
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B I-a I

n

y | L) Q G
W)

: : n
a(y) b(y)
_

B(y)

Ficure 10. lllustration of the set$, Tp andG, the linesL(y) and the maximal transitions froaty) to
b(y) with width B(y) = |a(y) — b(y)I.

compare again Fig. 10 where this set is shaded in dark grey. e[ Tp| be the size of this area.

Since fory € (0,1) \ G we cannot havev(x;,y) = 0 andw(xz, y) = 1 for two valuesx, X2 € (0, 1), and on the other
handw(x,y) < 1 for x > 1 — @ andw(x,y) > 0 for x < 8, see (15), we need to “cover” either,f) x ((0,1) \ G) or
(1-a,1)x((0,1)\ G) by the transition layer. Thus we get a lower bounddfdtaking into account that < g):

5> a(l-|G)).

Resolved fofG, we obtain
G| >1- é (16)
(04

Now we can continue estimating the energywofWe first apply the Jensen Inequality wlBbeing the average ov&on
G:

» 1 1
L|Vw| > L@dy > |G|§_' a7)

Let Tg := Tlp1xc be the transition layers on (0) x G. SinceTg U Tp ¢ T andTg andTp are disjoint, we have
[Tel < |T| = [Tpl. Using that = |Tp| and thatT| = ¥ (volume constraint), we hav&g| <y - 4.

On the other handj;3 B(y) dy < |Tgl, thusB|G| < y — 6 or in other wordsB < (y — 6)/|G|. This provides us with the
necessary relation betwe&sand the size o6.

Together with (17) we obtain

1
f|VW|2 > |G)P——.
Q -6
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Inserting (16), gives

_ 2
Q y-6
We calculate the dierence between this energy and the energy aé computed in (13):

2
o o y-¢6 Y y(y - 6)

\%

7(76— d) (1 - 2%).

Using (12), we see that the right hand side is larger or edpaal tero. This proves that cannot have a smaller energy
thanv, thusv is a local minimizer. O

We thank Giuseppe Buttazzo for his suggestions which hdtpedtiate this work.
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