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Abstract

In this paper we study isoperimetric inequalities for the eigenvalues of the Laplace

operator with constant and locally constant boundary conditions. Existence and sta-

bility results are presented in the frame of the gamma and weak gamma convergencies,

together with identification of optimal sets by analytical and numerical methods.

1 Introduction

The main purpose of this paper is to study the eigenvalues associated to the Laplace operator
with (locally) constant boundary conditions in relationship with the geometric domain. On
the one hand we consider globally constant boundary conditions (simply denoted const. b.c.)
and on the other hand locally constant boundary conditions, which we call conductivity
boundary conditions (denoted cond. b.c.).

The isoperimetric inequality for the first non zero eigenvalue for the const. b.c. eigenval-
ues was discussed by Greco and Lucia in [10]. There is proved that the union of two equal
balls minimizes the first non-zero eigenvalue among all domains of prescribed measure. Sev-
eral more properties are also obtained in [10], among which relationships with the Dirichlet
eigenvalues of the Laplacian and with the twisted eigenvalues of the Laplacian (see also [8]).

The first purpose of the paper is to investigate the shape stability of the spectrum of
const. b.c Laplacian in relationship with the γ-convergence (see [3]). The γ-convergence is,
roughly speaking, the geometric convergence of shapes for which the solution of the Dirichlet-
Laplacian is stable. We prove that the spectrum of the const. b.c. Laplacian is stable for
the γ-convergence if and only if the Lebesque measure of the moving domains is preserved
at the γ-limit (which in general is not the case).

As a second purpose, we discuss the isoperimetric inequality for a general shape functional
depending on the const. b.c. Laplacian eigenvalues, of the form F (Λ1(Ω), ..., Λk(Ω)). We
prove that for every bounded design region D the problem

min
Ω⊆D,|Ω|=c

F (Λ1(Ω), ..., Λk(Ω))
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has a solution in the family of quasi-open sets, provided mild monotonicity and continuity
assumptions on F . A similar result was obtained by Buttazzo and Dal Maso in [5] for the
Dirichlet eigenvalues of the Laplacian, based on γ continuity of the eigenvalues. In our
problem, the mapping

Ω → Λk(Ω)

is not γ-continuous so that the main theorem of Buttazzo and Dal Maso does not apply. Our
argument is based on the study of a modified version of the weak gamma convergence (see
[3]) which preserves the measure. We also refer the reader to [10], where existence solutions
for isoperimetric inequalities for the const. b.c. Laplacian eigenvalues were studied in the
class of convex sets.

The third purpose of the paper is to study the isoperimetric inequalities associated to
the conductivity eigenvalues of the Laplacian. This study is motivated by the analysis of
the defect identification of a material by electrostatic boundary measurements. Friedman
and Vogelius introduced in [9] a dual problem to the defect identification problem, where
the perfectly insulating defects become perfectly conductive regions. In this last model, the
locally constant boundary conditions are naturally used (see also Alessandrini [1] and [4, 2]).
In [2], the following space is introduced for the study of the conductivity problem in an
arbitrary two dimensional bounded domain. For a bounded open set of R

n we introduce

H1
cond(Ω) = clH1(Ω){u ∈ H1

loc(R
n) | ∃ε > 0 ∇u = 0 a.e.(Ωc)ε}

where Kε is the Minkowski sum

K ⊕ B(0, ε) =
⋃

x∈K

B(x, ε).

It turns out that if Ωc is connected, every function in H1
cond(Ω) is constant on the boundary,

in the sense that there exists c ∈ R such that u − c ∈ H1
0 (Ω). Consequently, in this case

the space H1
cond(Ω) coincides with the space considered previously by Greco and Lucia (up

to the zero mean value). If Ωc is not connected, on the boundary of the smooth connected
components of Ωc, a function u ∈ H1

cond(Ω) is locally constant (the constant may differ from
one to another connected component). These regions can be seen as perfectly conductive
regions in the frame of the dual defect identification problems of Friedeman and Vogelius.

The eigenvalue problem for the cond. b.c Laplacian is well posed, and the same questions
(see [10]), as for the const. b.c. Laplacian can be raised. Unfortunately, we are not able to
perform a complete shape analysis of the problem because of major new difficulties which
are related to the (open) problem of the relaxation of the Neumann Laplacian.

The isoperimetric inequality of the first non-zero cond. b.c eigenvalue can be treated by
a two steps rearrangement. As in [10], by a Schwarz rearrangement of two level sets of a test
function u, we reduce the search of the optimum to the family of the unions of two sets of
concentric annuli. In a second step we prove by a second rearrangement procedure that the
annuli can be streched to balls and finally, that two equal disjoint balls minimize the first
non zero eigenvalue among domains of constant volume. We refer the reader to [11] for a
recent survey concerning isoperimetric inequalities for eigenvalues.

Shape stability is achieved only in two dimensions provided that the number of connected
components of the moving complements is uniformly bounded and the Lebesque measure is
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stable. Some numerical computations for the solutions of the isoperimetric inequalities for
the first three cond. b.c eigenvalues are also provided.

2 The Laplacian with constant boundary conditions

Let D ⊆ R
N , N ≥ 2 be a bounded open set. We denote by Ω an open or quasi-open subset

of D (we refer the reader to [3] for a detailed introduction to the shape analysis of quasi-open
sets).

We introduce the following space:

H1
const(Ω) = {u ∈ H1(Ω) | ∃c ∈ R, u − c ∈ H1

0 (Ω)}

and consider the closed subspace:

Uconst(Ω) = {u ∈ H1
const(Ω) |

∫

Ω

udx = 0}.

It is easy to observe that Uconst(Ω) can be equivalently endowed with the scalar product

(u, v)Uconst(Ω) = (∇u,∇v)L2.

Indeed, the following Poincaré inequality holds. There exists a constant M > 0, depending
only on the measure of Ω such that for every u ∈ Uconst(Ω)

‖u‖L2(Ω) ≤ M‖∇u‖L2(Ω).

To prove this assertion, one can apply the Poincaré inequality to u − c ∈ H1
0 (Ω) and obtain

‖u−c‖L2(Ω) ≤ M‖∇(u−c)‖L2(Ω). Since ∇u = ∇(u−c) and since
∫
Ω

udx = 0, we immediately
get

‖u‖L2(Ω) ≤ ‖u − c‖L2(Ω) ≤ M‖∇u‖L2(Ω).

We consider the Laplace operator acting on the space Uconst(Ω). More precisely we define

TΩ : L2
0(Ω) −→ L2

0(Ω), TΩf = RΩf − 1

|Ω|

∫

Ω

RΩfdx.

Here L2
0(Ω) = {f ∈ L2(Ω) |

∫
Ω

fdx = 0} and RΩ : L2(Ω) −→ L2(Ω) is the resolvent of the
Dirichlet Laplacian on Ω, i.e. RΩf = u, where u solves

{
−∆u = f in Ω

u ∈ H1
0 (Ω).

(2.1)

in the weak variational sense. The eigenvalues of T−1
Ω are the inverses of the eigenvalues of

the const. b.c. Laplacian.
Alternatively, they are defined with the Rayleigh quotient

λct
k (Ω) = min

V k⊂Uconst(Ω)
max

v∈V k\{0}

∫
Ω
|∇v|2dx∫
Ω

v2dx
. (2.2)
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where V k stands for an arbitrary subspace of dimension k in Uconst(Ω).
We notice at this point that we can also define the Laplacian on H1

const(Ω), in which case
the first eigenvalue is zero. For this reason we refer to λct

1 (Ω) as the first non zero eigenvalue.
If λct

k (Ω) is an eigenvalue defined by (2.2), there exists a non zero function u ∈ Uconst(Ω)
such that formally {

−∆u = λct
k (Ω)u

u ∈ Uconst(Ω).
(2.3)

This formal relation is understood in the following sense: u ∈ Uconst(Ω) and

∀φ ∈ Uconst(Ω)

∫

Ω

∇u · ∇φdx = λct
k (Ω)

∫

Ω

uφdx.

Notice that the relationship
−∆u = λct

k (Ω)u (2.4)

holds also in the sense of distributions. Indeed, ∀φ ∈ D(Ω), and a suitable constant c such
that φ − c ∈ Uconst(Ω) we have

∫

Ω

∇u · ∇(φ − c)dx = λct
k (Ω)

∫

Ω

u(φ − c)dx.

Since
∫
Ω

udx = 0 one can eliminate c on both sides above.
We recall from [10] the following properties of λct

k (Ω):

1. if Ω1 ⊆ Ω2 then λct
k (Ω2) ≤ λct

k (Ω1),

2. λct
k (tΩ) = t−2λct

k (Ω),

3. λk(Ω) ≤ λct
k (Ω) ≤ λt

k(Ω) ≤ λk+1(Ω),

where λk(Ω) stands for the k-th Dirichlet eigenvalue of the Laplacian and λt
k(Ω) for the

k-twisted eigenvalue (see [8]).
Greco and Lucia studied in [10] the isoperimetric inequality for λct

1 . There is proved that
among all domains of given volume (say m), the union of two disjoint balls of volume m

2

minimizes λct
1 . By a Schwarz rearrangement of the level sets (u − c)+, (u − c)− of a test

function u ∈ Uconst(Ω) which is such that u−c ∈ H1
0 (Ω), the optimization problem is reduced

to the family of unions of two balls.
In order to study more general isoperimetric inequalities associated to λct

k (Ω) we recall
some results for the Dirichlet Laplacian. For the convenience of the reader, we recall the
definition of the γ-convergence.

Definition 2.1 Let Ωn, Ω ⊆ D be open (or quasi open) sets. It is said that Ωn γ-converges
to Ω if RΩn

−→ RΩ in L(L2(D)).

For a detailed study of the γ-convergence, we refer the reader to [3].
From the following general inequality (see for instance [7])

|λk(RΩn
) − λk(RΩ)| ≤ ‖RΩn

− RΩ‖L(L2(D))
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and from the fact that

λk(Ωn) =
1

λk(RΩn
)

we get that
Ωn

γ−→ Ω =⇒ λk(Ωn) −→ λk(Ω).

We also notice that if Ωn
γ−→ Ω, we have

1Ω(x) ≤ lim inf
n−→∞

1Ωn
(x) a.e. x ∈ D

and consequently
|Ω| ≤ lim inf

n−→∞
|Ωn|.

If we assume both γ convergence and convergence of measures, then we get L1 convergence
of the characteristic functions 1Ωn

−→ 1Ω.
The following general existence result is due to Buttazzo and Dal Maso [5]. Let us denote

A(D) the family of quasi open subsets of D.

Theorem 2.2 Let F : A(D) −→ R be a γ-lower semi continuous functional which is non
increasing to set inclusions (up to zero capacity). Then

min{F (Ω)|Ω ∈ A(D), |Ω| = m}

has a solution.

If F (Ω) = Φ(λ1(Ω), ..., λk(Ω)) where Φ : R
k −→ R is l.s.c. and non decreasing in each

variable, then Theorem 2.2 applies for

F (Ω) = Φ(λ1(Ω), ..., λk(Ω)).

In particular, the isoperimetric problem

min
Ω∈A(D),|Ω|=m

λk(Ω)

has at least one solution.
In order to answer a similar question for shape functionals depending on λct

1 (Ω), ..., λct
k (Ω)

one can not use Theorem 2.2, since the mappings Ω −→ λct
k (Ω) are not in general γ-

continuous. This lack of γ-continuity is due to the possible ”loss” of measure in the γ-limit
process and of the failure of convergence of the resolvent operators.

We prefer to (re)define the operators TΩ on the fixed space associated to the design region
D ⊆ R

n. In this way, all operators on the moving sets are defined on the same functional
space, so that the comparison of their eigenvalues is easier to handle. For every (quasi) open

set Ω ⊆ D, we introduce T̃Ω : L2
0(D) −→ L2

0(D) by

T̃Ω(f)(x) =

{
TΩ(f|Ω − 1

|Ω|

∫
Ω

fdx)(x) if x ∈ Ω,

0 if x ∈ D\Ω.

We state the following proposition which has a standard proof.
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Proposition 2.3 For every (quasi) open set Ω ⊆ D, T̃Ω is positive, self adjoint and compact.

In the sequel we establish the relationship between the eigenvalues of TΩ and T̃Ω.

Proposition 2.4 Let Ω be a (quasi) open set. The operators TΩ and T̃Ω have the same set
of eigenvalues, and there exists a natural bijection between eigenspaces.

Proof Let λ be an eigenvalue of TΩ. There exists u ∈ L2
0(Ω) such that TΩu = λu. One can

prove that there exist u∗ ∈ L2
0(D) such that T̃Ωu∗ = λu∗. Indeed, let u∗ =

{
u if x ∈ Ω

0 ifx ∈ D \ Ω.

Since
∫

D
u∗dx = 0 then u∗ ∈ L2

0(D). We obtain

T̃Ωu∗ = TΩ(u∗ − 1

|Ω|

∫

Ω

u∗dx) = TΩu∗ = λu∗.

since
∫
Ω

u∗dx =
∫
Ω

udx = 0. Consequently λ is an eigenvalue for T̃Ω. Conversely, let λ be

an eigenvalue for T̃Ω. There exists u ∈ L2
0(Ω) such that T̃Ωu = λu. Since u ∈ ImT̃Ω we

get that u = 0 in D\Ω and
∫

Ω
udx = 0. Consequently we have T̃Ωu = TΩ(u − 1

|Ω|

∫
Ω

udx) =

TΩ(u − 1
|Ω|

∫
Ω

udx) = TΩu = λu.
2

Here is the shape stability theorem for the eigenvalues of T̃Ω operator.

Theorem 2.5 Let Ωn, Ω ⊆ D be non empty (quasi) open sets such that Ωn
γ−→ Ω. Then

T̃Ωn
−→ T̃Ω in L(L2

0(D)) if and only if |Ωn| −→ |Ω|.

Proof Assume that Ωn
γ−→ Ω and |Ωn| −→ |Ω|. There exists fn in the unit ball of L2

0(D)
which realizes the supremum in

sup
‖f‖

L2
0
(D)

≤1

‖T̃Ωn
f − T̃Ωf‖L2

0(D) = ‖T̃Ωn
(fn) − T̃Ω(fn)‖L2

0(D). (2.5)

We may assume, without restricting the generality that (fn)n converges weakly to f . We
have

‖T̃Ωn
(fn) − T̃Ω(fn)‖L2

0(D) = ‖T̃Ωn
(fn) − T̃Ωf + T̃Ωf − T̃Ω(fn)‖L2

0(D)

≤ ‖T̃Ωn
(fn) − T̃Ωf‖L2

0(D) + ‖T̃Ωf − T̃Ω(fn)‖L2
0(D).

Let φ ∈ L2
0(D). The convergence of T̃Ωn

φ to T̃Ωφ is strong in L2
0(D), since Ωn

γ−→ Ω.

Indeed, T̃Ωn
φ = TΩn

(φ − 1
|Ωn|

∫
Ωn

φdx) = TΩn
gn, and gn converge to g, where gn = φ|Ωn

−
1

|Ωn|

∫
Ωn

φdx and g = φ|Ω − 1
|Ω|

∫
Ω

φdx. Using the continuity of RΩ and the hypothesis of
γ-convergence, we obtain

TΩn
gn = RΩn

gn − 1

|Ωn|

∫

Ωn

RΩn
gndx −→ RΩg − 1

|Ω|

∫

Ω

RΩgdx = TΩg.
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Consequently, we have in L2
0(D)

< T̃Ωn
fn, φ >=< fn, T̃Ωn

φ >−→< f, T̃Ωφ >=< T̃Ωf, φ > .

The weak L2
0(D) convergence of T̃Ωn

(fn) to T̃Ω(f) implies the strong L2
0(D) convergence of

a subsequence (still denoted using the same index).

To conclude, it remains to discuss ‖T̃Ωf − T̃Ωfn‖L2
0(D). This term converges to zero as a

direct consequence of the continuity/compactness of T̃Ω and the weak L2
0(D) convergence of

fn ⇀ f .
Conversely, we assume that Ωn

γ−→ Ω and T̃Ωn
−→ T̃Ω. Let φ ∈ L2

0(D). The convergence

T̃Ωn
φ −→ T̃Ωφ reads

RΩn
φ − 1

|Ωn|

∫

Ωn

RΩn
φdx−

( 1

|Ωn|

∫

Ωn

φdx
)
RΩn

1 +
1

|Ωn|2
∫

Ωn

φdx

∫

Ωn

RΩn
1dx

−→ RΩφ − 1

|Ω|

∫

Ω

RΩφdx −
( 1

|Ω|

∫

Ω

φdx
)
RΩ1 +

1

|Ω|2
∫

Ω

φdx

∫

Ω

RΩ1dx.

We denote by gn = RΩn
1, fn = RΩn

φ. The hypothesis on the γ convergence yields that gn

and fn converge strongly H1
0 (D) to g = RΩ1, and f = RΩφ, respectively, in H1

0 (D). We
obtain

− 1

|Ωn|

∫

Ωn

φdxgn − 1

|Ωn|

∫

D

fndx +
1

|Ωn|2
∫

Ωn

φdx

∫

Ωn

gndx

−→ − 1

|Ω|

∫

Ω

φdxg − 1

|Ω|

∫

D

fdx +
1

|Ω|2
∫

Ω

φdx

∫

Ω

gdx.

We can rewrite simply angn(·)+bn −→ ag(·)+b, where an = − 1
|Ωn|

∫
Ωn

φdx, a = − 1
|Ω|

∫
Ω

φdx,

bn = − 1
|Ωn|

∫
D

fndx + 1
|Ωn|2

∫
Ωn

φdx
∫
Ωn

gndx and b = − 1
|Ω|

∫
D

fdx + 1
|Ω|2

∫
Ω

φdx
∫
Ω

gdx. Since
the function g is non vanishing, we get an −→ a.

Assume |Ωn| −→ α > |Ω| and define φ by

φ =

{
c in Ω

− c|Ω|
|D\Ω|

in D \ Ω.

where c is a positive constant. The convergence an −→ a implies that
∫

Ωn
φdx −→ α

|Ω|

∫
Ω

φdx.
On the other hand ∫

Ωn

φdx = c|Ω| − c|Ω| |Ωn \ Ω|
|D \ Ω| .

We obtain 1 − |Ωn\Ω|
|D\Ω|

−→ α
|Ω|

> 1, which is absurd, since |Ωn\Ω|
|D\Ω|

> 0. Consequently α = |Ω|.
2

A direct consequence of Theorem 2.5 is the following.

Corollary 2.6 Let Ωn, Ω ⊆ D be such that Ωn
γ−→ Ω and |Ωn| −→ |Ω|. Then λct

k (Ωn) −→
λct

k (Ω).
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We recall the definition of the weak gamma convergence of quasi open sets. It is said that
Ωn weakly gamma converges to Ω if RΩn

1 converges weakly H1
0 (D) to a function w, and

Ω = {w > 0}. We write Ωn
wγ−→ Ω. The main property of the weak gamma convergence

is the following: assume that φn ∈ H1
0 (Ωn) is weakly convergent in H1

0 (D) to a function φ.
Then φ ∈ H1

0 (Ω).
The following result is the key of the optimization problem.

Theorem 2.7 Assume Ωn
wγ−→ Ω and Ω ⊆ Ω∗, such that |Ω∗| = lim infn→∞ |Ωn|. Then

λct
k (Ω∗) ≤ lim

n−→∞
λct

k (Ωn)

Proof Let ǫ > 0 and Sk
n ⊆ Uconst(Ωn)be a k-dimensional space such that:

λct
k (Ωn) + ε ≥ max

v∈Sk
n\{0}

∫
Ωn

|∇v|2dx∫
Ωn

v2dx
,

and let vn be a maximizer function such that
∫
Ωn

v2
ndx = 1. Let vn

i , i = 1, .., k be a L2
0-

orthonormal basis for Sk
n.

We assume that lim infn→∞ λct
k (Ωn) < ∞, otherwise the conclusion is obvious. Since∫

Ωn
|vn

i |2dx = 1 we get that
∫
Ωn

|∇vn
i |2dx is bounded. Consequently

∫
Ωn

|∇(vn
i − cn

i )|2dx

is bounded (here vn
i − cn

i ∈ H1
0 (Ωn)). Up to a subsequence we may assume that vn

i − cn
i

converges weakly in H1
0 (D) to wi, so the convergence Ωn

wγ→ Ω implies wi ∈ H1
0 (Ω). Let

Ω∗ ⊂ D be such that |Ω∗| = α, where α is such that |Ωn| −→ α. Since H1
0 (Ω) ⊂ H1

0 (Ω∗) we
obtain wi ∈ H1

0 (Ω∗).
Assume that |Ωn| → α and cn

i −→ ci. Then
∫

D

(vn
i − cn

i )dx →
∫

D

(wi)dx ⇒
∫

Ωn

vn
i dx −

∫

Ωn

cn
i dx →

∫

Ω∗

widx ⇒ −cn
i |Ωn| →

∫

Ω∗

widx,

and we get
∫
Ω∗

widx = −ciα. Let vi = wi + ci ∈ Uconst(Ω
∗). Indeed, we have

∫
Ω∗

vidx =∫
Ω∗

(wi + ci)dx = −ciα + ci|Ω∗| = 0.
We introduce the space S = span(v1, ..., vk). One can verify that (vi, vj)L2 = δij so that

S is a k dimensional subspace of Uconst(Ω
∗). The construction of S and the convergence

Ωn
wγ−→ Ω implies that for all v ∈ S, v = Σk

i=1αivi the sequence hn ∈ Sn defined by
hn = Σk

i=1αiv
n
i converges weakly to v in H1

0 (D). Moreover,

lim inf
n−→∞

∫

Ωn

|∇hn|2dx ≥
∫

Ω∗

|∇v|2dx. (2.6)

To prove that

lim inf
n−→∞

∫
Ωn

|∇hn|2dx∫
Ωn

h2
n

dx ≥
∫
Ω∗

|∇v|2dx∫
Ω∗

v2
dx (2.7)

it is enough to prove that

lim sup
n→∞

∫

Ωn

h2
ndx ≤

∫

Ω∗

v2dx. (2.8)
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By the definition of vi we obtain
∫

Ω∗

v2dx =

∫

Ω∗

(Σk
i=1αivi)

2dx =

∫

Ω∗

(Σk
i=1αi(wi + ci))

2dx

=

∫

Ω∗

(Σk
i=1αiwi + Σk

i=1αici)
2dx =

∫

Ω∗

(Σk
i=1αiwi)

2dx − 2C2α + C2α

=

∫

Ω∗

(Σk
i=1αiwi)

2dx − C2α,

where C = Σk
i=1αici. On the other hand we get

∫

Ωn

h2
ndx =

∫

Ωn

(Σk
i=1αiv

n
i )2dx =

∫

Ωn

(Σk
i=1αi(v

n
i − cn

i ) + Σk
i=1αic

n
i )2dx

=

∫

Ωn

(Σk
i=1αi(v

n
i − cn

i ))2dx + 2Σk
i=1αic

n
i

∫

Ωn

Σk
i=1αi(v

n
i − cn

i )dx + (Σk
i=1αic

n
i )2|Ωn|

=

∫

Ωn

(Σk
i=1αi(v

n
i − cn

i ))2dx − 2C2|Ωn| + C2α.

Inequality (2.8) is equivalent to

lim sup
n→∞

(

∫

Ωn

(Σk
i=1αi(v

n
i − cn

i ))2dx − 2C2|Ωn| + C2α) ≤
∫

Ω∗

(Σk
i=1αiwi)

2dx − C2α (2.9)

Passing to the limit gives

− lim inf
n→∞

2C2|Ωn| + C2α ≤ C2α.

Finally,

lim inf
n→∞

λct
k (Ωn) + ε ≥ lim inf

n→∞
max

v∈Sk
n\{0}

∫
Ωn

|∇v|2dx∫
Ωn

v2dx
≥

lim inf
n→∞

∫
Ωn

|∇hn|2dx∫
Ωn

h2
ndx

≥ max
v∈S

∫
Ω∗

|∇v|2dx∫
Ω∗

v2dx
≥ λct

k (Ω∗).

so lim infn→∞ λct
k (Ωn) + ε ≥ λct

k (Ω∗). Making ε → 0, we conclude the proof. 2

Theorem 2.8 Let Φ : R
k −→ R∪{+∞} be a lower semi continuous function, nondecreasing

in each variable. Then
min

Ω∈A(D),|Ω|=m
Φ(λct

1 (Ω), ..., λct
k (Ω)) (2.10)

has at least one solution.

Proof Let us denote λct(Ω) = (λct
1 (Ω), ..., λct

k (Ω)). From the monotonicity property of λct
k ,

the function Φ(λct(Ω)) is non-increasing with respect to set inclusions. We assume that
Φ(λct(Ω)) is not identically +∞, otherwise every open set of measure m is a solution. We
notice that Φ(λct(Ω)) is bounded from below by Φ(λct(D)).

9



Let Ωn be a minimizing sequence for the problem (2.10). From the compactness of

the wγ convergence, we may assume that Ωn
wγ−→ Ω, and we get |Ω| ≤ m. If |Ω| = m

than Ω is solution from Theorem 2.7. Otherwise, we find Ω∗ such that |Ω|∗ = m and
Ω ⊆ Ω∗. Then, from the monotonicity and the lower semicontinuity of Φ we get Φ(λct(Ω∗)) ≤
lim inf Φ(λct(Ωn)), consequently Ω∗ is a solution. 2

3 The conductivity eigenvalue problem

Let D be a bounded, connected open subset of R
N such that R

N \D is connected. For every
open set Ω ⊆ D we introduce the conductivity space

H1
cond(Ω) = clH1(Ω){u ∈ H1

loc(R
n) | ∃ǫ > 0, ∇u = 0 a.e. on (Rn\Ω)ǫ}.

Here, for a set K ⊆ R
n and for ǫ > 0 we denote

Kǫ =
⋃

x∈K

B(x, ǫ).

Let u ∈ H1
cond(Ω). Clearly, there exists a constant c such that u − c ∈ H1

0 (D). Indeed, by
definition there exists a sequence of functions un ∈ H1

loc(R
n) such that ∇un = 0 on (Rn\Ω)ǫn

and un → u in H1(Ω). Consequently, there exists cn such that un − cn ∈ H1
0 (D), and we

may see the limit un → u in H1(Ω) for the extensions of un in H1
loc(R

n). Since ∇un = 0 a.e.

on (Rn \Ω)ǫn we have that ∇un

L2(Rn)
⇀ ∇ũ, ũ ∈ H1

loc(R
n). Since

∫
Rn |∇un|2dx =

∫
Ω
|∇un|2dx

we get that
∫

Rn |∇un −∇ũ|2dx −→ 0, where

∇ũ =

{
∇u on Ω
0 on Ωc.

(3.1)

Up to a sequence (still denoted using the same index) and since D is bounded and

connected, we have un

L2(D)−→ ũ and ũ = u on Ω. Let K be a connected component of R
n \Ω.

We get that ũ is quasi everywhere constant on K. In particular, ũ equals the constant c on
the unbounded component, so that ũ − c ∈ H1

0 (D).
We notice that if Ω1 and Ω2 differ on a set of zero capacity, it is possible that H1

cond(Ω1)
and H1

cond(Ω2) are not the same! This is not a real problem for the the study of isoperimetric
inequalities, as will be observed in the sequel, but is a hard difficulty for the study of the
shape stability question (which remains open).

We introduce the following closed subspace in H1
cond(Ω)

Ucond(Ω) = {u ∈ H1
cond(Ω)|

∫

Ω

udx = 0}.

The mapping u −→ ‖∇u‖L2(Ω) is a norm on Ucond(Ω). Moreover, the Poincaré inequality

∫

Ω

|u|2dx ≤ C(D)

∫

Ω

|∇u|2dx

10



holds with a constant C(D) depending only on D. Indeed, we can write for a suitable value
c, ∫

D

(u − c)2dx ≤ C(D)

∫

D

|∇(u − c)|2dx,

since u − c ∈ H1
0 (D). Consequently

∫

Ω

(u − c)2dx ≤ C(D)

∫

Ω

|∇u|2dx.

Since
∫
Ω

udx = 0 we get
∫
Ω

u2dx ≤
∫
Ω
(u− c)2dx ≤ C(D)

∫
D
|∇u|2dx. The eigenvalues of the

Laplace operator with conductivity boundary condition are defined as the eigenvalues of the
operator

AΩ : L2
0(Ω) −→ L2

0(Ω)

defined by AΩf = u where u solves the problem

u ∈ Ucond(Ω)

∫

Ω

∇u · ∇φdx =

∫

Ω

fφdx ∀φ ∈ Ucond(Ω).

Alternatively, u minimizes

min
u∈Ucond(Ω)

1

2

∫

Ω

|∇u|2dx −
∫

Ω

fudx.

Proposition 3.1 The operator AΩ is self adjoint, positive and compact.

Proof The continuity of AΩ is a consequence of the Poincaré inequality in Ucond(Ω). Its
compactness comes from the compact embedding Ucond(Ω) →֒ L2

0(Ω), while selfadjointess is
inherited from the Laplacian. 2

A direct consequence of Proposition 3.1 is that the spectrum of conductivity b.c-Laplacian
consists on a sequence of eigenvalues

0 < λcd
1 (Ω) ≤ λcd

2 (Ω) ≤ ....

It is straightforward to observe that

λcd
k (tΩ) = t−2λcd

k (Ω).

The monotonicity property Ω1 ⊆ Ω2 =⇒ λcd
k (Ω2) ≤ λcd

k (Ω1) is a consequence of the min max
principle:

λcd
k (Ω) = min

V k∈Ucond(Ω)\{0}
max

u∈V k\{0}

∫
Ω
|∇u|2dx∫
Ω

u2dx
.

For every V k ⊆ Ucond(Ω1), V k = span{v1, ...vn} we consider vk extended to elements v∗
k of

H1
cond(Ω2) and v∗

k − ck ∈ Ucond(Ω2). The extension is done as follows: consider a sequence vε
k

converging in H1
cond(Ω1) to vk, such that ∇vε

k = 0 on (RN \ Ω1)
ε. We extend vε

k by suitable
constants to elements (vε

k)
∗H1

cond(Ω2) and define v∗
k as the limit of (vε

k)
∗.

11



It is straightforward to observe that

∫
Ω1

|∇vk|2dx∫
Ω1

v2
kdx

≥
∫
Ω2

|∇(v∗
k − ck)|2dx∫

Ω2
|v∗

k − ck|2dx
.

Indeed,
∫
Ω2

|v∗
k − ck|2dx ≥

∫
Ω1

|v1
k − ck|2dx ≥

∫
Ω1

|vk|2dx.

Proposition 3.2 For every k ∈ N the following inequality holds true

λk−p+1(Ω) ≤ λct
k−p+1(Ω) ≤ λcd

k (Ω) ≤ λct
k (Ω) ≤ λk+1(Ω)

where p ≥ 1 is the number of the connected components of Ωc

Proof The first and the last inequalities are proved in [10]. The third inequality is a
consequence of the min-max formula and the inclusion Uconst(Ω) ⊆ Ucond(Ω).

For the second inequality, let us consider a k-dimensional subspace Sk ⊂ Ucond(Ω). It
is easy to notice that Sk has a k − p + 1 dimensional subspace Sk−p+1 ⊂ Uconst(Ω). Conse-
quently, the min-max formula implies the second inequality. 2

The shape stability question for λcd
k is much more difficult than for λct

k . No general continuity
result could be obtained, since many small pieces carrying different constants may produce a
relaxation process into the limit process, which is not clear how to handle. It turns out that
this relaxation process is close to the relaxation of Neumann problems, which is an open
question.

Proposition 3.3 In two dimensions of the space, assume that Ωn ⊆ D, ♯Ωc
n ≤ M. If

Ωn
Hc

−→ Ω and |Ωn| −→ |Ω| then λcd
k (Ωn) −→ λcd

k (Ω).

The proof is a consequence of the Mosco convergence Ucond(Ωn) to Ucond(Ω). The difficulty
is to handle the constant values of varying functions on merging connected components. We
refer the reader to [4] for a discussion of this topic.

4 The isoperimetric inequality for the first conductiv-

ity eigenvalue

In [10], the authors proved the following isoperimetric eigenvalue for λct
1 :

λct
1 (B1 ∪ B2) ≤ λct

1 (Ω)

where Ω is a bounded open set of measure m and B1, B2 are two disjoint balls of measure
m/2. The main idea consists in rearranging in the sense of Schwarz (u − c)+ and (u − c)−,
for some test function u ∈ Uconst(Ω), such that u − c ∈ H1

0 (Ω). This rearrangement leads to
searching the minimizer only among the union of two disjoint ball of total measure equal to
m, and an analysis depending on the radius drives to the conclusion that the balls have to
be equal.

12



In the sequel we shall prove a similar isoperimetric inequality for the conductivity eigen-
value. The new difficulty is that on the boundary of Ω, the test function has different
constant values, so that several regions with flat parts may appear in the rearrangement
procedure. Consequently, a second rearrangement process has to be introduced in order to
eliminate the flat parts.

Theorem 4.1 Let Ω be a bounded open set of R
N . Then

λcd
1 (B1 ∪ B2) ≤ λcd

1 (Ω)

where B1 and B2 are two disjoint balls of measure |Ω|
2

.

Proof Let u ∈ Ucond(Ω) be a test function such that ∇u = 0 on (Rn \ Ω)ǫ. In particular,
this implies the existence of a finite number of flat parts of u, corresponding to the (finite
number of) connected components of (Rn \ Ω)ǫ.

Let c ∈ R such that u−c ∈ H1(Rn) (i.e. u = c on the unbounded component of (Rn\Ω)ǫ).
We make a Schwarz rearrangement of (u − c)+ and (u − c)− (see for instance [11, 12]). Let
us denote u+ = [(u− c)+]∗ and u− = [(u− c)−]∗. If (u− c)+ = c1 on a connected component
K of (Rn \Ω)ǫ, after the rearrangement procedure there is an annulus K0,r1,r2 with measure
at least the measure of |K|, where u+ equals c1.

The set Ω with the test function u is replaced by the set Ω1 ∪ Ω2 with the test function
c−u−, c+u+ obtained in the following way. We remove out from the flat part of value c1 the
annulus K0,r1,r

′

1
such that r

′

1 ≤ r2, and |K0,r1,r
′

1
| = |K ∩ (Rn \Ω)|. Making this procedure for

every flat part of u, (without c), we construct the new test function ũ consisting on c−u− on
Ω1 and c + u+ on Ω2, where Ω1 and Ω2 are respectively unions of concentric annuli. In this
way, |Ω1∪Ω2| = |Ω| and

∫
Ω1∪Ω2

ũdx = 0,
∫

Ω1∪Ω2
ũ2dx =

∫
Ω

u2dx. Moreover ũ ∈ Ucond(Ω1∪Ω2)

and
∫
Ω1∪Ω2

|∇ũ|2dx ≤
∫
Ω
|∇u|2dx.

At this point, we have to search the minimizer only among configurations of the form
(ũ, Ω1, Ω2). We make a new rearrangement procedure which will keep constant the measures
of the level sets of ũ and diminish the Dirichlet energy, in order to create a test function in
Uconst. Consequently, we will be able to use the isoperimetric inequality of Greco and Lucia
and conclude the proof. In fact, we will stretch the annuli in order to eliminate the flat parts
of ũ which are not counted in the measure |Ω1 ∪ Ω2|.

It is enough to prove the following result corresponding to one annulus. Let u ∈
H1

0 (B(0, r2)), u = 1 on B(0, r1) be a positive radial function symmetric in the sense of
Schwarz. For r′2 < r2 such that |B(0, r

′

2)| ≥ |K0,r1,r2 |, we introduce the function c : [r1, r2] −→
[r

′

1, r
′

2], c(r) = n
√

(r
′

2)
n − rn

2 + rn, such that |K0,c(r),r
′

2
| = |K0,r,r2|. We define the rearrange-

ment of u by {u∗ > c} = B(0, c(r)) if c is such that {u > c} = B(0, r). Clearly, since the
measures of the level sets are constant, we have that

∀ 1 ≤ p < +∞
∫

K0,r1,r2

updx =

∫

K
0,r

′

1
,r

′

2

(u∗)pdx.

We evaluate the behavior of the gradient. Since u is radial, we can use spherical coordinates
to express

∫
K0,r1,r2

|∇u|2dx. We notice that u∗ ∈ H1
0 (B(0, r

′

2)), since u∗(c(r), θ1, ..., θn−1) =
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u(r, θ1, ..., θn−1), and c is a Lipschitz function. Then, we have (below ω(n) is the measure of
the unit sphere of R

N )

∫

K0,r1,r2

|∇u|2dx = ω(n)

∫ r2

r1

(
∂u

∂r
)2 · rn−1dr

while ∫

K
0,r

′

1
,r

′

2

|∇u∗|2dx = ω(n)

∫ r
′

2

r
′

1

(
∂u∗

∂r′
)2 · (r′

)n−1dr
′

We perform the change of variable

r
′

= c(r) r = c−1(r
′

)

and u∗(r
′

) = u(r) = u( n
√

(r′)n + rn
2 − (r

′

2)
n), so that

∂u∗

∂r′
=

∂u

∂r
· (r

′

)n−1

n
√

[(r′)n + rn
2 − (r

′

2)
n]n−1

Consequently

∫

K
0,r

′

1,r
′

2

|∇u∗|2 = ω(n)

∫ r
′

2

r
′

1

(
∂u

∂r
)2(r

′

) · (r
′

)2(n−1)

n
√

[(r′)n + rn
2 − (r

′

2)
n]2(n−1)

((r
′

)n−1dr
′

.

and writing r
′

= c(r) and dr
′

= rn−1√
[(r

′

2)n−rn
2 +rn]n−1

dr so that (r
′

)n−1dr
′

= rn−1dr.

∫

K
0,r

′

1
,r

′

2

|∇u∗|2 = ω(n)

∫ r2

r1

(
∂u

∂r
)2 · (r

′

)2(n−1) · (r′

)n−1

r2(n−1)
· rn−1

(r′)n−1
dr

= ω(n)

∫ r2

r1

(
∂u

∂r
)2(

r
′

r
)2(n−1)rn−1dr

Since r
′

r
≤ 1 we deduce that

∫
K

0,r
′

1,r
′

2

|∇u∗|2 ≤
∫

K0,r1,r2
|∇u|2.

2

5 Numerical results

In this section we address the problem of the numerical minimization of the conductivity
eigenvalues with respect to a domain Ω in R

2. We refer the reader to [6, 15] for a detailed
exposition of classical shape optimization methods.

We recall that the eigenfunctions have to be constant on each connected component of
the boundary of the domain. Since the topology of the optimal sets is unknown, a classical
boundary variation optimization is not relevant here. To tackle this difficulty, we propose an
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optimization procedure based on standard genetic algorithm technics (see [13] for details on
stochastic optimization methods). The parametrization of domains and the cost evaluation
are the main new features of our approach. Our algorithm has the following principal
ingredients:

• description of the unknown sets by a small number of parameters

• identification of the topology of each set (in order to handle the constant levels)

• computation of the conductivity eigenvalues imposing the locally constant boundary
conditions (relaying on the topology)

The first point is based on the study of level sets of functions described by Fourier
series. Let (am,n) ⊂ [0, 1] be a family of parameters. We consider the function f defined on
[0, 1] × [0, 1] by

f(x, y) =
∑

m,n

am,n sin πnx cos πmy.

We associate to the set of parameters (am,n) the open set

Ω :=

{
(x, y) ∈ [0, 1] × [0, 1], f(x, y) <

max f

2

}
.

By classical linear interpolation technics, it is straightforward to get a complete polygonal
approximation of the boundary of Ω. Notice that the boundary of Ω is, by construction, (for
almost every family of parameters) a union of none overlapping simple closed curves. We
show in figures below two random sets obtained with a family of 30 parameters.

Figure 1: λcd
1 = 45.84 Figure 2: λcd

1 = 53.54

The next step is to give a complete description of the topology of ∂Ω. We have to
determine on which connected components of ∂Ω the eigenfunction must take the same
value. We construct a tree structure whose vertices are the polygonal connected components
of ∂Ω and whose edges represent the “direct” inclusion of those lines. More precisely, two
polygonal lines are connected by an edge if one of them contains the other and there is no
other polygonal lines contained inbetween. With this tree, it is straightforward to identify
the polygonal lines on which the eigenfunctions must have the same value.

Using this information, we can proceed to the computation of eigenvalues. First, we
generate a triangular mesh of our set. This has been done with the very performing 2D mesh
generator Triangle (see [14]). Then, we compute the standard stiffness matrix A associated
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to Neumann boundary condition. Next, we impose the constraints on the boundary by
penalization. Imposing the condition ui = uj is handled by the matrix penalization indicated
below:

i ... j

i 1/ε −1/ε
...
j −1/ε 1/ε

In the sequel we present a few examples for the calculus of optimal shapes (together
with eigenvalues and eigenfunctions). A good exploration of the space of parameters by
genetic algorithms leads to the following numerical results (see figures below) for the shape
optimization problems

min
|Ω|=m

λcd
k (Ω), k = 1, 2, 3.

We notice that for k = 1 we numerically find the optimal solution consisting on two disjoint
balls, as Theorem 4.1 states, while for k = 3 the optimal shape is a ball.

Figure 3: λcd
1 Figure 4: λcd

2 Figure 5: λcd
3
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