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Abstract


In this paper we consider the Euclidean Steiner tree problem and, more gener-
ally, (single sink) Gilbert–Steiner problems as prototypical examples of variational
problems involving 1-dimensional connected sets in Rn. Following the the analysis
for the planar case presented in [4], we provide a variational approximation through
Ginzburg–Landau type energies proving a Γ-convergence result for n ≥ 3.


1 Introduction


Given N distinct points P1, . . . , PN in Rn and 0 ≤ α ≤ 1, the (single sink) Gilbert–Steiner
problem, or α-irrigation problem [3, 17] requires to find an optimal network L along which
to flow unit masses located at the sources P1, . . . , PN−1 to the target point PN , where
the cost of moving a mass m along a path of length ` scales like `mα. The transportation
network L can be viewed as L = ∪N−1


i=1 λi, with λi a path connecting Pi to PN (i.e., the
trajectory of the unit mass located at Pi), and thus the problem translates into


(Iα) inf


{∫
L
|θ(x)|αdH1(x), θ(x) =


N−1∑
i=1


1λi(x)


}


where θ represents the mass density along the network. In particular, (I0) reduces to the
optimization of the total length of the graph L and corresponds to the classical Euclidean
Steiner Tree Problem (STP), i.e., finding the shortest connected graph which contains
the terminal points P1, . . . , PN . For any α ∈ [0, 1] a solution to (Iα) is known to exist
and any optimal network turns out to be a tree [3].


As pointed out in the companion paper [4], the Gilbert–Steiner problem represents the
basic example of problems defined on 1-dimensional connected sets, and it has recently
received a renewed attention in the Calculus of Variations community. In the last years
available results focused on variational approximations of the problem mainly in the
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planar case [8, 9, 15, 7], while higher dimensional approximations have been recently
proposed in [10, 6].


In this paper we extend to the higher dimensional context the two dimensional analysis
developed in [4] and we propose a variational approximation for (Iα) in the Euclidean
space Rn, n ≥ 3. We prove a result in the spirit of Γ-convergence (see Theorem 4.6 and
Proposition 4.5) by considering integral functionals of Ginzburg–Landau type [1, 2] (see
also [16]). This approach builds upon the interpretation of (Iα) as a mass minimization
problem in a cobordism class of integral currents with multiplicities in a suitable normed
group (as studied in [13, 12]). Thus, the relevant energy turns out to be a convex positively
1-homogeneous functional (a norm), for which one can use calibration type arguments to
prove minimality of certain given configurations [12, 14]. The proposed method is quite
flexible and can be adapted to a variety of situations, including manifold type ambients
where a suitable formulation in vector bundles can be used (this will be treated in a
forthcoming work).


Eventually, we remark that another way to approach the problem is to investigate
possible convex relaxations of the limiting functional, as already pointed out in [4] and
then further extended in [5], so as to include more general irrigation-type problems (with
multiple sources/sinks) and even problems for 1-d structures on manifolds.


The plan of the paper is as follows. In Section 2 we briefly review the main concepts
needed in the subsequent sections and in Section 3 we recall the variational setting for
(Iα) relying on the concept of Ψ-mass. We then provide in Section 4 a variational ap-
proximation of the problem in any dimension n ≥ 3 by means of Ginzburg–Landau type
energies.


2 Preliminaries and notations


In this section we fix the notation used in the rest of the paper and some basic facts. We
will follow closely [1, 2], to which we refer for a more detailed treatment.


For any n ≥ 2, we denote by {e1, . . . , en} the standard basis of Rn, Bn
r is the open


ball in Rn with centre the origin and radius r, Sn−1 = ∂Bn
1 is the unit sphere in Rn, and


αn = |Bn
1 |, βn = (n− 1)n/2αn,


where | · | stands for the Lebesgue measure of the given set. For 0 ≤ k ≤ n we denote
by Hk the k-dimensional Hausdorff measure. Furthermore, we assume we are given N
distinct points P1, . . . , PN in Rn, for n ≥ 3 and N ≥ 2, and we denote A = {P1, . . . , PN}.
We also assume, without loss of generality, that A ⊂ Bn


1 .


Ginzburg–Landau functionals. We consider a continuous potential W : Rn−1 → R
which vanishes only on Sn−2 and is strictly positive elsewhere, and we require


lim inf
|y|→1


W (y)


(1− |y|)2
> 0 and lim inf


|y|→∞


W (y)


|y|n−1
> 0.


Given ε > 0, Ω ⊂ Rn open and u ∈W 1,n−1(Ω;Rn−1), we set


Fε(u,Ω) :=


∫
Ω
eε(u) dx =


∫
Ω


1


n− 1
|Du|n−1 +


1


ε2
W (u) dx, (2.1)
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where |Du| is the Euclidean norm of the matrix Du.


Currents. Given k = 0, . . . , n, let
∧k(Rn) be the space of k-covectors on Rn


and
∧
k(Rn) the space of k-vectors. The canonical basis of


∧1(Rn) will be denoted as
{dx1, . . . , dxn}. For a k-covector ω we define its comass as


||ω||∗ = sup{ω · v : v is a simple k-vector with |v| = 1}.


For Ω ⊂ Rn, a k-form on Ω is a map from Ω into the space of k-covectors and a k-
dimensional current is a distribution valued into the space of k-vectors. We denote as
Dk(Ω) the space of all smooth k-forms with compact support and as Dk(Ω) the space
of all k-currents. In particular, the space Dk(Ω) can be identified with the dual of the
space Dk(Ω) and equipped with the corresponding weak∗ topology. Furthermore, for
T ∈ Dk(Ω) and an open subset V ⊂ Ω, we define the mass of T in V as


||T ||V = sup{T (ω) : ω ∈ Dk(V ), ||ω(x)||∗ ≤ 1 for every x}


and we denote the mass of T as ||T || = ||T ||Ω. The boundary of a k-current T is the
(k − 1)-current characterized as ∂T (ω) = T (dω) for every ω ∈ Dk−1(Ω), where dω is
the exterior differential of the form ω. Let T ∈ Dk(Ω) be a current with locally finite
mass, then there exist a positive finite measure µT on Rn and a Borel measurable map
τ : Ω→


∧
k(Rn) with ||τ || ≤ 1 µT -a.e., such that


T (ω) =


∫
Rn
ω(x) · τ(x) dµT (x) for every ω ∈ Dk(Ω). (2.2)


We denote |T | = |µT | the variation of the measure µT , so that, given V ⊂ Ω, one has
||T ||V := |T |(V ). A k-current T is said to be normal whenever both T and ∂T have finite
mass, and we denote as Nk(Ω) such space.


Given a k-rectifiable set Σ oriented by τ and a real-valued function θ ∈ L1
loc(Hk Σ),


we define the current T = [[Σ, τ, θ]] as


T (ω) =


∫
Σ
θ(x)ω(x) · τ(x) dHk(x),


and we refer to θ as the multiplicity of the current. A k-current T is called rectifiable
if it can be represented as T = [[Σ, τ, θ]] for a k-rectifiable set Σ and an integer valued
multiplicity θ. If both T and ∂T are rectifiable, we say T is an integral current and
denote as Ik(Ω) the corresponding group. A polyhedral current in Rn is a finite sum of
k-dimensional oriented simplexes Si endowed with some constant integer multiplicities σi,
and we generally assume that Si ∩ Sj is either empty of consists of a common face of Si
and Sj . As it is done in [2], we introduce the following flat norm of a current T ∈ Dk(Ω):


FΩ(T ) := inf{||S||Ω : S ∈ Dk+1(Ω) and T = ∂S}, (2.3)


and the infimum is taken to be +∞ if T is not a boundary.
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Jacobians of Sobolev maps and boundaries. Given Ω ⊂ Rn open and u ∈
W 1,n−2


loc (Ω;Rn−1) ∩ L∞loc(Ω;Rn−1), following [11], we define the (n− 2)-form


j(u) =
n−1∑
i=1


(−1)i−1ui ·
∧
j 6=i


duj


and we set the Jacobian of u to be


Ju :=
1


n− 1
d[j(u)]


in the sense of distributions. This means that for any ω ∈ Dn−1(Ω)


Ju · ω =
1


n− 1


∫
Rn
d∗ω · j(u) dx,


where d∗ is the formal adjoint of d. By means of the ? operator we can identify such a
form with a 1-current ?Ju. In our specific context, the ? operator can be defined, at the
level of vectors/covectors, as follows: given a (n− 1)-covector w, the vector ?w is defined
by the identity


v · ?w = (v ∧ w)(e1 ∧ · · · ∧ en) for all v ∈ ∧1(Rn).


Jacobians turn out to be the main tool in our analysis due to their relation with
boundaries. In order to highlight such a relation we need some additional notation: given
any segment S in Rn and given δ, γ > 0, let us define the set


U(S, δ, γ) =


{
x ∈ Rn : dist(x, S) < min


{
δ,


γ√
1 + γ2


dist(x, ∂S)


}}
.


If we identify the line spanned by S with R, we can write each point x ∈ U(S, δ, γ) as
x = (x′, x′′) ∈ R× Rn−1, so that


U(S, δ, γ) = {x′ ∈ S : |x′′| ≤ min(δ, γ · dist(x′, ∂S))}.


We can now recall the main result of [1] (rewritten in our specific context).


Theorem 2.1 (Theorem 5.10, [1]). Let M = [[Σ, τ, 1]] be the (polyhedral) boundary of a
polyhedral current N of dimension 2 in Rn, and let F0 denote the union of the faces of
N of dimension 0. Then there exists u ∈ W 1,n−2(Rn;Sn−2) such that ?Ju = αn−1M ,
with u locally Lipschitz in the complement of Σ ∪ F0 and constant outside a bounded
neighbourhood of N , and Du belongs to Lp for every p < n − 1 and satisfies |Du(x)| =
O(1/dist(x,Σ ∪ F0)). Moreover, there exist δ, γ > 0 small enough such that, for each
1-simplex Sk ⊂ Σ, one has


u(x) =
x′′


|x′′|
for all x = (x′, x′′) ∈ U(Sk, δ, γ).
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3 Gilbert–Steiner problems and currents


In this section we briefly review (this time in terms of currents) the approach used in
[4, 5], which is to say the framework introduced by Marchese and Massaccesi in [13, 12],
and describe Gilbert–Steiner problems in terms of a minimum mass problem for a given
family of rectifiable 1-currents in Rn.


The set of possible minimizers for (Iα) can be reduced to the set of (connected) acyclic
graphs L that are described as the superposition of N − 1 curves.


Definition 3.1. We define G(A) to be the set of acyclic graphs L of the form


L =
N−1⋃
i=1


λi,


where each λi is a simple rectifiable curve connecting Pi to PN and oriented by an H1-
measurable unit vector field τi, with τi(x) = τj(x) for H1-a.e. x ∈ λi ∩ λj, and we denote
by τ the corresponding global orientation, i.e., τ(x) = τi(x) for H1-a.e. x ∈ λi.


It can be shown (see, e.g., [13, Lemma 2.1]), that (Iα) is equivalent to


min


{∫
L
|θ(x)|αdH1, L ∈ G(A), θ(x) =


N−1∑
i=1


1λi(x)


}
. (3.1)


Given now L ∈ G(A), we identify each component λi with the corresponding 1-current
Λi = [[λi, τi, 1]] and we consider Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rn)]N−1.


Definition 3.2. We define L(A) to be the set Λ ∈ [I1(Rn)]N−1 such that each component
is of the form Λi = [[λi, τi, 1]] for some L ∈ G(A), and write Λ ≡ ΛL to highlight the
supporting graph.


Given Λ = (Λ1, . . . ,ΛN−1) ∈ [N1(Rn)]N−1 and a function ϕ ∈ C∞c (Rd;Rd×N−1), with
ϕ = (ϕ1, . . . , ϕN−1), one sets


〈Λ, ϕ〉 =


N−1∑
i=1


〈Λi, ϕi〉


and for a norm Ψ on RN−1, we define the Ψ-mass measure of Λ as


|Λ|Ψ(Ω) := sup
ω∈C∞c (Ω;Rn)


h∈C∞c (Ω;RN−1)


{〈Λ, ω ⊗ h〉 , |ω(x)| ≤ 1 , Ψ∗(h(x)) ≤ 1} , (3.2)


for Ω ⊂ Rn open, where Ψ∗(y) = supx∈RN−1〈y, x〉−Ψ(x) is the dual norm to Ψ w.r.t. the
scalar product on RN−1, and we let the Ψ-mass norm of Λ to be


||Λ||Ψ = |Λ|Ψ(Rn). (3.3)


As described in [13, 4, 5], the problem defined in (3.1) is equivalent to


inf{||Λ||Ψα : Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rn)]N−1, ∂Λi = δPN − δPi}, (3.4)
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where Ψα is the `1/α norm on RN−1 for 0 < α ≤ 1, and the `∞ norm for α = 0. This
means that any minimizer Λ̄ of (3.4) is of the form Λ̄ = ΛL̄ for a minimizer L̄ of (3.1),
and given any minimizer L̄ of (3.1) then the corresponding ΛL̄ minimizes (3.4).


Remark 3.3. In [13, 12] problem (3.4) is introduced in the context of a mass mini-
mization problem for integral currents with coefficients in a suitable normed group. In
that case, the Ψ-mass defined above is simply the mass of the current deriving from the
particular choice of the norm for the coefficients group.


Calibrations. One of the main advantages of formulation (3.4) is the possibility to
introduce calibration-type arguments for proving minimality of a given candidate. For a
fixed Λ̄ ∈ [N1(Rn)]N−1, a (generalized) calibration associated to Λ̄ is a linear and bounded
functional ϕ : [N1(Rn)]N−1 → R such that


(i) ϕ(Λ̄) = ||Λ̄||Ψ,


(ii) ϕ(∂R) = 0 for any R ∈ [N2(Rn)]N−1,


(iii) ϕ(Λ) ≤ ||Λ||Ψ for any Λ ∈ [N1(Rn)]N−1.


The existence of a calibration is a sufficient condition to prove minimality in (3.4). Indeed,
let Λ̄ be a competitor in (3.4) and ϕ be a calibration for Λ̄. Consider any Λ ∈ [N1(Rn)]N−1,
with ∂Λi = δPN − δPi . By assumption, for each i = 1, . . . , N − 1, one has ∂(Λ̄i −Λi) = 0,
so that there exists a 2-current Ri such that Λ̄i = Λi + ∂Ri. Hence,


||Λ̄||Ψ
(i)
= ϕ(Λ̄) = ϕ(Λ + ∂R) = ϕ(Λ) + ϕ(∂R)


(iii), (ii)


≤ ||Λ||Ψ


which proves the minimality of Λ̄ in (3.4) (and, more generally, also minimality among
normal currents). We also remark that once a calibration exists it must calibrate all
minimizers.


A calibration-type argument. The general idea behind calibrations can be used to
tackle minimality in suitable subclasses of currents, as long as the previous derivation can
be proved to still hold true. Consider, as displayed in figure 1, the Steiner tree problem for
four points in R3 with P1 = (−3/2,−


√
3/2, 0), P2 = (−3/2,


√
3/2, 0), P3 = (3/2, 0,


√
3/2)


and P4 = (3/2, 0,−
√


3/2). Let us identify the two points S1 = (−1, 0, 0) and S2 = (1, 0, 0),
and fix as norm Ψ the `∞ norm on the coefficients space R3. Given a list of points
Q1, . . . , Qk, we write as [Q1, . . . , Qk] the polyhedral current connecting them and oriented
from Q1 to Qk. Our aim is to prove that


Λ̄ = ([P1, S1, S2, P4], [P2, S1, S2, P4], [P3, S2, P4])


is a minimizer of the Ψ-mass || · ||∞ ≡ || · ||`∞ among all currents Λ ∈ B, where B ⊂
[N1(R3)]3 is the family of currents Λ satisfying the given boundary conditions ∂Λi =
δP4 − δPi , and such that there exist a positive finite measure µΛ on R3, a unit vector
field τΛ and a function gΛ : R3 → {e1, e2, e3, e1 + e2, e1 + e2 + e3} such that Λi(ω) =∫
R3 g


Λ
i (x)ω · τΛ dµΛ. Let us formally identify any such object as Λ = (τΛ⊗ gΛ)µΛ (loosely
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Figure 1: We consider the Steiner tree problem for 4 vertices obtained as “opposite”
couples of vertices of a rectangular cuboid.


speaking, we consider only the family of normal rank one currents with a prescribed
superposition pattern for different flows). It can be easily seen that Λ̄ ∈ B and for any
Λ ∈ B we have ||Λ||∞ =


∫
R3 ||gΛ(x)||∞ dµΛ(x). For proving minimality of Λ̄ for the


`∞-mass among all competitors in B we can use a calibration argument: let us consider
ϕ : [N(R3)]3 → R defined as


ϕ(Λ) =
3∑
i=1


〈Λi, ωi〉


where ωi are fixed to be


ω1 =
1


2
dx1 +


√
3


2
dx2, ω2 =


1


2
dx1 −


√
3


2
dx2, ω3 = −1


2
dx1 −


√
3


2
dx3.


One can show by direct computations that ϕ(Λ̄) = ||Λ̄||∞, so that given any other Λ ∈ B
and R ∈ [N2(R3)]3 such that Λ̄ = Λ + ∂R, we have ||Λ̄||∞ = ϕ(Λ̄) = ϕ(Λ) + ϕ(∂R), for
which


ϕ(Λ) =
3∑
i=1


∫
R3


gΛ
i (x)ωi · τΛ dµΛ ≤


∫
R3


||gΛ||∞ dµΛ = ||Λ||∞


because gΛ ∈ {e1, e2, e3, e1 + e2, e1 + e2 + e3} for µΛ-a.e. x, and


ϕ(∂R) =


3∑
i=1


〈Ri, dωi〉 = 0.


Hence, ||Λ̄||∞ ≤ ||Λ||∞ for any Λ ∈ B. Up to permutations, the class B represents every
possible acyclic graph L ∈ G({P1, P2, P3, P4}) with 2 additional Steiner points and thus
the support of Λ̄ is an optimal Steiner tree within that family of graphs. Remark that
any minimal configuration cannot have 0 or 1 Steiner points because these configurations
violate the 120◦ angle condition, so that we can conclude that the support of Λ̄ is indeed
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an optimal Steiner tree. This extends for the first time to an higher dimensional context
calibration-type arguments which up to now have been extensively used almost exclusively
in the planar case, e.g. in [13, 12].


In the companion paper [4], we investigate a variational approximation of (3.4) in
the two dimensional case, relying on a further reformulation of the problem within a
suitable family of SBV functions and then providing a variational approximation based
on Modica–Mortola type energies. Here, instead, we work in dimension three and higher
and address (3.4) directly by means of Ginzburg–Landau type energies.


4 Variational approximation of Ψ-masses


In this section we state and prove our main results, namely Proposition 4.5 and The-
orem 4.6, concerning the approximation of minimizers of Ψ-masses functionals through
Jacobians of minimizers of Ginzburg–Landau type functionals, much in the spirit of [2].


4.1 Ginzburg–Landau functionals with prescribed boundary data


In this section, following closely [2], we consider Ginzburg–Landau functionals for func-
tions having a prescribed trace v on the boundary of a given open Lipschitz domain.


Domain and boundary datum. Fix two points P,Q ∈ Rn, with max(|P |, |Q|) ≤ 1,
and let Σ be a simple acyclic polyhedral curve joining P and Q, and oriented from Q to
P . Let S1, . . . , SK be the K segments composing Σ and, for δ, γ > 0 small enough define


U =


K⋃
k=1


U(Sk, δ, γ), and Ωδ,γ = Bn
10 \ Ū . (4.1)


Consider the boundary datum v ∈W 1−1/(n−1),n−1(∂Ωδ,γ ;Sn−2) defined as


v(x) =



x′′


|x′′|
for x = (x′, x′′) ∈ ∂U


en−1 for x ∈ ∂Bn
10


(4.2)


By construction one has
?Jv = αn−1(δQ − δP ).


In this context, for only two points, the Ψ-mass reduces (up to a constant) to the usual
mass, and thus we can directly rely on Corollary 1.2 of [2], which yields the following.


Theorem 4.1. For δ, γ > 0 small enough, consider the Lipschitz domain Ωδ,γ defined in
(4.1) and let v be the boundary datum defined in (4.2).


(i) Consider a (countable) sequence {uε}ε ⊂W 1,n−1(Ωδ,γ ;Rn−1) with trace v on ∂Ωδ,γ


such that Fε(uε,Ω
δ,γ) = O(| log ε|). Then, up to subsequences, there exists a recti-


fiable 1-current M supported in Ω̄δ,γ, with ∂M = δQ − δP , such that the Jacobians
?Juε converge in the flat norm FRn to αn−1M and


lim inf
ε→0


Fε(uε,Ω
δ,γ)


| log ε|
≥ βn−1||M || (4.3)
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(ii) Given a rectifiable 1-current M supported in Ω̄δ,γ such that ∂M = δQ−δP , for every
ε > 0 we can find uε such that uε = v on ∂Ωδ,γ, FRn(?Juε − αn−1M)→ 0 and


lim
ε→0


Fε(uε,Ω
δ,γ)


| log ε|
= βn−1||M ||


In particular, given {uε}ε a sequence of minimizers of Fε(·,Ωδ,γ) with trace v on ∂Ωδ,γ,
then Fε(uε,Ω


δ,γ) = O(| log ε|) and, possibly passing to a subsequence, the Jacobians ?Juε
converge in the flat norm FRn to αn−1M , where M minimizes the mass among all recti-
fiable 1-currents supported on Ω̄δ,γ with boundary δQ − δP .


Point (i) of the previous theorem corresponds to the derivation of Section 3.1 in [4],
where we consider Modica–Mortola functionals for maps with prescribed jump, and here
the prescribed jump is somehow replaced by the prescribed boundary datum “around”
the drift Σ. As it is done in [4], the idea is now to extend the previous (single-component)
result to problems involving Ψ-masses for N ≥ 3.


4.2 The approximating functionals FΨ
ε


We now consider Ginzburg–Landau approximations for Ψ-masses whenever we are given
N ≥ 3 points. Fix then a norm Ψ: RN−1 → [0,+∞) on RN−1, and consider the Ψ-mass
defined in (3.3).


Construction of the domain. Fix a family of N − 1 simple polyhedral curves
γi each one connecting Pi to PN and denote by Γi = [[γi, τi, 1]] the associated 1-current
(oriented from PN to Pi). Suppose, without loss of generality, that γi ∩ γj = {PN} for
any i 6= j, i.e., any two curves do not intersect each other. Every γi can then be viewed as
the concatenation of mi (oriented) segments Si,1, . . . , Si,mi , for each of which we consider
the neighbourhood


U δ,γi,j = U(Si,j , δ, γ)


for δ, γ > 0. Define now V δ,γ
i = ∪jU δ,σi,j and observe that, by finiteness, we can fix δ, γ


sufficiently small such that V̄ δ,γ
i ∩ V̄ δ,γ


j = {PN} for any i 6= j. The domain we are going
to work with is


Ωδ,γ = Bn
10 \


(
∪iV̄ δ,γ


i


)
(4.4)


Boundary datum and approximating functionals. Following the same idea used
in the previous section, fix N − 1 functions vi ∈W 1−1/(n−1),n−1(∂Ωδ,γ ; Sn−2) such that


vi(x) =



x′′


|x′′|
for x = (x′, x′′) ∈ ∂U δ,γi,j


en−1 for x ∈ ∂Ωδ,γ \ ∂V δ,γ
i


By construction vi “winds around” γi and is constant on the rest of the given boundary.
As such, one sees that ?Jvi = αn−1(δPN − δPi). As our functional space we consider


Hδ,γ
i = {u ∈W 1,n−1(Ωδ,γ ;Rn−1) : u|∂Ωδ,γ = vi}, Hδ,γ = Hδ,γ


1 × · · · ×Hδ,γ
N−1, (4.5)
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and for U = (u1, . . . , uN−1) ∈ Hδ,γ and ~eε(U) = (eε(u1), . . . , eε(uN−1)), we define the
approximating functionals


FΨ
ε (U,Ωδ,γ) = |~eε(U) dx|Ψ(Ωδ,γ), (4.6)


or equivalently, thanks to (3.2),


FΨ
ε (U,Ωδ,γ) = sup


ϕ∈C∞c (Ωδ,γ ;RN−1)


{
N−1∑
i=1


∫
Ωδ,γ


ϕieε(ui) dx, Ψ∗(ϕ(x)) ≤ 1


}
. (4.7)


Lower-bound inequality Results on “compactness” and lower-bound inequality
presented in the previous section extends to FΨ


ε as follows.


Proposition 4.2. Consider a (countable) sequence {Uε}ε ⊂ Hδ,γ such that FΨ
ε (Uε,Ω


δ,γ) =
O(| log ε|). Then, up to subsequences, there exists a family M = (M1, . . . ,MN−1) of recti-
fiable 1-currents supported in Ω̄δ,γ, with ∂Mi = δPN − δPi, such that the Jacobians ?Juε,i
converge in the flat norm FRn to αn−1Mi and


lim inf
ε→0


FΨ
ε (Uε,Ω


δ,γ)


| log ε|
≥ βn−1||M ||Ψ. (4.8)


Proof. For each i = 1, . . . , N − 1, by definition of FΨ
ε we have∫


Ωδ,γ
eε(uε,i) dx ≤ Ψ∗(ei)F


Ψ
ε (Uε,Ω


δ,γ) = O(| log ε|)


and the first part of the statement follows applying Proposition 4.1 componentwise. Fix
now ϕ ∈ C∞c (Rn;RN−1) with ϕi ≥ 0 for any i = 1, . . . , N − 1 and Ψ∗(ϕ(x)) ≤ 1 for all x.
Then, thanks to (4.3), we have


βn−1


N−1∑
i=1


〈Mi, ϕi〉 ≤
1


| log ε|


N−1∑
i=1


lim inf
ε→0


∫
Ωδ,γ


ϕieε(uε,i) dx


≤ 1


| log ε|
lim inf
ε→0


N−1∑
i=1


∫
Ωδ,γ


ϕieε(uε,i) dx ≤ lim inf
ε→0


FΨ
ε (Uε,Ω


δ,γ)


| log ε|
,


which yields (4.8) taking the supremum over ϕ.


Upper-bound inequality and behaviour of minimizers. We now state and
prove a version of an upper-bound inequality for the functionals FΨ


ε which is tailored to
investigate the behaviour of Jacobians of minimizers of FΨ


ε .


Proposition 4.3 (Upper-bound inequality). Let Λ = ΛL ∈ L(A), with L ∈ G(A) an
acyclic graph supported in Ω̄δ,γ. Then there exists a sequence {Uε}ε ⊂ Hδ,γ such that
FRn(?Juε,i − αn−1Λi)→ 0, and


lim sup
ε→0


FΨ
ε (Uε,Ω


δ,γ)


| log ε|
≤ βn−1||Λ||Ψ. (4.9)
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Proof. Step 1. We assume that L = ∪iλi ∈ G(A) is an acyclic polyhedral graph fully
contained in Ωδ,γ , which is to say λi∩∂Ωδ,γ = {Pi, PN}, and let τ be its global orientation.
Such a graph L can then be decomposed into a family of K oriented segments S1, . . . , SK ,
with orientation given by τ . For each segment Sk consider the set U


′
k = U(Sk, δ


′, γ′), for
parameters 0 < δ′ < δ and 0 < γ′ < γ, and choose δ′, γ′ small enough so that sets U ′k are
pairwise disjoint. Define as V


′
i the union of the U


′
k covering λi, and let V ′ = ∪iV ′i = ∪kU ′k.


Eventually, define vectors gk ∈ RN−1 as gki = 1 if Sk ⊂ λi and gki = 0 otherwise. Collect
these vectors in a function g : V ′ → RN−1 defined as g(x) = gk for x ∈ U ′k.


For the construction of the approximating sequence we relay on the following fact,
which is a direct consequence of Theorem 2.1: for each i = 1, . . . , N − 1 there exists
ui ∈W 1,n−2(Ωδ,γ ; Sn−2) and a finite set of points F i0 such that:


(i) ui|∂Ωδ,γ = vi, which is to say ui satisfies the given boundary conditions, and fur-
thermore ?Jui = αn−1Λi;


(ii) ui is locally Lipschitz in Ω̄δ,γ \ (λi ∪ F i0) and


|Dui(x)| = O(1/dist(x, γi ∪ λi ∪ F i0));


(iii) within the set V ′ every function behaves like


ui(x) =



x′′


|x′′|
for x = (x′, x′′) ∈ V ′i


en−1 for x ∈ Ωδ,γ \ V ′i


In particular, we observe that for any k ∈ {1, . . . ,M}, if Sk ⊂ λi and Sk ⊂ λj , then
ui = uj on U


′
k by (iii). Thus, we can define a “global” function u : V ′ → Sn−2 such that


u(x) = x′′/|x′′| for any x ∈ V ′ and, consequently, ui|V ′ = gi(x)u(x).
Starting form each ui we define our family of approximating maps: for any ε ∈ (0, δ′)


let Ωδ,γ
ε = Ωδ,γ \ ∪iB2ε(Pi), and let uε,i : Ωδ,γ


ε → Rn−1 be defined as


uε,i(x) = hε,i(x)ui(x) where hε,i(x) = min


(
1,


dist(x, λi ∪ F i0)


ε


)
. (4.10)


Complete these maps on B2ε(Pi)∩Ωδ,γ by means of a Lipschitz extension of the function
uε,i with Lipschitz constant of the order of 1/ε, using vi as boundary value on B2ε(Pi) ∩
∂Ωδ,γ . The resulting maps are locally Lipschitz in the complement of ∪k∂Sk, belong
to W 1,n−1(Ωδ,γ ;Rn−1) and by construction uε,i|∂Ωδ,γ = vi, i.e., uε,i ∈ Hδ,γ


i . Each uε,i
converges strongly to ui in W 1,n−2(Ωδ,γ ;Rn−1) and, in particular, the Jacobians ?Juε,i
converge to ?Jui = αn−1Λi in the flat norm FRn (see Remark 2.11 of [2]).


We now consider the energy behaviour, working locally on every U
′
k: for ε ∈ (0, δ′),


let us consider
U
′
k,ε,1 := {x ∈ U ′k : dist(x, Sk) ≤ ε} ∩ Ωδ,γ


ε


U
′
k,ε,2 := (U


′
k \ U


′
k,ε,1) ∩ Ωδ,γ


ε


Vout := Ωδ,γ
ε \ V


′
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Let ϕ = (ϕ1, . . . , ϕN−1), with ϕi ≥ 0 and Ψ∗(ϕ) ≤ 1, we compute∫
Ωδ,γ


N−1∑
i=1


ϕieε(uε,i) dx ≤
K∑
k=1


[∫
U ′k,ε,1


N−1∑
i=1


ϕieε(uε,i) dx+


∫
U ′k,ε,2


N−1∑
i=1


ϕieε(uε,i) dx


]
+


+
N∑
j=1


∫
B2ε(Pj)


N−1∑
i=1


ϕieε(uε,i) dx+


∫
Vout


N−1∑
i=1


ϕieε(uε,i) dx.


Fix 1 ≤ k ≤ K and consider the sets of indices Ik = {i : Sk ⊂ γi} and Ick = {1, . . . , N −
1} \ Ik. Let us analyse separately the four kinds of integrals appearing in the above
expression.


• The first family of integrals on each U ′k,ε,1 splits as


∫
U ′k,ε,1


N−1∑
i=1


ϕieε(uε,i) dx =


∫
U ′k,ε,1


∑
i∈Ik


ϕieε(uε,i) dx+


∫
U ′k,ε,1


∑
i∈Ick


ϕieε(uε,i) dx.


We distinguish between two case.


Case i ∈ Ik: we have |Dui(x)| ≤ C/dist(x, Sk) thanks to (iii), and therefore


|Duε,i(x)| ≤ hε,i(x)|Dui(x)|+ |Dhε,i(x)||ui(x)| ≤ C


ε
.


Using that W (uε,i) ≤ C and |U ′k,ε,1| ≤ Cεn−1, we obtain


Fε(uε,i, U
′
k,ε,1) ≤ C for all k, i such that Sk ⊂ λi. (4.11)


Case i ∈ Ick: in this situation we have uε,i = ui on U ′k,ε,1 and dist(x, F i0) ≤
Cdist(x, γi ∪ λi). In particular, combining (ii) and (4.10), we have


|Duε,i(x)| ≤ C/dist(x, F i0).


Using the fact that W (uε,i) = 0 in the complement of an ε-neighbourhood (λi∪F i0)ε
of λi ∪ F i0, we get


Fε(uε,i, U
′
k,ε,1) ≤ C


∫
U ′k,ε,1


dx


dist(x, F i0)n−1
+
C


ε2
|(λi ∪ F i0)ε|


≤ C for all k, i such that Sk * λi.


(4.12)


Combining (4.11) and (4.12) we obtain∫
U ′k,ε,1


N−1∑
i=1


ϕieε(uε,i) dx ≤ C for all 1 ≤ k ≤ K, 1 ≤ i ≤ N − 1. (4.13)
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• The second family of integrals on each U ′k,ε,2 splits analogously into


∫
U ′k,ε,2


N−1∑
i=1


ϕieε(uε,i) dx =


∫
U ′k,ε,2


∑
i∈Ik


ϕieε(uε,i) dx+


∫
U ′k,ε,2


∑
i∈Ick


ϕieε(uε,i) dx.


Let us distinguish the same two cases as above.


Case i ∈ Ik: here we have uε,i = ui within U ′k,ε,2 and so uε,i takes values in Sn−2,


reducing this way eε(uε,i) to 1
n−1 |Dui|


n−1. For every x ∈ U ′k one has


|Dui(x)| =
∣∣∣∣D x′′


|x′′|


∣∣∣∣ =
(n− 2)1/2


|x′′|
.


Hence,


Fε(uε,i, U
′
k,ε,2) ≤ H1(Sk)


(n− 2)(n−1)/2


n− 1


∫
Bn−1
δ′ \B


n−1
ε


dx′′


|x′′|n−1


≤ H1(Sk)
(n− 2)(n−1)/2


n− 1


∫ 1


ε


(n− 1)αn−1ρ
n−2


ρn−1
dρ


≤ βn−1| log ε| · H1(Sk) for all k, i such that Sk ⊂ λi.


(4.14)


Case i ∈ Ick: the same derivation done for obtaining (4.12) applies, so that


Fε(uε,i, U
′
k,ε,2) ≤ C for all k, i such that Sk * λi. (4.15)


Taking into account (4.14), (4.15), and that
∑


i∈Ik ϕi(x) =
∑N−1


i=1 gki ϕi(x) ≤ Ψ(gk),
we have ∫


U ′k,ε,2


N−1∑
i=1


ϕieε(uε,i) dx ≤ C + Ψ(gk)βn−1| log ε| · H1(Sk) (4.16)


for all 1 ≤ k ≤ K, 1 ≤ i ≤ N − 1.


• For any given j = 1, . . . , N the contribution on B2ε(Pj) is of order ε, so that in
particular ∫


B2ε(Pj)


N−1∑
i=1


ϕieε(uε,i) dx ≤ C. (4.17)


• The last integral on Vout can be treated as in the derivation of (4.12) and (4.15),
so that we have∫


Vout


N−1∑
i=1


ϕieε(uε,i) dx ≤ C for all 1 ≤ k ≤ K, 1 ≤ i ≤ N − 1. (4.18)
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If we combine (4.13), (4.16), (4.17), (4.18), divide by | log ε|, take ε→ 0 and consider the
supremum over ϕ in view of (4.7), we have


lim sup
ε→0


FΨ
ε (Uε,Ω


δ,γ)


| log ε|
≤ βn−1|Λ|Ψ(Ωδ,γ) = βn−1||Λ||Ψ,


which is the sought for conclusion.


Step 2. Let us consider now the case ΛL ≡ Λ = (Λ1, . . . ,ΛN−1), L = ∪iλi and the
λi are not necessarily polyhedral and possibly lying on the boundary of Ωδ,γ . We rely on
Lemma 4.4 below to construct a sequence of acyclic polyhedral graphs Lm = ∪iλmi , λmi
contained in Ωδ,γ , and s.t. the Hausdorff distance dH(λmi , λi) <


1
m for all i = 1, . . . , N−1,


and ||ΛLm ||Ψ ≤ ||ΛL||Ψ + 1
m . For ΛLm = (Λm1 , . . . ,Λ


m
N−1), by step 1 we may construct


a sequences {Umε }ε such that FRn(?Jumε,i − αn−1Λmi ) → 0 as ε → 0 for each m and, in
particular,


lim sup
ε→0


FΨ
ε (Umε ,Ω


δ,γ)


| log ε|
≤ βn−1||ΛLm ||Ψ ≤ βn−1||Λ||Ψ +


C


m
.


We deduce that FRn(?Jumεm,i − αn−1Λi)→ 0 and


lim sup
m→∞


FΨ
εm(Umεm ,Ω


δ,γ)


| log εm|
≤ βn−1||Λ||Ψ


for a subsequence εm → 0 as m→ +∞. Conclusion (4.9) follows.


We recall from [4, Lemma 3.10] the relevant approximation used above, where poly-
hedral approximations are here supposed to live within the set Ωδ,γ (i.e., with no relevant
part on the boundary).


Lemma 4.4. Let L ∈ G(A), L = ∪N−1
i=1 λi, be an acyclic graph connecting P1, . . . , PN


with λi ⊂ Ω̄δ,γ. Then for any η > 0 there exists L′ ∈ G(A), L′ = ∪N−1
i=1 λ


′
i, with λ′i ⊂


Ωδ,γ ∪ {Pi, PN} a simple polyhedral curve of finite length connecting Pi to PN , such that
the Hausdorff distance dH(λi, λ


′
i) < η and ||ΛL′ ||Ψ ≤ ||ΛL||Ψ + η.


Thanks to the previous propositions we are now able to prove our main result on the
behaviour of the Jacobians of the minimizers.


Proposition 4.5 (Behaviour of minimizers). Let {Uε}ε ⊂ Hδ,γ be a sequence of mini-
mizers for FΨ


ε in Hδ,γ. Then (up to a subsequence) the Jacobians ?Juε,i converge in the
flat norm FRn to αn−1Mi, with M = (M1, . . . ,MN−1) a minimizer of


inf{||Λ||Ψ : Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rn)]N−1, spt Λi ⊂ Ω̄δ,γ , ∂Λi = δPN − δPi}. (4.19)


Proof. Let Λ = ΛL canonically representing an acyclic graph L ⊂ Ω̄δ,γ , and let {Vε}ε ⊂
Hδ,γ such that lim supε→0


FΨ
ε (Vε,Ωδ,γ)
| log ε| ≤ ||Λ||Ψ and FRn(?Jvε,i − αn−1Λi) → 0. Since


FΨ
ε (Uε,Ω


δ,γ) ≤ FΨ
ε (Vε,Ω


δ,γ), by Proposition 4.2 there exists a familyM = (M1, . . . ,MN−1)
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of rectifiable 1-currents supported in Ω̄δ,γ , with ∂Mi = δPN −δPi , such that the Jacobians
?Juε,i converge in the flat norm FRn to αn−1Mi. Then, by (4.8), we have


βn−1||M ||Ψ ≤ lim inf
ε→0


FΨ
ε (Uε,Ω


δ,γ)


| log ε|
≤ lim sup


ε→0


FΨ
ε (Vε,Ω


δ,γ)


| log ε|
≤ βn−1||Λ||Ψ.


Given any other generic Λ ∈ [I1(Rn)]N−1 with spt Λi ⊂ Ω̄δ,γ and ∂Λi = δPN − δPi , as one
does in the derivation of (3.1) (see, e.g., Lemma 2.1 in [13]), we can always find L̄ ∈ G(A)
supported in Ω̄δ,γ such that ||ΛL̄||Ψ ≤ ||Λ||Ψ, and thus M minimizes (4.19) as desired.


Finally, let us highlight the case Ψ = Ψα, where Ψα(g) = |g|1/α for 0 < α ≤ 1 and


Ψ0(g) = |g|∞, and denote F 0
ε ≡ FΨ0


ε and Fαε ≡ FΨα
ε . For U = (u1, . . . , uN−1) ∈ Hδ,γ we


have


F 0
ε (U,Ωδ,γ) =


∫
Ωδ,γ


sup
i
eε(ui) dx, Fαε (U,Ωδ,γ) =


∫
Ωδ,γ


(
N−1∑
i=1


eε(ui)
1/α


)α
dx. (4.20)


Theorem 4.6. Let {P1, . . . , PN} ⊂ Rn such that maxi |Pi| = 1, and let Ωδ,γ be defined
as in (4.4) for δ, γ small enough, with γ = c̄δ. For 0 ≤ α ≤ 1 and 0 < ε � δ, denote


Fα,δε ≡ Fαε (·,Ωδ,γ), with Fαε (·,Ωδ,γ) defined in (4.20).


(i) Let {Uα,δε }ε be a sequence of minimizers for Fα,δε in Hδ,γ, with Hδ,γ defined in (4.5).


Then, up to subsequences, the Jacobians ?Juα,δε,i converge in the flat norm FRn to


αn−1M
α,δ
i , where Mα,δ = (Mα,δ


1 , . . . ,Mα,δ
N−1) minimizes (4.19).


(ii) Let Mα,δ = (Mα,δ
1 , . . . ,Mα,δ


N−1) be a sequence of minimizers for (4.19). Then, up to


subsequences, we have FRn(Mα,δ
i −Mα


i ) → 0 as δ → 0 for every i = 1, . . . , N − 1,
with Mα = (Mα


1 , . . . ,M
α
N−1) a minimizer of


inf{||Λ||Ψα : Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rn)]N−1, ∂Λi = δPN − δPi} (4.21)


and, in turn, Mα = ΛLα for an optimizer Lα of the α-irrigation problem (Iα) with
terminals P1, . . . , PN .


Proof. In view of Proposition 4.5 it remains to prove item (ii). For each i = 1, . . . , N −1,


the sequence {Mα,δ
i }δ is equibounded in mass, hence there exists a rectifiable 1-current


Mα
i , with ∂Mα


i = δPN − δPi , such that Mα,δ
i → Mα


i in the flat norm. Let us call
Mα = (Mα


1 , . . . ,M
α
N−1) the limiting family and let M̄α = (M̄α


1 , . . . , M̄
α
N−1) be a min-


imizer of (4.21). In the same spirit of Lemma 4.4, starting with our minimizer M̄α,


we can construct a new family M̃α,δ = (M̃α,δ
1 , . . . , M̃α,δ


N−1) supported in Ω̄δ,γ such that


||M̃α,δ||Ψα ≤ ||M̄α,δ||Ψα + Cδ. Hence,


||M̄α||Ψα ≤ ||Mα||Ψα ≤ lim inf
δ→0


||Mα,δ||Ψα ≤ lim inf
δ→0


||M̃α,δ||Ψα


≤ lim inf
δ→0


||M̄α,δ||Ψα + Cδ = ||M̄α||Ψα ,


and so Mα has to be a minimizer of (4.21). The correspondence of minimizers of (4.21),
which is to say of (3.4), with minimizers of (Iα) follows by the discussion of Section 3.
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