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Abstract

In this paper, we present numerical methods to solve optimization problems among
convex bodies which satisfy some width constraints. We propose two different numer-
ical methods to handle width equality and width inequality constraints. To illustrate
the efficiency of our method, we use our approach to approximate optimal solution of
Meissner”s problem and Heil’s conjecture.
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1 Introduction

This article deals with numerical shape optimisation problems involving convex shapes under
width constraints in R3. Throughout the article, we make use of the following notations:

• K is a convex body of R3 with nonempty interior which contains the origin,

• ∂K denotes its boundary,

• νK is the almost everywhere defined outer normal vector field on ∂K, with values on
the sphere S2,

• for ν ∈ S2, ϕK(ν) is the distance to the origin of the supporting plane to K of exterior
normal ν. More explicitly,

ϕK(ν) = sup
x∈K

x.ν

where x.ν stands for the usual scalar product of R3. ϕK is called the support function
of K,

• wK(ν) = ϕK(ν) + ϕK(−ν) for ν ∈ S2 is called the width in the direction ν.
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The two kinds of optimisation problem that we will study are :

min
K∈K

F (K)

where
K = {K convex, wK(ν) = 1, ∀ν ∈ S2}. (1) pb_cw

or
K = {K convex, wK(ν) ≥ 1, ∀ν ∈ S2} (2) pb_minw

In particular, we focus our work on the numerical study of the previous problems when
F (K) has a geometrical meaning. More precisely, we restrict our study to F (K) equal to
the volume of K denoted by |K| or the surface area of ∂K denoted by SK .

Taking F (K) equal to |K| (or equivalently to SK by Blaschke’s formula), problem (1) is a
well known question called Meissner’s conjecture. In dimension two, this problem was solved
by Lebesgue and Blaschke: the solution turns out to be a Reuleaux triangle. In dimension
three, this problem is still open. Indeed the mere existence of non trivial three-dimensional
bodies of constant width is not so easy to establish. In particular, no finite intersection
of balls has constant width (except balls themselves), a striking difference with the two-
dimensional case. A simple construction, to obtain constant width bodies in dimension 3, is
to consider a two dimensional body of constant width having an axis of symmetry (like the
Reuleaux triangle for instance): the corresponding body of revolution obtained by rotation
around this axis is of constant width. F. Meissner proved that the rotated Reuleaux triangle
has the smaller volume among constant width bodies of revolution. Later on he was able to
construct another spheroform (usually called “Meissner’s tetrahedron”) which does not have
the symmetry of revolution. The volume of this body is smaller than any other known of
constant width, so it is a good candidate as a solution to the problem (1) (see [9], [10], [11],
[12]).

In a first part of this article, we study constant width constraints of type (1) using an
analytical parametrisation introduced in [1]. We discuss a cubic spline method based on
[6] which approximates problem (1) by a standard quadratic programming problem under
equalities and inequalities constraints. The main interest of the method is that it gives a
discrete way to parameterise (and not to approximate) constant with bodies. This point
is of dramatic importance to study Meissner’s conjecture in a numerical way. Based on
that method, we perform numerical experiments to study the local optimality of Meissner’s
body and of the rotated Reuleaux triangle. Our numerical results satisfy the weak optimality
condition which has been described in [1]. More precisely, any constant width body K∗

which minimises the area is irregular in the sense that for any ω ∈ S2 small enough, the part
of ∂K∗ whose normals are ω and the other part whose normals are −ω are not both regular.

In a second part we study the relaxed problem (2). The question to minimise the surface
area among convex bodies of prescribed minimal width was first addressed in [5]. One convex
body based on a regular simplex, whose precise description is recalled in the following, has
been conjectured by E. Heil to be optimal in 1978. The previous analytical parametrisa-
tion is not relevant in that context. Thus, we give a new algebraic discretisation of convex
bodies based on Minkowski’s sums. To illustrate the efficiency of our method for inequality
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constraints, we solve numerically Heil’s problem. Our numerical optimisation gives a poly-
tope which is admissible (in the sense that it satisfies exactly the constraints up to round
off errors) and has a surface area smaller than Heil’s polytope. This result disprove Heil’s
conjecture.

2 A geometrical approach and its difficulties

For every ν ∈ S2 and every ϕ ≥ 0, let us define the half-space of R3:

[[ν, ϕ]] =
{
x ∈ R3, x · ν ≤ ϕ

}
.

In a previous article [7] the authors present a discretisation of convex bodies based on half
spaces. A convex set K is approached by a polytope P which is defined in the following way.
Let n ∈ N∗, choose randomly and uniformly n vectors νi of S2 and define

Pn =
n⋂
i=1

[[νi, ϕi]],

where ϕi = ϕK(νi). It is straightforward to show that when n tends to infinity this outer
approximation converges with respect to the Hausdorff distance to the set K. This dis-
cretisation has been used in [7] to solve numerically different optimisation’s problems where
convex bodies are involved. The key idea is to start with a given convex polytope and to
adjust the parameters ϕi in order to minimise the cost functional.

As it has been noticed in the introduction, a width constraint can be written in terms of
the support function. Namely, wK(ν) = 1 is equivalent by definition to ϕK(ν)+ϕK(−ν) = 1.
A simple idea would be to reproduce the method of [7] adding linear constraints to the
parameters ϕi such that

ϕ+
i + ϕ−i = 1,

where ϕ±i are the parameters associated to the normal vectors ±νi. Here is the crucial
difficulty: the latter statement on the parameters ϕ±i is not equivalent to ϕK(νi)+ϕK(−νi) =
1. It may happen for instance that

n−1⋂
i=1

[[νi, ϕi]] ⊂ {x · νn ≤ ϕn − ε}

with ε > 0. In this case the hyperplane{
x ∈ R3, x · νn = ϕn

}
is not anymore in a tangent position since it has an empty intersection with the body Pn.
This difficulty turns the previous algorithm inefficient for this kind of constraint.

We present in this article two alternative methods to handle width constraints in geo-
metrical optimisation. Those two discretisations of problems (1) and (2) leads to standard
non-convex quadratic programming problems which are solved by classical solvers (see sec-
tion 3.3.1).
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3 Minimisation among sets of constant width

In this section we are interested in the numerical study of Meissner’s conjecture. Does
Meissner’s tetrahedron minimise the volume (or equivalently in dimension 3, the surface
area) among sets of constant and fixed width (see [1] for a complete description of this
convex body) ? In order to be able to eventually contradict the conjecture we have to
propose a discrete description of constant width bodies which is an exact sub-problem of
(1). More precisely, we would like to restrict our optimisation procedure to a subset of K.
Moreover, we would like to be able to evaluate exactly (up to round off errors) its surface
area in order to compare our results and Meissner’s conjecture.

We first recall a functional parametrisation result of constant width bodies obtained in [1].
Based on this parametrisation, problem (1) becomes a more classical optimisation problem
on some convex space functional. Then, in order to approximate an optimal function we
follow an approach introduced in [6] based on tensor-product splines. We stress the point
on the fact that our method gives at the end of the process a discrete description (based
on the cubic splines parametrisation) of some real constant width body of K. Based on the
previous formulation, our optimisation problem becomes a large scale quadratic optimisation
problem. Finally, some numerical results are presented.

3.1 Parametrisation by the median surface

A major difficulty to handle the constant width constraint is the potential irregularity of
those bodies. As it is suggested by the 2 dimensional case, we have to consider shapes which
may have singularities (consider for instance Reuleaux’s triangle which solves the question
we are interested in, in dimension 2).

A framework designed to parametrise those kind of potentially irregular shapes is pre-
sented in [1]. We recall here the main results related to this parametrisation which will be
useful to describe our optimisation approach.

First, we recall from [1] that constant width sets can all be described by vector fields on
the sphere which satisfy the following global conditions :

thm-median surface Theorem 1 Let α > 0 be given and M : S2 → R3 be a continuous application satisfying

∀ν ∈ S2, M(−ν) = M(ν); (3) eq-M even

∀ν0, ν1 ∈ S2,
(
M(ν1)−M(ν0)

)
· ν0 ≤

α

4
|ν1 − ν0|2 . (4) eq-M variation

Define a subset K ⊂ Rn as follows:

K :=
{
M(ν) + tν ; ν ∈ S2, t ∈

[
0,
α

2

]}
. (5) eq-def K par mediane

Then K is a convex body of constant width α.
Conversely, any convex body of constant width α can be described by (5) with some vector

field M satisfying (3) and (4).
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Next, we recall that the previous vector fields M on S2 can be parametrised by some smooth
scalar functions satisfying second order differential conditions.

To this purpose, consider a parametrisation of the sphere (u, v) ∈ Ω 7→ ν(u, v) ∈ S2,
where Ω is some subset of R2. We assume that this parametrisation is isothermal, that is,
satisfies for all (u, v) ∈ Ω:

∂uν(u, v) · ∂vν(u, v) = 0 and |∂uν(u, v)| = |∂vν(u, v)| =:
1

λ(u, v)
. (6) eq-isoth-sph

Let K a body of constant width, then there exists a C1 map h : Ω→ R such that

M(ν) =M(ν(u, v)) = h ν + λ∂uh νu + λ∂vh νv (7) eq-parametrisation M(h)

for all (u, v) ∈ Ω, where M is a vector field associated to K defined by theorem 1.
Conversely, sets of constant width are all described analytically with additional con-

straints on the previous function h. In order to present those conditions, we recall the two
definitions:

defi-D2h generalized Definition 1 We shall say that D2h(u, v) ≤ A = (ai,j) in a generalised sense, if the following
occurs:

lim sup
(ξ,η)→(0,0)

T [h](u, v; ξ, η)− 1
2

(
a11ξ

2 + 2a12ξη + a22η
2
)

ξ2 + η2
≤ 0. (8) eq-D2h generalized

where
T [h](u, v; ξ, η) := h(u+ ξ, v + η)− h(u, v)− ξ∂uh(u, v)− η∂vh(u, v)

Similarly we say that D2h(u, v) ≥ A in a generalised sense, if a similar property holds with
a limit-inf ≥ 0 instead.

Notice that in the regular case (that is h of class C2), the inequality D2h(u, v) ≤ A is
equivalent to the standard positiveness of the matrix A−D2h(u, v).

defi-espace C Definition 2 Given an isothermal parametrisation ν : Ω → S2 of the sphere, let σ be its
antipodal symmetry. Let C1,1

σ (Ω) be the set of all C1,1 maps h : Ω→ R such that

h ◦ σ = −h. (9) eq-h odd

Let C1,1
σ,α(Ω) be the subset of functions h ∈ C1,1

σ (Ω) satisfying everywhere on Ω in a generalised
sense (see Definition 1 above):

− α

2λ2
Id ≤ U [h] ≤ α

2λ2
Id (10) eq-cond h generale

where
U [h] := D2h+ λ−2h Id + λ−1∇λ⊗∇h− λ−1∇⊥λ⊗∇⊥h. (11) eq-def de Uh

We can now recall the main result obtain in [1] to describe constant width bodies. Then we
have the characterisation of constant width set in terms of their support function:
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thm-spheroform with h Theorem 2 Given an isothermal parametrisation of the sphere, let C1,1
σ,α(Ω) be given by the

Definition 2 above. Then an application M : S2 → R3 is the median surface of a constant
width body (that is corresponds to a constant width body by 5) if and only if there exists
h ∈ C1,1

σ,α(Ω) such that M(ν) =M(h)(u, v) for all ν = ν(u, v), where the mapM(h) : Ω→ R3

is defined by (7). In this case, the map M(h+ α
2
) : Ω→ R3 describes all but a finite number

of the points on ∂K.

3.2 Discretisation of the C1,1
σ,α(Ω)

Based on theorem 2, the discretisation of our optimisation problem can be reduced to the
discretisation of the space functional C1,1

σ,α(Ω). We follow an approach introduced in [6] based
on tensor-product splines to obtain splines which satisfy exactly (and not approximately)
the differential constraints (10).

In the following we will use the standard isothermal parametrisation of the sphere ν:

(u, v) ∈ Ω 7−→
(

cosu

cosh v
,

sinu

cosh v
, tanh v

)
(12) eq-param sphere standard

where Ω = [−π, π]× R, λ(u, v) = cosh v, and ν(Ω) = S2 \ {(0, 0,±1)}.
The starting point of our approach is to discretise the space of parameters [−π, π] ×

[0, vmax] by a bounded regular orthogonal grid where vmax is a parameter of the method.
In order to satisfy exactly the antipodal symmetry constraint (9), we impose to the grid
to contain the origin. Consider now a tensor-product spline hd defined on that grid. We
want to find sufficient conditions on the coefficients of hd which ensure that hd ∈ C1,1

σ,α(Ω).
Since the final goal of the discretisation is to achieve an optimisation procedure, we want
the constraints on the coefficients of hd to be linear.

Notice first that the periodicity and the antipodal symmetry constraint (9) are equivalent
to linear equality constraints on those coefficients. The most challenging problem is to
manage the constraints (10) in a linear way. We will describe how to deduce a set of linear
inequality constraints which is asymptotically equivalent to those conditions. For simplicity
we restrict our description to the differential inequality

0 ≤ U [hd] +
α

2λ2
Id. (13) constr_cwbi33

In [6], the author describes how to obtain a set of linear inequality which ensures that the
tensor-product spline to be a convex function. In that sense it is an interior approximation of
the convexity constraint. Moreover, it is also proved that any strictly convex patch satisfies
this kind of constraints for a suitable choice of the set of constraints. Due to the weight
λ which appears in (10), we need to adapt the method to the space C1,1

σ,α(Ω). Let us first
describe more precisely the constraint (13) on a patch of the tensor-product spline assuming
for simplicity α = 1:
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
∂uuhd +

hd + 1/2

λ2
− sinh(v)∂vhd

λ
∂uvhd +

sinh(v)∂uhd
λ

∂uvhd +
sinh(v)∂uhd

λ
∂vvhd +

hd + 1/2

λ2
+

sinh(v)∂vhd
λ

 ≥ 0 (14)

The key point is to remark that the previous matrix may be rewritten only in terms of
tanh(v) and tanh2(v) by the standard formula 1/λ2 = 1− tanh2(v). Regarding Y := tanh(v)
as a new parameter and using the approach of [6], we can force the differential constraints
by a set of linear inequalities imposed on the coefficients of the cubic spline. We do notconstr_cwbi3
recall here all the technical description of those inequalities but we illustrate the principle
of the method in the following to avoid a continuous set of linear constraints depending on
Y . If one consider one of the inequalities provided by [6] regarding Y as a parameter, it is
straightforward to observe that is has the form

Y 2l1 + Y l2 + l3 ≤ 0 (15) linearc

where l1, l2 and l3 are affine forms of the Bernstein/Bezier coefficients of the cubic polynomial
hd on the patch which is considered. Notice that we want (15) to be satisfied for all Y ∈
[tanh(v1), tanh(v2)] for some v1 < v2 depending on the patch. In order to reduce this set of
constraints to a finite number of inequalities we use the same strategy as in [6]. Consider
the polynomial of two variables

p(x, y) = xyl1 +
x+ y

2
l2 + l3. (16)

Let Σ = (σ0 . . . , σQ) be a strictly increasing sequence satisfying

σ0 = v1 < · · · < σQ = v2

for some integer Q > 1. We define a new set of inequalities

I(l1, l2, l3) = { p(v1, v1) ≤ 0, p(v2, v2) ≤ 0, and p(σi, σi+1) ≤ 0 ∀i = 0 . . . Q− 1} . (17) ineqfin

Following the proof of the Lemma 1 of [6] we obtain:

Lemma 1 Let (l1, l2, l3) ∈ R3, vmax > 0 and Q ∈ N∗. Suppose that (l1, l2, l3) satisfies a set
of constraints of type (17) for some increasing sequence

σ0 = v1 < · · · < σQ = v2.

Then (l1, l2, l3) satisfies (15) for all Y ∈ [v1, v2].

Proof. First observe that p(σi, σi) ≤ 0, ∀i = 0 . . . Q. If i = 0, Q this is a consequence of
the definition of I(l1, l2, l3). For 0 < i < Q, we have

p(σi, σi) =
σi+1 − σi
σi+1 − σi−1

p(σi, σi−1) +
σi − σi−1

σi+1 − σi−1

p(σi, σi+1) ≤ 0

7



since both coefficients are positive. Now let Y ∈ [v1, v2], it exists i such that Y ∈ [σi, σi+1].
In the same way as before we have

p(Y, Y ) = p(
Y − σi
σi+1 − σi

σi+1 +
σi+1 − Y
σi+1 − σi

σi, Y )

=
Y − σi
σi+1 − σi

p(σi+1, Y ) +
σi+1 − Y
σi+1 − σi

p(σi, Y )

=

(
Y − σi
σi+1 − σi

)2

p(σi+1, σi+1) +

(
σi+1 − Y
σi+1 − σi

)2

p(σi, σi)

+2
(Y − σi)(σi+1 − Y )

(σi+1 − σi)2
p(σi+1, σi).

(18)

Since p(Y, Y ) is equal to Y 2l1+Y l2+l3 by definition, the inequality follows for all Y ∈ [v1, v2].

By this lemma we are able, up to the introduction of the new parameter Σ, to describe
a set of linear constraints on the coefficients of the cubic spline which ensure that the body
associated to hd by (7) is of constant width.

To conclude the description of our optimisation approach, we recall from [1] that the
surface area |∂K| of a body of constant width defined by its support function h can be
evaluated by the formula:

|∂K| =
∫

Ω

(
λ−2h2 − 1

2
|∇h|2

)
+ πα2, (19) eq-area bord

By the last equality, the surface area associated to the constant width body defined by
hd is a quadratic form of its Berstein/Bezier coefficients. This observation complete the
description of our internal approximation of problem (1) as a large scale quadratic problem.
We describe below the numerical optimal conditions which have been used to solve that
quadratic problem.

3.3 Numerical results

All the discrete constraints that have been considered up to now are the discretisation of
local constraints. This matter of fact has a crucial impact on the complexity of the discrete
optimisation problem since we have to deal only with sparse constraints.

3.3.1 Computer implementationsection_galahad

In order to take benefit of this sparsity we used the efficient large scale optimisation software
LANCELOT of the GALAHAD library developed by N. Gould D.Orban and P. Toint (see
[4] and [3]).

Let us describe more precisely the local optimality conditions that the LANCELOT
module tries to reach. As explained in [3], a general nonlinear constrained optimisation
problem can be reformulated in the form:

min
x∈RN

f(x)
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where x is subject to the equality constraints

cj(x) = 0 1 ≤ j ≤ m,

and the simple bounds
li ≤ xi ≤ ui, 1 ≤ j ≤ N.

The algorithm implemented in LANCELOT is based on an Augmented Lagrangian Method.
At each step, an approximate minimiser of the augmented Lagrangian function

Φ(x, λ, S, ν) = f(x) +
m∑
i=1

λici(x) +
1

2ν

m∑
i=1

siici(x)2

is found (the parameter ν and the factors sii are adjusted by the program). Let P be the
projection operator on the bound constraints, namely:

P (x, l, u)i =


li if xi < li
ui if xi > ui
xi otherwise.

The algorithm stops when the two conditions

||x− P (x−∇xL(x, λ), l, u)||∞ ≤ εl (20)

and
||c(x)||∞ ≤ εc (21)

where εl and εc are precision factors which are prescribed by the user.

3.3.2 Our results

We present in the following figures the results of our approach. The first point we are
interested in is to check the local optimality of Meissner’s tetrahedron. We then compute
analytically the h function (see [1] for the complete expression) which defines this body and
project h on the grid we are working on. This set of values is the starting point of our
numerical process. We present in figure 1 the starting h function and Meissner’s body.

Nb of variables Nb of Constraints Projected gradient
(with the gap variables) active bounds in ||.||∞ in ||.||∞

3772 965 2.6509E-04 6.8437E-04
5967 1692 7.8426E-04 7.8741E-04
8662 2495 9.6875E-04 5.3467E-04 table-newton

Table 1: Precision obtained with the grids 41x20, 51x25, 61x30 table:table11

Actually, it has not been possible to distinguish the initial shape and the result produced
by the optimisation: Meissner’s body is, at least in a numerical way, a local minimiser of
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Figure 1: Meissner’s h function and the associated body meissner_opt1

Figure 2: Result of the local optimisation of reuleaux rotated body result_reulrotated

the surface area among constant width bodies. We give in table 1 numerical details of the
precision reached with Meissner’s tetrahedron as initial guess on different grids.

The same experiment has been carried out starting from the Reuleaux’s rotated triangle.
This body is known to be the body of least surface area among constant width body of
revolution. By this experiment we wanted to study the optimality of that body in the
larger class of sets of constant width. As it is reported in figures 2 and 3, this body is not
numerically speaking a local optima: the critical shape that has been found seems to be
build on a Reuleaux pentagon by the process described in [8]. To conclude, as reported in
the introduction, notice that the shape of figure 2 satisfies the weak optimality condition
which has been described in [1]: for any ω ∈ S2 small enough, the part of the boundary of
that body which normals are ω and the opposite part which normals are −ω are not both
regular.
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Figure 3: Initial and final h support functions h_reulrotated

4 Minkowski sums: an algebraic discretisation for in-

equality constraints

In the following we are interested in the approximation of an optimal solution of the following
problem:

min
K∈K

SK , (22) pb_relaxed

where K = {K ⊂ R3, convex, wK(ν) ≥ 1, ∀ν ∈ S2} and SK stands for the surface
area of the body K. Before introducing our approach, let us first recall some basic facts on
Minkowski’s sum of two sets A,B ⊂ R3. We define Minkowski’s sum of sets A and B by

A+B = {x+ y, (x, y) ∈ A×B} .

An interesting feature related to the width of a convex set and Minkowski’s sum is its almost
linear behaviour. Let λ, µ ∈ R∗+, A and B two convex sets of RN , then λA + µB is convex
and its support function is given by

ϕλA+µB = λϕA + µϕB. (23) eq1

When A and B are subsets of R3 with nonempty interior, the surface area of the resulting
body SλA+µB is deduced by the formula

SλA+µB = λ2SA + µ2SB + λµ(SA+B − SA − SB). (24) eq2

We refer to [13] or [2] for the proof of the previous equality and many other results on convex
bodies.

4.1 Outline of the algorithm

Equations (23) and (24) are the starting points of our first method. Let (Ki)i∈I be a finite
family of convex sets of R3 which contain the origin. Consider the approximation of K
obtained by the cone

CI =

{∑
i∈I

λiKi, λi ∈ R+

}
(25) coneKi

11



where the positive vector λ = (λ1, . . . ) is restricted to the subset of vectors which satisfy∑
i∈I λiKi ∈ K. By relation (23), the constraint

∑
i∈I λiKi ∈ K is equivalent to impose

inequality constraints depending on polytopes (Kj) to the coefficients (λj). That is∑
i∈I

λiϕKi(ν) ≥ 1 ∀ν ∈ S2 (26) equ3

It is classical that the convex polytope
∑

i∈I λiKi may have a huge number of vertices. Thus
it is not possible to impose exactly the previous constraints. Then, we approximate (26) by
a naive discretisation of S2: let ν1, . . . νm be m randomly chosen vectors of the sphere. We
consider the finite set of constraints:

ϕP
i λiKi

(νk) + ϕP
i λiKi

(−νk) ≥ 1, k = 1, . . . ,m

which are equivalent thanks to (23) to∑
i

(b+
ik + b−ik)λi ≥ 1, k = 1, . . . ,m (27) linconst

where b±ik = ϕKi(±νk). Thus, solutions of the sub-problem

min
K∈CI

SK , (28)

may be approximated by the solutions of the quadratic program:

min
λ

∑
i,j

aijλiλj, (29) quadprog1

for vectors λ which satisfy (27). Moreover according to (24), the coefficients aij can be
explicitly estimated by the relations{

aij = 1
2
(SKi+Kj − SKi − SKj) i 6= j,

aij = SKi i = j.

At this step one main difficulty remains. How do we choose the family (Ki) in an effective
way in order to get a reasonable approximation of K ?

4.2 The cone CI
4.2.1 The algorithm

Since it is difficult, to estimate numerically quantities like SKi+Kj when the convex bodies
Ki or Kj have a great number of vertices, we would like to be able to approximate a convex
body as a Minkowski’s sum of “simple” polytopes. Whereas it is true in R2 that every
convex polytope can be decomposed as a finite sum of triangles and segments, the situation
is dramatically more complex in dimension 3. Actually, any generic convex polytope (that
is a polytope every 2-faces of which are triangles) is indecomposable (see [14]). Thus, if we
want to generate a sequence of bodies (Ki) whose associated cone (25) converges to K, we
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Figure 4: Approximation of a cone by Minkowski sums fig:cone

do not have to restrict ourselves to simplices. We propose the following iterative process to
handle this difficulty.

Fix l the maximum number of extremal points of an element of the sequence (K0
i ) and

n the number of elements of this family. Let ε > 0 be a precision parameter and jmax the
maximum number of iterations.

0. Set j = 0. Choose randomly n convex polytopes (K0
i ) with at most l extremal points.

1. Solve the optimisation problem (29) associated to the family (Kj
i ).

2. Let Ij be the subset of indices of the optimal vector λ0 whose components are greater
in absolute value than ε. Construct a new family (Kj+1

i ) keeping the bodies (Kj
i )i∈Ij

and choosing randomly the others.

3. Let j ← j + 1. If j > jmax or I = Ij stop, otherwise go to 1.

Of course the parameter jmax has to be adjusted in relation with the CPU time needed
for solving the optimisation step 1. There is no simple way to give convergence estimates
with respect to the choice of the parameters n, l and ε. We propose hereafter one simple
numerical experiment to adjust those parameters.

4.2.2 Numerical tests

In order to choose relevant values for parameters n, l and ε, we test our discretisation
by Minkowski’s sum to approximate a truncated cone. The cone seems to us difficult to
approximate by sum of random polytopes since its normal directions cover only a subset of S2

of dimension 1. To measure the quality of the approximation we introduce a cost functional
based on the Euclidian distance between support functions. Consider one truncated cone
K and its support function ϕK . In order to observe if our algorithm is able to generate a
sequence Kj of bodies which converges to K we define the following cost function:

DK(Kj) =
∑
k

(ϕK(νk)− ϕKj(νk))
2,
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Figure 5: The body of E. Heil heil

where (νk) is a fixed list of arbitrary vectors of S2. Thanks to (23), the auxiliary optimisation
problem that we solve at step 1. is the quadratic problem in λ:

min
λ≥0

∑
k

(ϕK(νk)−
∑
i

λiϕKj
i
(νk))

2.

We present in Figures 4 the results we obtained for K equal to a regular cone. The values
that have been used to obtain this approximation, are #I = 100, ε = 10−6, jmax = 105,
l = 10 and 104 normal vectors νk. Notice that a large number of iterations are required in
order to get a satisfactory sequence of bodies. This constraint requires an efficient and fast
solver for the optimisation step.

4.3 The relaxed problem and the conjecture of E. Heil

In this section we apply the previous method to a more realistic situation which was addressed
by E. Heil in [5] p. 261. We look for a solution of

min
K∈K

SK , (30)

where K = {K ⊂ R3, convex, wK(ν) ≥ 1, ∀ν ∈ S2}.
As it has been explained, the latter problem can be approximated by a sequence of

quadratic problems. Exactly the same method applied on the problem of minimising the
volume would lead to solve a sequence of cubic problems. Up to now, there is no efficient
way to solve numerically dense and large cubic problems which makes our method irrelevant
in this situation.

E. Heil propose the following construction of its optimal body: Consider the regular
tetrahedron of edge-length 1 and replace each edge by a circular arc of radius

√
2/2 and

center in the middle of the opposite edge. Take the four points of distance
√

2/2 to the
facets of the tetrahedron which are on the line between a vertex and the center of the
opposite facet of the tetrahedron. E. Heil claims that the convex hull of the previous 4
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Figure 6: Approximation of the body of fixed minimal width with smallest surface area relaxed

points and 6 arcs is a set of width greater or equal than
√

2/2 (see Figure 5). Moreover, he
observed that its volume and its surface are smaller than the ones of standard convex shapes
of same minimal width (such the regular tetrahedron, the circular cone, the ball, Meissner’s
tetrahedron and Reuleaux’s tetrahedron). Does this set minimise the volume and the surface
among convex bodies of fixed minimal width ?

Due to the approximation made by (29), our algorithm does not always provide us a
polytope which is precisely a member of K. The resulting body satisfies only the width
constraint at a discrete level. Notice that for a polytope,

∆ = min
ν∈S2

wK(ν),

is equal to the finite number of conditions

min
νk

wK(νk) (31) deltapoly

where νk are the normal vectors of the polytope K. In order to get an element of K, we
apply the following post-processing: starting from the result of our optimisation process, we
first compute its normal vectors. Then thanks to (23) and (31), the polytope defined by 1

∆
P

is in K.
We present in figure 6 two different views of the resulting body. Hereafter are the values

related to surfaces area and volumes of the our optimal shape and the body of E. Heil (for
a minimal width equal to 1):

Surface area Volume
E. Heil body 2.9306 0.2983

Computed shape 2.9249 0.3862
table-newton

Notice that the polytope generated by our algorithm has a significantly smaller surface area
than the shape proposed by E. Heil but has a greater volume.

15



References

BLRO [1] T. Bayen, T. Lachand-Robert, and É. Oudet. Analytic parametrization of three-
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Zürich., 56:42–50, 1911.

meissner3 [11] E Meissner. über punktmengen konstanter breitedrei gipsmodelle von flächen konstanter
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