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CUT LOCUS ON COMPACT MANIFOLDS AND UNIFORM SEMICONCAVITY
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Abstract. We study a family of gradient obstacle problems on a compact Riemannian manifold. We prove
that the solutions of these free boundary problems are uniformly semiconcave and, as a consequence, we obtain
some fine convergence results for the solutions and their free boundaries. Precisely, we show that the elastic
and the λ-elastic sets of the solutions Hausdorff converge to the cut locus and the λ-cut locus of the manifold.

1. Introduction

Let M be a smooth n-dimensional compact Riemannian manifold without boundary. Let b ∈ M be a fixed
point. We denote by db : M → R the distance function to b, and by Cutb(M) the cut locus, that is the set of
points (cut points) p ∈ M for which there exists a geodesic γ, starting from b and passing through p, which is
length minimizing between b and p, but not after p. The cut locus inherits much of the topology of M . It is
a deformation retract of M \ {b} and has the same homotopy type (see for instance [25, Chapter III, Section
4]). Moreover, it is also related to the global geometry of M , for instance, to the geodesic spectrum (every close
geodesics starting from b crosses Cutb(M)) and the Ambrose’s problem (see [17]).

The local structure of the cut locus can be very rich and at the same time complicated, as it seems to be
closely related to the regularity of g. A stratification theorem is available only when the metric g is analytic (see
[22] and [5]), while in general, it is known that Cutb(M) must have an integer Hausdorff dimension (when g is
C∞) that might even become fractional when g is Ck (see [18] and the references therein). The sensitivity with
respect to the regularity of the manifold (M, g) makes the cut locus difficult to recover by numerical methods
involving discrete structures. A more stable object from this point of view is the so-called λ-cut locus Cutλb (M),
which we introduce in this paper in analogy with the λ-medial axis of Chazal and Lieutier, which is a widely
studied object in Computational Geometry (see Section 1.1). We refer to [12] for a detailed account on the
impact of our study to the numerical methods for the computation of the cut locus.
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For any λ > 0, the λ-cut locus is defined as

Cutλb (M) :=

{
p ∈M \ {b} : |∇db(p)|2 ≤ 1− λ2

d2b(p)

}
, (1.1)

the norm of the generalized gradient |∇db| being defined at every point p ∈M \ {b} as

|∇db| (p) := max
{
0, sup

v∈TxM,|v|=1

∂+v db(p)
}
, (1.2)

where ∂+v db(p) is the derivative of db in the direction v (see Section 2). The λ-cut locus approximates the cut
locus in the following sense: for every λ > 0, we have Cutλb (M) ⊂ Cutb(M), while the closure of the union of
Cutλb (M) over λ > 0 is precisely Cutb(M) (see Proposition 2.9). In particular, just as the cut locus, the λ-cut
locus is a non-smooth set, with potentially very wild structure, even when M is smooth.

In this paper we study the asymptotic behavior of a family of gradient obstacle problems on the manifold
M and we prove that both Cutb(M) and Cutλb (M) can be recovered from the solutions of these problems.
Moreover, even if our study is purely theoretical, it leads to a new method for the numerical approximation of
the cut locus and the λ-cut locus on a compact manifold (see Remark 1.2).

For any m > 0, we consider the variational minimization problem

min

{∫

M

|∇u|2 −mu : u ∈ H1(M), |∇u| ≤ 1, u(b) = 0

}
. (1.3)

This problem has a unique minimizer, which we will denote by um. We consider the sets

Em := {p ∈M \ {b} : |∇um(p)| < 1},

and Em,λ :=

{
p ∈M \ {b} : |∇um(p)|2 ≤ 1− λ2

u2m(p)

}
. (1.4)

Our main result is the following.

Theorem 1.1 (Approximation of Cutb(M) and Cutλb (M)). Let M be a compact Riemannian manifold of
dimension n and let b ∈M and λ > 0 be fixed. Then,

Em −→
m→+∞

Cutb(M) in the Hausdorff sense. (1.5)

Moreover, for any fixed ε > 0, we have that

sup
p∈Em,λ

d
(
p,Cutλb (M)

)
−→

m→+∞
0, and sup

p∈Cutλ+ε
b

(M)

d(p,Em,λ) −→
m→+∞

0. (1.6)

Remark 1.2 (About the numerical computation of the cut locus). We notice that the direct numerical ap-
proximation of the cut locus and the λ-cut locus is difficult and requires significant computational resources.
Conversely, the variational problem (1.3) consists in minimizing a convex functional under a convex constraint,
which considerably simplifies this task. The numerical approach based on solving (1.3) will be the object of the
forthcoming paper [12].

In order to prove Theorem 1.1, we have to study the regularity of the solutions um and the convergence of
the asymptotic behavior (as m→ ∞) of the sequence (um). We gather our results about the solutions of (1.3)
in the following theorem and we notice that Theorem 1.1 is in fact an immediate consequence of the claims (T5)
and (T6) of Theorem 1.3 below (see Section 1.3).

Theorem 1.3 (Regularity and convergence of um). Let M be a compact Riemannian manifold of dimension n
and let b ∈M be fixed. Then, the following holds.

(T1) Regularity of um. There exists a constant m0 > 0, depending only on the manifold M , such that for
every m > m0, the minimizer um of (1.3) is locally C1,1 on M \ {b}.

(T2) Properties of Em. For every m ≥ m0, Em is an open subset of M and coincides with the set
{um < db}. Moreover, Em contains Cutb(M) and is at positive distance from b, that is um = db in a
neighborhood of b.

(T3) Monotonicity of um and Em. For every m ≥ m′ ≥ m0, we have um ≥ u′m. In particular, Em ⊂ Em′ .
(T4) Semiconcavity of um. For every ρ > 0, there are constants C > 0 and m1 > 0, depending on ρ and

on the manifold M , such that

um is C-semiconcave on M \Bρ(b), (1.7)

for every m ≥ m1.
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(T5) Convergence of um. The sequence um converges uniformly on M to the distance function db.
(T6) Convergence of the gradients. Let p∞ ∈M \ {b}. Then

• for every sequence pm → p∞, we have

|∇db|(p∞) ≤ lim inf
m→∞

|∇um|(pm) ; (1.8)

• there exists a sequence pm → p∞ such that

|∇db|(p∞) = lim
m→∞

|∇um|(pm) . (1.9)

Remark 1.4. The semiconcavity of um (T4) and the convergence of the gradients (T6) are the most technical
part of the proof and are precisely the properties that allow to approximate the λ-cut locus with the sets Em,λ.

Remark 1.5. If we replace the manifold M with a smooth domain Ω ⊂ Rn and db with the distance to the
boundary of Ω, the problem (1.3) becomes the classical elastic-plastic torsion problem, which we discuss in
detail in Section 1.1. We notice that, for this problem, the claims (T1), (T2), (T3) and (T5) are well-known.
The elastic-plastic torsion problem has a long history and inspired the study of numerous problems involving
more general (even fully nonlinear) operators. The crucial point in all these problems is that the gradient
constraint in (1.3) can be transformed into an obstacle constraint on the function (see Section 1.1). Until now,
this property was exclusive for the Euclidean setting and for operators depending only on ∇u and u, but not
on the points x ∈ Ω (in fact, for operators with variable coefficients, this equivalence is known to be false). A
consequence of our analysis is that this crucial equivalence is not exclusively Euclidean but is a property of the
underlying Riemannian structure of the manifold (see Proposition 1.7).

The rest of the introduction is organized as follows. In the next Section 1.1 we will discuss the relation of
the λ-cut locus and the problem (1.3) to the λ-medial axis of Chazal-Lieutier and the classical elastic-plastic
torsion problem. In Section 1.2 we will discuss the key points in the proof of Theorem 1.3 and the plan of the
paper.

1.1. Medial axis and λ-medial axis in a domain Ω. This section is dedicated to the Euclidean counterpart
of Theorem 1.1. We go through the definitions of the medial axis and the λ-medial axis of a domain in the
euclidean space. Then, we discuss the approximation theorem of Caffarelli and Friedman and its relation to
Theorem 1.1. Throughout this section, we will use the following notation: Ω is a bounded open set with C2

regular boundary in Rn and d∂Ω : Ω → R is the distance function to the boundary of Ω,

d∂Ω(x) := min
{
|x− y| : y ∈ ∂Ω

}
.

1.1.1. Definition of medial axis and λ-medial axis. The medial axis M(Ω) is defined as the set of points of Ω
with at least two different projections on the boundary ∂Ω,

M(Ω) :=
{
x ∈ Ω : ∃y, z ∈ ∂Ω, such that y 6= z and d∂Ω(x) = |x− y| = |x− z|

}
.

One crucial geometric property of the medial axis M(Ω) is that it is unstable
with respect to small perturbations of the boundary of Ω. For instance, the
medial axis of the circle consists of its center only, while the medial axis of a
polygonal approximation (the regularity of the approximating sets can be im-
proved to C∞ by rounding the corners) is the star-shaped set on Figure 1. We
refer to [2] for a detailed account on medial axis, stability and computability.
This instability makes computing numerically M(Ω) quite tricky. Indeed, any
numerical approximation of Ω (for instance, with polygons) might introduce an
artificial (and large) medial set. In order to deal with this problem, in [11],
Chazal and Lieutier defined the so called λ-medial axis of Ω by setting, for any
λ > 0,

Figure 1. A polygonal
approximation of a circle,
with its medial axis.

Mλ(Ω) := {x ∈ Ω : r(x) ≥ λ}, (1.10)

where r(x) is the radius of the smallest ball containing all the projections of x on the boundary ∂Ω, i.e. the
set {z ∈ ∂Ω : |x− z| = d∂Ω(x)}. It is known that, for λ small enough, Mλ(Ω) has the same homotopy type as
M(Ω) (see [11, section 3, theorem 2]) and that

M(Ω) =
⋃

λ>0

Mλ(Ω).

These facts justify that Mλ(Ω) is a good approximation of M(Ω), for λ small enough. The crucial difference
though is that Mλ(Ω) is stable with respect to small variations of Ω, whereas M(Ω) is not (we refer to [11,
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section 4] for precise statements and proofs). Finally, we notice that the λ-medial axis can be equivalently
defined (see [11, section 2.1]) as

Mλ(Ω) =

{
x ∈ Ω : |∇d∂Ω(x)|2 ≤ 1− λ2

d2∂Ω(x)

}
, (1.11)

where ∇d∂Ω denotes the generalized gradient wherever d∂Ω is not differentiable.

1.1.2. Approximation of the medial axis. Given a constant m > 0 and a domain Ω, as above, we consider the
following elastic-plastic torsion problem

min

{∫

Ω

(
|∇v|2 −mv

)
dx : v ∈ H1

0 (Ω), |∇v| ≤ 1

}
. (1.12)

As in the case of (1.3), the problem (1.12) has a unique minimizer, which we will denote by vm. Physically
speaking, vm represents the stress function of a long bar of cross section Ω, twisted with an angle m. The
elastic-plastic torsion problem and the properties of its minimizer vm have been studied by various authors in
the 60’s and 70’s (see for instance [26], [4], [3], [8], [27], [9], [14] and [7]). In particular, in [4], Brezis and Sibony
proved that the gradient constraint in (1.12) can be replaced with an obstacle-type constraint on the function.
Precisely, the minimizer vm of (1.12) is also the (unique) minimizer of

min

{∫

Ω

(
|∇v|2 −mv

)
dx : v ∈ H1

0 (Ω), v ≤ d∂Ω

}
. (1.13)

Notice that this result was later generalized to a broader class of variational problems with convex constraints
on the gradient (see [28], [21] and [24]). However, none of these will apply to our variant of the problem on
manifolds, for which the equivalence of constraints fails in general (see Section Appendix B).

Finally, using the equivalence of (1.12) and (1.13), Caffarelli and Friedman (see [6]) proved that the sequence
of elastic sets {|∇vm| < 1} Hausdorff converges, as m → +∞, to the medial axis M(Ω). To be precise, in
[6], it was showed that the elastic sets converge to the so-called ridge R(Ω) which coincides with the closure
of M(Ω), when Ω has a C2 regular boundary. This result from [6] is the euclidean counterpart of the first
part of Theorem 1.1. Nevertheless, the strategies from [4] and [6] cannot be reproduced on a manifold and do
not imply the convergence of the λ-medial axis. In the proof of our Theorem 1.1, we still aim at replacing the
constraint on the gradient with a constraint on the function, but our approach is different and allows us to deal
with the presence of the manifold and to treat both the cut locus and the λ-cut locus. In particular, we obtain
the following approximation result for the λ-medial axis.

Theorem 1.6 (Approximation of Mλ(Ω)). Let Ω be a bounded open set in Rn with C2 regular boundary. Then,
setting

EΩ
m =

{
x ∈ Ω : |∇vm(x)| < 1

}
and EΩ

m,λ =

{
x ∈ Ω : |∇vm(x)|2 ≤ 1− λ2

v2m(x)

}
,

we have that, for any fixed ε > 0,

sup
x∈EΩ

m,λ

d
(
x,Mλ(Ω)

)
−→

m→+∞
0, and sup

x∈Mλ+ε(Ω)

d(x,EΩ
m,λ) −→

m→+∞
0.

1.2. Proof of Theorem 1.3 and plan of the paper. We consider the variational problem

min

{∫

M

|∇u|2 −mu : u ∈ H1(M), u ≤ db

}
. (1.14)

It is immediate to check that (1.14) admits a minimizer and that this minimizer is unique (this follows by the
convexity of the functional and the constraint). We will denote by udm : M → R (’d’ stands for the ’distance’
constraint) the unique minimizer of (1.14).

1.2.1. Part I. Equivalence of (1.3) and (1.14). Our first aim is to show that the problems (1.3) and (1.14) are
equivalent, that is the minimizers um and udm are the same. Now, since every function which is 1-Lipschitz and
is zero in b stands below the distance function b, it is clear that um can be used to test the optimality of udm,
that is, we have ∫

M

(
|∇udm|2 −mudm

)
≤
∫

M

(
|∇um|2 −mum

)
.
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Notice that, if we are able to prove that the minimizer udm is 1-Lipschitz, then we can use udm to test the
minimality of um, i.e. ∫

M

(
|∇udm|2 −mudm

)
≥
∫

M

(
|∇um|2 −mum

)
.

This gives that both um and udm are solutions of (1.3) (and also of (1.14)), which means that they have to
coincide. Thus, in order to prove that (1.3) and (1.14) are equivalent, we have to prove that

|∇udm| ≤ 1 on M. (1.15)

In order to prove this, we proceed as follows:

• First, we prove that udm is C1-regular locally in M \ {b} (see Proposition 3.4).
• Then, from Lemma 3.3 and Lemma 3.1, we deduce that

Cutb(M) ⊂ {udm < db} ⊂M \ {b}.

In particular, since db is smooth away from {b} and Cutb(M), we get that on the boundary ∂{udm < db}
both the distance function db and the solution udm are differentiable and have the same gradient, which
entails that |∇udm| = 1 on ∂{udm < db}.

• Finally, we use the fact that udm solves the PDE

∆udm = m in {udm < db}, |∇udm| = 1 on {udm = db}

to deduce that |∇udm| ≤ 1 also in the set {udm < db}. Now, in the flat (Euclidean) case, this inequality
is an immediate consequence of the fact that |∇udm|2 is subharmonic. On a general manifold M the
situation is more complicated as the curvature comes into play in the computation of ∆

(
|∇udm|2

)
.

For this reason we are able to prove the bound |∇udm| ≤ 1 on M (and so the equivalence of the two
problems) only in the case when m is large enough. Before we give the precise statement of this result
(see Proposition 1.7), let us emphasize that this is not a mere technical assumption, but a consequence
of the geometry of the manifold. In fact, in the appendix (Theorem B.1), we give an example of a
2-manifold M for which the bound on the gradient fails when m is small.

The following is the key result for the analysis of the solution of problem (1.3). The proof is given in Section 4.

Proposition 1.7 (Equivalence of (1.3) and (1.14)). Let M be an n-dimensional compact Riemannian manifold
and let the constant K ≥ 0 be a lower bound for the Ricci curvature :

Ric ≥ −K, (1.16)

where Ric denotes the Ricci curvature tensor of M . Then, for every

m ≥ 1

2
max

{√
nK(1 +Kdiam(M)2), nKdiam(M)

}
, (1.17)

we have that

∣∣∇udm
∣∣ = 1 on {db = udm}, and

∣∣∇udm
∣∣ < 1 in Ed

m := {udm < db}. (1.18)

In particular, for m as in (1.17), we have that udm = um, where um is the minimizer of (1.3).

Finally, as a corollary of Proposition 1.7, we obtain the first two claims of Theorem 1.3.

Proof of Theorem 1.3 (T1) and (T2). By Proposition 1.7 we have that um = udm. From the regularity of udm
(Proposition 3.4, Lemma 3.3 and Lemma 3.1), we obtain (T1) and (T2). �

Moreover, as in the classical case of the elastic-plastic torsion problem (see [6]), we can now use the structure
of (1.14) to obtain information about the monotonicity of Em and the uniform convergence of um.

Proof of Theorem 1.3 (T3) and (T5). The uniform convergence udm → db on M , as m → ∞, is proved in
Lemma 5.1. The monotonicity of um and Em, and the Hausdorff convergence of Em to Cutb(M), now follow
from Proposition 5.2. �
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1.2.2. Part II. Uniform semiconcavity and convergence of the gradients. We recall that our final objective is to
prove the convergence of the sets Em,λ (Theorem 1.1) and EΩ

m,λ (Theorem 1.6). Now, from the definition of
Em,λ, it is clear that this boils down to proving a convergence result for the gradients |∇um|. On the other
hand, we cannot expect any uniform estimate on the modulus of continuity of |∇um|; in fact, the sequence
um converges (uniformly) to the distance function db, which is not even differentiable at all points. Thus, we
adopt a different strategy and we prove that the solutions are uniformly semiconcave, where our definition of
semiconcavity is the following.

Definition 1.8 (C-semiconcavity). Given a constant C > 0, a function u is said to be C-semiconcave on M if
and only if for any unit speed geodesic γ : [a, b] →M , the function t 7→ Ct2 − u(γ(t)) is convex. Moreover,

• we say that u is semiconcave if it is C-semiconcave for some constant C > 0;
• we say that u is locally semiconcave if for any p ∈M , u is semiconcave in a neighborhood of p.

The most technical result of the paper is Theorem 1.3 (T4), which we prove in Section 6. The key result is
Proposition 6.1 and applies to both Theorem 1.3 and Theorem 1.6. Let us briefly give the idea of the proof of
this proposition here, directly in the setting of Theorem 1.3 (T4).

Sketch of the proof of Theorem 1.3 (T4). First, we fix a constant Cd such that the distance function db is Cd-
semiconcave on M \ Bρ(b). Then, for every unit speed geodesic γ : [a, b] → M , and every λ ∈ [0, 1], we define
the function

c(γ, λ) := λ(1 − λ)(Cd + 1)(b− a)2 −
(
(1− λ)um(γ(a)) + λum(γ(b))− um(γ(λab))

)
,

where λab = (1 − λ)a + λb. We will show that the minimum of this function over all geodesics γ and all λ is
positive, which will give that u is (Cd + 1)-semiconcave. First, we show that for any unit speed geodesic γ and
λ ∈ (0, 1), we can build a unit speed geodesic γ̂ : [a, b] →M and λ̂ ∈ (0, 1), such that

c(γ̂, λ̂, um) ≤ c(γ, λ, um) and γ̂(a, b) ⊂ Em = {um < db}.

This follows from the semiconcavity of db and the inequality um ≤ db (this is explained in detail in the proof of
Proposition 6.1). Thus, we only need to show the semiconcavity of um in the non-contact region Em. Since um
is smooth in Em, we need to prove that (see Proposition 2.2)

D2um ≤ (Cd + 1)Id in Em.

In order to prove this inequality, for every p ∈ Em and X ∈ Sn−1(TpM) we consider an auxiliary function of
the form

fε(p,X) := D2um(X,X) + ε
(
C1 |∇um|2 (p) + C2u

2
m(p)− C3um(p)

)
,

and we show that for ε > 0 small enough and m large enough, we have fε ≤ Cd + 1/2. We suppose that
the maximum of fε is achieved for some q ∈ Em and some Y ∈ Sn−1(TqM) (the case when the minimum is
achieved for q ∈ ∂Em is a consequence of known estimates for the solutions of the obstacle problem with variable
coefficients, see Section 7). Then, we construct, locally around q, a function of the form

p 7→ fε(p,X(p)) where X(p) ∈ S
n−1(TpM),

and we compute its Laplacian in the variable p (notice that in the flat euclidean case we can simply take the
section p 7→ X(p) to be constant). Finally, we obtain that for an appropriate choice of ε and m, the Laplacian
of this function has to be positive, which contradicts the minimality of q and concludes the proof. �

The main part of the proof of Theorem 1.3 (T4) is contained in Proposition 6.1, which applies to both
Theorem 1.3 and Theorem 1.6. In the proof of Proposition 6.1, the function c is the Riemannian counterpart of
the Korevaar’s convexity function (see [19]); in computing the Laplacian of fε(p,X(p)) we use some of Guan’s
second order estimates for Hessian equations in Riemannian manifolds (see [15]).

At this point, the convergence of the gradients |∇um| (Theorem 1.3 (T6)) follows from the uniform semi-
concavity of um by a general argument (we give the proof of this fact in Section 7). We are now in position to
prove Theorem 1.1.
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1.3. Proof of Theorem 1.1. The Hausdorff convergence of the elastic sets Em to Cutb(M) is a consequence
from the uniform convergence (Theorem 1.3 (T5)) of the solutions um to the distance function db, as explained
in Proposition 5.2. Let us now prove the first claim in (1.6). Suppose by contradiction that there are a constant
δ > 0, a sequence mk → ∞ and a sequence of points pk such that

pk ∈ Emk,λ and d
(
pk,Cutλb (M)

)
> δ. (1.19)

By the facts that M is compact and that umk
coincides with the distance function db in a neighborhood of b

(that does not depend on k), we may suppose that pk converges to some p∞ ∈M \ {b}. Now, from the uniform
convergence of umk

and Theorem 1.3 (T6), we get that

|∇db|(p∞) ≤ lim inf
k→∞

|∇umk
|(pk) ≤ lim

k→∞

(
1− λ2

u2mk
(pk)

)
= 1− λ2

d2b(p∞)
,

which means that p∞ ∈ Cutλb (M), in contradiction with (1.19).
Suppose now that the second claim in (1.6) does not hold. Then, there are a constant δ > 0, a sequence

mk → ∞ and a sequence of points pk ∈M ∈ {b} such that

pk ∈ Cutλ+ε
b (M) and d

(
pk, Emk,λ

)
> δ for every k ≥ 0.

Up to extracting a subsequence, we may suppose that pk converges to a point p∞ such that

p∞ ∈ Cutλ+ε
b (M) and d

(
p∞, Emk,λ

)
>
δ

2
for every k ≥ 0. (1.20)

Now, by Theorem 1.3 (T6), there is a sequence qk → p∞ such that

|∇db|(p∞) = lim
k→∞

|∇umk
|(qk).

In particular, since p∞ ∈ Cutλ+ε
b (M), we have

lim
k→∞

(
|∇umk

|(qk)− 1 +
λ2

u2mk
(qk)

)
= |∇db|(p∞)− 1 +

λ2

d2b(p∞)
≤ −2ελ+ ε2

d2b(p∞)
.

Thus, the left-hand side is negative for k large enough and so, we have qk ∈ Emk,λ, which is a contradiction
with (1.20). This concludes the proof of Theorem 1.1. �

1.4. Proof of Theorem 1.6. As shown in Section 6, we may apply Proposition 6.1 to get that the functions
vm are uniformly semiconcave on Ω. It is already known that the solution vm of (1.12) and (1.13) is locally
C1,1 on Ω. It is also well-known that vm converges uniformly to d∂Ω as m → ∞. As a consequence, reasoning
as in Section 7, we get that for every x∞ ∈ Ω, the following holds:

• if xm → x∞, then |∇d∂Ω|(x∞) ≤ lim inf
m→∞

|∇vm|(xm) ;

• there exists a sequence xm → x∞ such that |∇d∂Ω|(x∞) = lim
m→∞

|∇vm|(xm) .

Now, the conclusion follows as in the proof of Theorem 1.1. �
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2. Notation, definitions and preliminary results

2.1. General notation. We will denote by g the metric on M . TM denotes the tangent bundle of M and
TpM the tangent space of M at p. By Sn−1(TpM) we will denote the unit sphere in TpM , that is

S
n−1(TpM) :=

{
X ∈ TpM : g(X,X) = 1

}
.

Exp : TM →M is the global exponential map, while expp is its restriction to TpM . Finally, given a function u
on M , Du is the differential of u, ∇u is the gradient, and Dku is the k-th covariant derivative (in particular, by
D we denote also the Riemannian connection on M). Thus, for smooth vector fields X,Y :M → TM , we have

g(∇u,X) := Du(X) = DXu = Xu and D2u(X,Y ) = g(DX(∇u), Y ).
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We will also use the notation |∇u|2 for g(∇u,∇u), and ∆u for the Laplace-Beltrami operator on M . We notice
that −∆ is positive, that is, we have the integration by parts formula∫

M

g(∇u,∇v) =
∫

M

(−∆u)v,

for every u, v ∈ C2(M). Unless otherwise specified, all the integrals will be taken with respect to the volume
form associated to the Riemannian metric g. Finally, we recall that H1(M) denotes the usual space of Sobolev
functions on M , which is the closure of C1(M) with respect to the H1-norm defined as

‖u‖2H1 =

∫

M

|∇u|2 +
∫

M

u2.

2.2. Semiconcave functions. In this section, we gather some of the main properties of semiconcave functions
on smooth Riemannian manifolds, which we will need in the proof of Theorem 1.3. Some of these results can
be found in [23], in the context of Alexandrov spaces, while for a more detailed introduction to semiconcave
functions in the framework of euclidean spaces we refer to [10].

Let M be a Riemannian manifold, u : M → R a given function and γ : [a, b] → M be a curve in M . It is
immediate to check that the function

t 7→ Ct2 − u(γ(t))

is convex on [a, b] if and only if

(1 − λ)u(γ(a)) + λu(γ(b))− u(γ(λab)) ≤ Cλ(1 − λ)(b − a)2 for any λ ∈ [0, 1], (2.1)

where here and throughout the paper, we use the notation

λab := (1− λ)a + λb for any a, b, λ ∈ R. (2.2)

In particular, this means that the function u is C-semiconcave on M if and only if (2.1) holds for any unit speed
geodesic γ : [a, b] → M . Analogously, u is locally semiconcave if for every p ∈M there is a geodesic ball Bρ(p)
and a constant Cp > 0 such that (2.1) holds (with C = Cp) for every unit speed geodesic γ : [a, b] → Bρ(p).

Remark 2.1. On a compact Riemannian manifold, semiconcavity and local semiconcavity are the same.

Proposition 2.2 (Semiconcavity in terms of D2u). Let u :M → R be C2-regular. Then

D2u ≤ 2C on M if and only if u is C-semiconcave on M.

Proof. Let γ : [a, b] →M be a unit speed geodesic. Then the function t 7→ Ct2 − u(γ(t)) is convex if and only if

0 ≤ 2C − d2

dt2
u(γ(t)) = 2C − d

dt
Du(γ̇(t)) = 2C −

(
D2u(γ̇(t), γ̇(t)) +Du(Dγ̇(t)γ̇(t))

)
= 2C −D2u

(
γ̇(t), γ̇(t)

)
.

The claim follows. �

The semiconcavity can also be read in local coordinates as follows.

Proposition 2.3 (Semiconcavity in local coordinates). Let u : M → R be a locally Lipschitz function on a
Riemannian manifold M . Then, u is locally semiconcave if and only if for any chart ψ of M , u ◦ψ−1 is locally
semiconcave as a function on Rn.

We postpone the proof of this proposition to Appendix A. We next show that we can define the gradient of
a semiconcave function at every point.

Proposition 2.4 (The generalized gradient of a semiconcave function). Let u : M → R be a locally Lipschitz
and semiconcave function. Then, at every point p ∈M , u admits a directional derivative ∂+v u(p) in any direction
v ∈ TpM \ {0}. It is defined by

∂+v u(p) :=
d

dt
[u(γ(t))]t=0 = lim

t→0+

u(γ(t))− u(p)

t
,

where γ : [0, 1] → M is any curve such that γ(0) = p and γ̇(0) = v . Moreover, the map v 7→ ∂+v u(p) is
1-homogeneous and concave on TpM . Thus, it attains a unique maximum in the closed unit ball of TpM at a
unique vector vp.

Proof. By Proposition 2.3, we can suppose that M = Rn, p = 0 and that γ(t) = tv. Then the function
w(x) = C|x|2 − u(x) is convex for C large enough and so, the function t 7→ w(γ(t))−w(0)

t is non-decreasing in t,
so the limit ∂+v u(p) = −∂+v w(0) exists and is finite. The convexity of the function v 7→ ∂+v w(0) is a consequence
from the convexity of w. The existence of a maximum of v 7→ ∂+v u(p) follows. �
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If ∂+vpu(p) > 0, then the 1-homogeneity implies that vp has norm one, and we define

∇u(p) := ∂+vpu(p)vp and |∇u(p)| = ∂+vpu(p).

If ∂+vpu(p) = 0, then we set ∇u(p) = 0. Thus, the norm of ∇u(p) is given by the following formula:

|∇u(p)| = max
{
0, max

v∈TpM, |v|=1
∂+v u(p)

}
. (2.3)

2.3. Distance function, cut locus and cut points. Let M be a compact Riemannian manifold, b ∈M and
db :M → R be the distance function to b. Here we recall the definition and some of the main properties of the
cut locus.

Definition 2.5 (Cut points). Let T > 0 and γ : [0, T ] → M be a unit speed geodesic such that γ(0) = b,
t0 ∈ (0, T ) and p = γ(t0). We say that p is a cut point of b along γ if γ is length minimizing between b and p,
but not after p, i.e db(γ(t)) = t for t ≤ t0, and db(γ(t)) < t for t > t0.

Definition 2.6 (Cut locus). The cut locus of b in M , Cutb(M), is defined as the set of all cut points of b.

The following well-known facts about the cut locus can all be found in [25, Chapter III, Section 4]:

• Cutb(M) is the closure of the set of points p in M , for which there are at least two minimizing geodesics
connecting b and p;

• the distance function db is smooth outside Cutb(M) ∪ {b} and

|∇db| = 1 in M \
(
Cutb(M) ∪ {b}

)
;

• db is differentiable at p ∈M if and only if there is a unique minimizing geodesics between b and p;
• in particular, Cutb(M) ∪ {b} is the closure of the set of points of non differentiability of db;
• the exponential map expb : TbM →M is a diffeomorphism from an open set of TbM onto M \Cutb(M);
• Cutb(M) is a deformation retract of M \ {b}. In particular, these two sets have the same homotopy

type, and so Cutb(M) inherits much of the topology of M (like homology groups, for instance). See [25,
Chapter III, Section 4, Proposition 4.5] for a precise statement.

We next recall that in [20, Proposition 3.4], it was proved that, for any chart ψ on M \ {b}, the function
db ◦ ψ−1 is locally semiconcave on R

n. Thus, by Proposition 2.3, db is locally semiconcave on M \ {b} in the
sense of Definition 1.8. Precisely, we have the following proposition

Proposition 2.7 (Semiconcavity of the distance function). Let M be a compact Riemannian manifold of
dimension n and b ∈ M be a given point. Then, for every ρ > 0, there is a constant C > 0 such that the
distance function db is C-semiconcave on M \Bρ(b).

In particular, by Proposition 2.4, for any point p ∈ M \ {b} and any direction v ∈ TpM , db admits the
directional derivative ∂+v db(p) and so we can define ∇db and |∇db| at every point as in (2.3). In Lemma 2.8 we
give a geometric interpretation of |∇db| (p) in terms of the geodesics connecting p to b. We notice that similar
results holds also in the more general framework of Alexandrov spaces, but with some additional restrictions
on the curvature of the ambient space (see [1, Theorem 4.5.6] and also [1, Lemma 3.2] for the statement in the
Riemannian context). We give the proof directly for the distance function to a compact subset K of M .

Lemma 2.8 (Geometric interpretation of the generalized gradient). Let M be a smooth Riemannian manifold
without boundary, K a compact subset of M , and dK the distance function to K. Let p be a point of M such
that there exist several minimizing geodesics from p to K. We denote the set of unit speed geodesics from p to
K that are minimizing between p and K by geod(p,K). For any v ∈ TpM , we have

∂+v dK(p) = min
γ∈geod(p,K)

−γ̇(0) · v. (2.4)

In particular,

|∇dK | (p) = max{0, max
v∈TpM,|v|=1

min
γ∈geod(p,K)

−γ̇(0) · v}. (2.5)

In particular, if γ1 : [0, dK(p)] →M and γ2 : [0, dK(p)] →M are two minimizing geodesics from p to K, then

|∇dK(p)| ≤
√

1 + γ̇1(0) · γ̇2(0)
2

. (2.6)
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Proof. Let γ : [0, dK(p)] → M be a geodesic of geod(p,K). Let a = γ(dK(p)/2). As γ is minimizing between p
and γ(dK(p)), we have a /∈ Cutp(M), and so p /∈ Cuta(M). In particular, the function da is differentiable at p,
and ∇da(p) = −γ̇(0). Thus, for every t > 0, we have

dK(expp(tv))− dK(p)

t
≤ da(expp(tv)) + dK(a)− dK(p)

t
=
da(expp(tv)) − da(p)

t

Passing to the limit as t→ 0, we get

∂+v dK(p) ≤ min
γ∈geod(p,K)

−γ̇(0) · v. (2.7)

Now, for every t > 0, let γt ∈ geod(expp(tv),K). For t small enough, the length of γt is bounded by dK(p) + 1.
By compactness of the set of geodesics of length bounded by a given constant, there exists a sequence of positive
numbers (tn)n≥0 that converges to 0, such that γn := γtn converges to a unit speed geodesic γ as n→ +∞. As
K is closed, γ is a geodesic from p to K. What is more, we have

length(γ) = lim
n→∞

length(γn) = lim
n→∞

dK(expp(tnv)) = dK(p),

so γ ∈ geod(p,K). Let R = min{inj(M), dK(p)/2}, where inj(M) is the injectivity radius of M . In particular
for any (x, y) such that d(x, y) < R and x 6= y, the distance function d( · , · ) is smooth in a neighborhood of
(x, y) in M ×M . For n ∈ N, let bn := γn(R), and b∞ = γ(R). Let U, V ⊂ M be precompact neighborhoods
of p and b∞ respectively such that d( · , · ) is smooth on U × V . For n big enough, we have expp(tnv) ∈ U and
bn ∈ V , and so

dK(p) ≤ dK(bn) + d(bn, p)

= dK(expp(tnv))− d(bn, expp(tnv)) + d(bn, p)

= dK(expp(tnv))−∇2d(bn, p) · v + o(tn), (2.8)

where ∇2 is the gradient with respect to the second variable. We have

∇2d(bn, p) −→
n→∞

∇2d(b∞, p) = −γ̇(0)

because d( · , · ) is smooth on U × V . So (2.8) yields

lim inf
n→∞

dK(expp(tnv)) − dK(p)

tn
≥ −γ̇(0) · v.

In particular,
∂+v dK(p) ≥ min

γ∈geod(p,K)
−γ̇(0) · v.

With (2.7), this concludes the proof of (2.4). Now, (2.5) follows from (2.4) and the definition of the generalized
gradient (2.3) of semiconcave functions. Finally, in order to prove (2.6), we consider the vector v that realizes
the maximum in (2.5) and we write it as v = −αγ̇1(0)−βγ̇2(0)+ v⊥, where v⊥ is orthogonal to γ̇1(0) and γ̇2(0).
Then, we have

−v · γ̇1(0) = α+ βγ̇1(0) · γ̇2(0) and − v · γ̇2(0) = β + αγ̇1(0) · γ̇2(0).
In particular,

min
γ∈geod(p,K)

−γ̇(0) · v ≤ 1

2

(
− v · γ̇1(0)− v · γ̇2(0)

)
≤ 1

2
(α + β)

(
1 + γ̇1(0) · γ̇2(0)

)
. (2.9)

Now, using the fact that
α2 + β2 + 2αβγ̇1(0) · γ̇2(0) ≤ ‖v‖2 = 1,

we get that

(α+ β)2 ≤ 1 + 2αβ
(
1− γ̇1(0) · γ̇2(0)

)
≤ 1 +

1

2
(α + β)2

(
1− γ̇1(0) · γ̇2(0)

)
,

which implies that

(α+ β)2 ≤ 2

1 + γ̇1(0) · γ̇2(0)
,

which, together with (2.9), gives (2.6). �

As a consequence of Lemma 2.8 and in particular of (2.6), we obtain the λ-cut locus approximates the cut
locus in the following sense.
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Proposition 2.9. Suppose that M is a compact Riemannian manifold, the point b ∈M is fixed and that db is
the distance function to b. Then, for every λ > 0, Cutλb (M) ⊂ Cutb(M). Moreover, the cut locus Cutb(M) is

the closure of the union
⋃

λ>0

Cutλb (M).

Proof. The inclusion Cutλb (M) ⊂ Cutb(M) follows from the fact that db is differentiable and |∇db| = 1 outside
Cutb(M) ∪ {b}. In order to prove the second claim, we fix a point p ∈ Cutb(M). Then, there is a sequence of
points pn ∈ Cutb(M) for each of which there are at least to different minimizing geodesics from pn to b. Now,
from (2.6), we have that pn ∈ Cutλn

b (M) for some λn > 0. This concludes the proof. �

3. Regularity of udm

This section is dedicated to the C1,1 regularity of the minimizer udm of (1.14). We recall the following result.

Lemma 3.1 (Regularization of the obstacle, [16]). For any m > 0, there exists a function d̃b which is smooth
on M \ {b}, such that

udm ≤ d̃b ≤ db on M, and d̃b < db on Cutb(M).

In particular, udm is also the solution of the obstacle problem

min

{∫

M

|∇u|2 −mu : u ∈ H1(M), u ≤ d̃b

}
. (3.1)

One could adapt to the manifold framework the regularity theorems for the classical obstacle problem on a
euclidean domain and, with the preceding lemma, deduce the regularity of udm. Rather than doing that, we will
use Lemma 3.1 to reduce our problem to a classical obstacle problem on a euclidean domain. Let us start with
the following regularity lemma.

Lemma 3.2 (Continuity of umd ). For any m > 0, the function udm is continuous on M .

Proof. We will reduce our problem to a classical obstacle type variational problem on an open subset of Rn, by
a series of elementary modifications, and apply a classical W 2,p regularity theorem.

From Lemma 3.1, we know that there exists an open set U ⊂M and ε > 0 such that

Cutb(M) ⊂ U and udm ≤ db − ε on U.

As a consequence, on the set U , udm verifies the Euler-Lagrange equation of (1.14), i.e ∆udm = −2m. In
particular, it is C∞ smooth on U . Let Ω ⊂M be a smooth open set such that

U c ⊂ Ω, ∂Ω ⊂ U and Cutb(M) ∩ Ω = ∅.
As U c ⊂ Ω, it suffices to show that udm is continuous on Ω. As ∂Ω ⊂ U , udm is smooth on ∂Ω, so there exists a
smooth function vm on Ω such that vm = udm on ∂Ω. Then, one can check that udm is a solution of the following
variational problem:

min

{∫

Ω

|∇u|2 −mu : u ∈ H1(Ω), u ≤ db in Ω, u = vm on ∂Ω

}
.

As a consequence, udm − vm is a solution of the following variational problem:

min

{∫

Ω

|∇v|2 − (m+∆vm)v : v ∈ H1
0 (Ω), v ≤ db − vm in Ω

}
. (3.2)

Because we have Cutb(M) ∩Ω = ∅, the exponential map at b is a diffeomorphism onto Ω. Let φ : Ω → Ω̃ ⊂ Rn

be a normal coordinates chart centered at b. Let g = (gij) denotes the metric of M in the coordinates defined
by φ, and det g its determinant. We recall that the Riemannian volume measure is given in coordinates by√
det g dx. So we have
∫

Ω

(
|∇v|2 − (m+∆vm)v

)
=

∫

Ω̃

(
gij∂i(v ◦ φ−1)∂j(v ◦ φ−1)

√
det g −

(
(m+∆vm) ◦ φ−1

)(
v ◦ φ−1

)√
det g

)
dx,

so (udm − vm) ◦ φ−1 is a minimizer of

min

{∫

Ω̃

(
gij
√
det g ∂iw ∂jw − Fw

)
dx : w ∈ H1

0 (Ω̃), w ≤ ψ

}
, (3.3)

where we have set ψ := (db−vm)◦φ−1 and F := (m+∆vm)◦φ−1
√
det g. We want to apply [29, Theorem 4.32].

For this we need to write the above variational problem into a variational inequality. Let w be a competitor
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in (3.3). Writing down the minimality of wm := (udm − vm) ◦ φ−1 against the competitor wm + t(w − wm), for
t ∈ (0, 1) small, we find that

〈Awm, wm − w〉 ≥ 〈F,wm − w〉,
where A is the elliptic operator defined on H1

0 (Ω̃) by Aw := −∂j(gij
√
det g ∂iw). From there, we can apply

[29, Theorem 4.32] to deduce that, for any p < n, if Aψ ∧ F ∈ Lp(Ω̃), then Awm ∈ Lp(Ω̃). To check that
Aψ∧F ∈ Lp(Ω̃), it is enough to check that A(db◦φ−1) ∈ Lp(Ω̃). As db is smooth except at b, it is enough to check
that (A(db ◦φ−1))p is integrable at 0. But this is a consequence of the fact that −∆db ◦φ−1 = 1√

det g
A(db ◦φ−1),

and Lemma 3.5 below, from which we deduce that A(db ◦ φ−1)(x) is equivalent to n−1
|x| when x goes to 0.

Therefore, for p < n, (A(db ◦ φ−1))p is integrable at 0, and so Awm ∈ Lp(Ω̃). By elliptic regularity, this implies
wm ∈W 2,p(Ω̃), for any p < n. By the Sobolev embeddings, wm is then continuous on Ω̃, and so udm is continuous
on Ω. This concludes the proof. �

We can now define the set Ed
m := {udm < db}, for any m > 0. It is an open subset of M , on which udm solves

the equation ∆udm = −2m. We can now prove the following lemma.

Lemma 3.3. For any m > 0, we have udm = db in a neighborhood of b.

Proof. Let us assume that we have constructed a C1 function v on BR(b) for some R > 0, such that





v ≤ db in BR(b), (3.4)

v = db in Bε(b) for some ε ∈ (0, R), (3.5)

v < 0 in ∂BR(b), (3.6)

∆v ≥ −m in BR(b) in the distributional sense. (3.7)

We will then show that we have udm ≥ v. The construction of v is postponed to the end of the proof. From
Lemma 3.2, we know that the function v− udm is continuous. Let us first assume that v− udm attains a positive
maximum at a point x ∈ BR(b). We have

0 < v(x)− udm(x) ≤ db(x) − udm(x),

so x ∈ Ed
m. Moreover, we have udm ≥ 0 since max(udm, 0) is a better competitor than udm in (1.14), so

v − udm ≤ v < 0 on ∂BR(b),

and so x ∈ BR(b). Hence the function v− udm attains a positive maximum inside the open set Ed
m ∩BR(b), but

its Laplacian verifies in the distributional sense:

∆(v − udm) = ∆v +m ≥ 0, (3.8)

which yields a contradiction by the maximum principle. Then, the maximum of v−udm on BR(b) is non-positive,
and we get

udm ≥ v = db in Bε(b),

which concludes the proof.
Let us now construct the function v that was used above. Let R > 0 be small enough so that BR(b) is

contained in a normal neighborhood of b. In polar coordinates around b, we define v as a radial function. For
ε > 0 to be chosen small enough later, let f : [0, R] → [0,∞) be the C1 function such that




f(r) = r if r ≤ ε,

f ′′(r) +
n− 1

r
f ′(r) = −m

2
if r > ε. (3.9)

If n = 2, the unique C1 solution to this system is given by:
{
f(r) = r if r ≤ ε,

f(r) = ε+
m

8

(
ε2 − r2

)
+
(
ε+

m

4
ε2
)
ln(

r

ε
) if r > ε. (3.10)

If n ≥ 3, then the solution is



f(r) = r if r ≤ ε,

f(r) = ε+
m

4n

(
ε2 − r2

)

+
(
εn−1 +

m

2n
εn
) 1

n− 2

(
1

εn−2
− 1

rn−2

)
if r > ε. (3.11)
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Then, we set in standard polar coordinates v(x) = f(r) for x ∈ BR(b). For r ≤ ε, the constraint (3.5) is verified
by definition. (For r > ε, we chose f so that ∆v is small, but still bigger than −m.)

Let us show that (3.4) holds. Let us set g(r) := f(r) − r and prove that g ≤ 0. We have g(r) = 0 for r ≤ ε
so it is sufficient to prove that g′(r) ≤ 0 for r ≥ ε. But, as f verifies (3.9), g verifies

g′′ +
n− 1

r
g′ = −m− n− 1

r
for r ≥ ε.

In particular, whenever g′(r) = 0, we have g′′(r) < 0. This implies g′(r) ≤ 0 for r ≥ ε, and so (3.4) is verified.
Now let us show that (3.7) holds if R has been taken small enough. We use the following expression of the

Laplacian in coordinates:

∆v =
1√
det g

∂i

(√
det ggij∂jv

)
,

where g = (gij) is the metric of the manifold M , and det g its determinant. We apply this formula to polar
coordinates to find that, on BR(b) \Bε(b), we have in the classical sense

∆v =
1√
det g

∂r
(√

det gf ′(r)
)
= f ′′ +

∂r det g

2 det g
f ′

= f ′′ +
n− 1

r
f ′ +

(
∂r det g

2 det g
− n− 1

r

)
f ′

= −m
2

+

(
∂r det g

2 det g
− n− 1

r

)
f ′. (3.12)

Note that by applying the Laplacian formula in polar coordinates to the distance function db(x) = r, we find
that

∆db =
∂r det g

2 det g
. (3.13)

Because of Lemma 3.5, we also have

∆db(x) =
n− 1

r
+ o(1).

With (3.12) and (3.13), this last equation yields in the classical sense

∆v = −m
2

+ o(1)f ′(r) on BR(b) \Bε(b). (3.14)

Moreover, it is clear from the following expression that f ′ is bounded on [ε,R], by a constant independent of
R, as long as we choose R ≤ 1:

f ′(r) = −m
n
r +

(
εn−1 +

m

n
εn
) 1

rn−1
for ε ≤ r ≤ R.

Hence from (3.14) we see that by taking R small enough (independently of ε), we can ensure that

∆v ≥ −m on BR(b) \Bε(b).

But from (3.14), we see that the above is also true on Bε(b) if ε is small enough. Thus the function v is C1 on
BR(b) and verifies ∆v(x) ≥ −m when x /∈ ∂Bε(b), hence (3.7) holds. It is also clear from (3.10) and (3.11) that
the constraint (3.6) is verified if ε is taken small enough. This concludes the proof. �

We can now prove the C1,1 regularity of udm.

Proposition 3.4. For any ε > 0, the function udm belongs to C1,1(M \Bε(b)).

Proof. We reproduce the proof of Lemma 3.2, but we replace the open set Ω with Ω̂ := Ω \ Bε(b), and the
function vm with a function v̂m that is smooth and such that wm = um on ∂Ω̂. We know that such a function
exists because um is smooth on ∂Bε(b) for ε small enough, as it can be seen from Lemma 3.3. This way, we
can apply the stronger W 2,∞ regularity result for the obstacle problem [29, Theorem 4.38], since db is smooth
on Ω̂. We get that udm belongs to W 2,∞ = C1,1(Ω̂). As udm is smooth on Ed

m and ∂Ω̂ ⊂ Ed
m, then udm is C1,1 on

Ω̂ ∪ Em =M \Bε(b). �

We end this section with the following computational lemma, which we used in the proof of Lemma 3.3.

Lemma 3.5. We have

∆db(p) =
p→b

n− 1

db(p)
+ o(1). (3.15)
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Proof. We compute ∆db in normal coordinates centered at b. Let g = (gij) be the metric of M in these
coordinates. We have

∆db(x) =
1√
det g

∂i

(√
det g gij∂jdb

)
(x).

In normal coordinates, the metric is euclidean up to order 1 as x goes to 0. So we have

gij(x) = δij + o(x), ∂i

(√
det g gij

)
(x) = o(1) and

1√
det g

= 1 + o(x).

Moreover, in normal coordinates, we have db(x) = |x|, and so

δij∂ijdb(x) =
n− 1

|x| ,

which gives precisely (3.15). �

4. Equivalence of the two constraints

Proof of Proposition 1.7. As above, we denote by udm the minimizer of (1.14). In order to show that udm solves
(1.3), it is sufficient to show that udm is an admissible competitor in (1.3), that is, |udm| ≤ 1 on M . Recall that
the function udm is C1 except at b, by Proposition 3.4.

First, suppose that x 6= b is in the contact set P d
m := {udm = db}. By Lemma 3.1, we have x /∈ Cutb(M), and

so the distance function db is differentiable at x. It is a simple consequence of the constraint udm ≤ db and the
equality udm(x) = db(x) that we have ∇udm(x) = ∇db(x). The desired inequality

∣∣∇udm(x)
∣∣ ≤ 1 follows.

In the non-contact set Ed
m = {udm < db}, the function udm solves the PDE

∆udm = −2m. (4.1)

In particular it is smooth, and we may apply the Bochner-Weitzenböck formula:

∆
(∣∣∇udm

∣∣2
)
= 2Ric(∇udm,∇udm) + 2

∣∣D2udm
∣∣2 + 2(∇∆udm,∇udm), (4.2)

where Ric denotes the Ricci curvature tensor on the manifold M and D2udm is the second covariant derivative
of udm. The last term is 0 because of (4.1). As for the second term, we have:

∣∣D2udm
∣∣2 ≥ 1

n

(
Trace(D2udm)

)2
= 4

m2

n
, (4.3)

where the last inequality is due to (4.1). As the manifold M is compact, there exists a constant K > 0
(depending on M only) such that the Ricci curvature is bounded from below by −K. In the end, (4.2) yields

∆
(∣∣∇udm

∣∣2
)
+ 2K

∣∣∇udm
∣∣2 ≥ 8

n
m2. (4.4)

Now notice that by (4.1),

∆
(
(udm)2

)
= 2udm∆udm + 2

∣∣∇udm
∣∣2 = −4mudm + 2

∣∣∇udm
∣∣2 ,

so (4.4) gives

∆
(∣∣∇udm

∣∣2 +K(udm)2
)
=

8

n
m2 − 4Kmudm ≥ 8

n
m2 − 4Kmdb ≥

8

n
m2 − 4Km diam(M)

Thus, if m ≥ n
2Kdiam(M), the function

∣∣∇udm
∣∣2 +K(udm)2 is subharmonic in the non-contact set Ed

m. From

Lemma 3.3, we have Ed
m ⊂ M \ {b}, and with Proposition 3.4, we get that the function

∣∣∇udm
∣∣2 +K(udm)2 is

continuous on Ed
m ⊂M \ {b}. Therefore we may apply the maximum principle to get
∣∣∇udm

∣∣2 ≤
∣∣∇udm

∣∣2 +K(udm)2 ≤ sup
∂Ed

m

(∣∣∇udm
∣∣2 +K(udm)2

)
= 1 +K sup

∂Ed
m

(udm)2

≤ 1 +K sup
∂Ed

m

(db)
2 ≤ 1 +Kdiam(M)2

With (4.4), this last inequality gives

∆
(∣∣∇udm

∣∣2
)
≥ 8

n
m2 − 2K(1 +Kdiam(M)2)

Thus, whenever the right-hand side is nonnegative, the maximum principle applied to the function
∣∣∇udm

∣∣2 on

the open set Ed
m implies that

∣∣∇udm
∣∣2 < 1 on this set. This concludes the proof. �
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5. Convergence of the non-contact set

In this section we show that the non-contact set Ed
m = {udm < db} (which coincides with Em, for m large

enough, as we showed in the previous section) Hausdorff-converges to Cutb(M).

Lemma 5.1. We have ‖db − udm‖L∞(M) ≤
C

m
, for some positive constant C depending on M only.

Proof. We only need to prove the proposition for m large enough. Therefore, thanks to Proposition 1.7, we will
assume that m is large enough so that

∣∣∇udm
∣∣ ≤ 1. We only need to show the estimate on Ed

m since outside this
set, udm and db are the same. We will show that for m large enough, we have

∀p ∈ Ed
m, ∃p ∈ (Ed

m)c such that d(p, p) < 5n/m. (5.1)

This will conclude the proof since by the 1-Lipschitzianity of udm and db, we then have

∣∣db(p)− udm(p)
∣∣ ≤

∣∣db(p)− udm(p)
∣∣+ 2d(p, p) = 0 + 2d(p, p) ≤ 10n

m
,

which is what we need. In order to prove (5.1), we argue by contradiction and assume that B5n/m(p) ⊂ Ed
m.

We want to apply the maximum principle to the function v defined on B5n/m(p) by the following formula

v(p) := udm(p)− inf
∂B 5n

m
(p)
udm +

m

2n

(
dp(p)

2 −
(
5n

m

)2
)
.

For any p ∈ B5n/m(p), we have ∆udm(p) = −2m because we have assumed B5n/m(p) ⊂ Ed
m. To estimate the

Laplacian of d2p, we use some normal coordinates (xi) centered at p. In these coordinates, the metric is euclidean
up to order 1, uniformly in p since M is compact, and dp(x) = |x| (see Lemma 3.5). We get that for m large
enough, independently of p,

∀p ∈ B5n/m(p), ∆d2p(p) ≤ 2(2n).

All in all, we obtain on B5n/m(p) ⊂ Ed
m,

∆v ≤ −2m+
m

2n
2(2n) = 0.

So we can apply the maximum principle to v to get

v(p) ≥ inf
∂B 5n

m
(p)
v,

i.e.

udm(p)− inf
∂B 5n

m
(p)
udm − m

4n

(
5n

m

)2

≥ 0. (5.2)

As we have taken m large enough so that
∣∣∇udm

∣∣ ≤ 1, we also have

udm(p)− inf
∂B 5n

m
(p)
udm ≤ 5n

m
<
m

4n

(
5n

m

)2

,

which contradicts the estimate (5.2). This concludes the proof. �

Proposition 5.2 (Monotonicity of udm and Ed
m, and convergence of Ed

m). For any m > m′ > 0, we have

udm′ ≤ udm ≤ db and Cutb(M) ⊂ Ed
m ⊂ Ed

m′ .

Moreover,

Ed
m −→

m→∞
Cutb(M) in the Hausdorff sense.

Proof. The fact that, for any m > 0, Cutb(M) ⊂ Ed
m, is a direct consequence of Lemma 3.1. Let us prove the

second inclusion. For m > m′ > 0, note that by the respective minimality of udm and udm′ , we have
∫

M

∣∣∇max(udm′ , udm)
∣∣2 −m

∫

M

max(udm′ , udm) ≥
∫

M

∣∣∇udm
∣∣2 −m

∫

M

udm,

and
∫

M

∣∣∇min(udm′ , udm)
∣∣2 −m′

∫

M

min(udm′ , udm) ≥
∫

M

∣∣∇udm′

∣∣2 −m′
∫

M

udm′ .
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Using the formulas

∇max(udm′ , udm) = ∇udm′1{ud
m′

>ud
m} +∇udm1{ud

m′
≤ud

m},

∇min(udm′ , udm) = ∇udm1{ud
m′

>ud
m} +∇udm′1{ud

m′
≤ud

m},

we obtain ∫

{ud
m′

>ud
m}

(∣∣∇udm′

∣∣2 −
∣∣∇udm

∣∣2
)
≥ −m

∫

{ud
m′

>ud
m}

(
udm − udm′

)
,

and
∫

{ud
m′

>ud
m}

(∣∣∇udm
∣∣2 −

∣∣∇udm′

∣∣2
)
≥ −m′

∫

{ud
m′

>ud
m}

(
udm′ − udm

)
.

Summing these two inequalities, we get

0 ≥ (m−m′)

∫

{ud
m′

>ud
m}

(
udm′ − udm

)
,

and so udm ≥ udm′ . In particular, Ed
m ⊂ Ed

m′ .
We are left to show the Hausdorff convergence in Ed

m to Cutb(M). Given ε > 0, let us set

Ωε :=
{
x ∈M : d(x,Cutb(M)) > ε

}
.

We will show that for m large enough we have Ed
m ⊂ (Ω2ε)

c, which will conclude the proof. Let φ :M → R be
a function such that φ ≤ db on M , φ = db on Ω2ε, φ < db on ∂Ωε, and φ is smooth on M except at b. We want
to apply the maximum principle to the function φ− udm on Ed

m ∩Ωε. We have

∆(φ− udm) = ∆φ+ 2m on Ed
m ∩Ωε,

so for m large enough the function φ − udm is subharmonic on Ed
m ∩ Ωε. On ∂Ωε, we have φ < db and udm

converges uniformly to db as m tends to +∞ (Lemma 5.1) so φ − udm ≤ 0, for m large enough. On ∂Ed
m, we

have φ− udm = φ− db ≤ 0. Thus the maximum principle implies that for m large enough, we have φ− udm ≤ 0
on Ed

m ∩ Ωε. As φ = db on Ω2ε, we get udm ≥ db on Ed
m ∩ Ω2ε. Since by definition we have udm < db on Ed

m, we
get Ed

m ⊂ (Ω2ε)
c, which concludes the proof. �

6. Semiconcavity

This section is dedicated to the semiconcavity of the solutions to the obstacle problems (1.14) and (1.13).
The key result is Proposition 6.1, which applies to both Theorem 1.3 and Theorem 1.6.

In the case of Theorem 1.6, we have M̊ = Ω and ∂M = ∂Ω.

Proposition 6.1. Let M = M̊ ⊔ ∂M be a smooth compact Riemanniannian manifold, with (possibly empty)
boundary ∂M . Suppose that for some constants L > 0 and C > 0, we are given the following:

(a) a function d : M̊ → R, which is bounded and C-semiconcave on M̊ ;

(b) a family of functions um : M̊ → Rn, for m > 0, such that:

(b.1) for every m > 0, um ≤ d on M̊ ;

(b.2) for every m > 0, um is L-Lipschitz on M̊ ;
(b.3) on the set Em := {um < d}, um is C∞ smooth and

−∆um = 2m in Em ;

(b.4) Em is precompact in M̊ ;

(b.5) for every η > 0, for every m > 0, there is a neighborhood Nη,m of ∂Em in M̊ such that

D2um ≤ (C + η) Id in Em ∩ Nη,m.

Then, for every η > 0, there exists m0 > 0 such that

um is (C + η)-semiconcave on M̊ , for every m ≥ m0.

Application to Theorem 1.6. In order to apply Proposition 6.1 to Theorem 1.6, we take M̊ = Ω and
∂M = ∂Ω. The function d is the distance function d∂Ω to the boundary of Ω, while um is the solution vm
of (1.13) (thus, the Lipschitz constant from (b.2) is L = 1), which means that the conditions (b.1), (b.2) and
(b.3) are fullfilled. When Ω is C2 regular, the set M(Ω) is contained in Ω. Now, as the elastic sets {um < d}
Hausdorff-converge to M(Ω) (see [6]) we get that, for large m, um coincides with d in a neighborhood of ∂Ω.
Thus, (b.4) is fullfilled. As Ω is C2, the function d∂Ω is known to be C-semiconcave in Ω for some C > 0 (see
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[10, (iii) of Proposition 2.2.2]), so (a) is fulfilled. Finally, condition (b.5) is a consequence of [13, Chapter 2,
Theorem 3.8]. Thus, there exists a constant C > 0 such that for m big enough, vm is C-semiconcave in Ω.

Application to Theorem 1.3 (T4). In the case of Theorem 1.3, we take M̊ =M \Bρ(x0) and ∂M = ∂Bρ(b),
where Bρ(b) is a small geodesic ball centered at the base point b. The function d is the distance function db to
the base point, while um is the solution of (1.14). The semiconcavity of the distance function d in M \Bρ(b) was
proved in [20], see Proposition 2.7. By Proposition 1.7, for large m, the problems (1.14) and (1.3) are equivalent
and so we can take L = 1 in (b.2), and we also have that (b.1) are (b.3) are fullfilled. Next, we notice that
by Lemma 3.3 we have that um = d in a neighborhood of b, which proves (b.4) by choosing the radius ρ small
enough. Finally, in Lemma 6.2 we will prove that also the condition (b.5) is fullfilled.

Proof of Proposition 6.1. First, we notice that by dividing all the functions by L, we can assume that L = 1.
Let η > 0. As in Definition 1.8, for a, b ∈ R and λ ∈ (0, 1), we will use the notation

λab := (1− λ)a+ λb.

For any unit speed geodesic γ : [a, b] → M̊ , λ ∈ (0, 1) and v a function on M̊ , let us define

c(γ, λ, v) := λ(1− λ)(C + η)(b − a)2 −
(
(1 − λ)v(γ(a)) + λv(γ(b))− v(γ(λab))

)
.

We aim to show the following:
inf
γ,λ

c(γ, λ, um) ≥ 0, (6.1)

where the infimum is taken over unit speed geodesics defined over finite intervals. Let us argue by contradiction
and assume that (6.1) does not hold.

Let us show that we may assume that the infimum is actually taken over unit speed geodesics γ : [a, b] → M̊
such that

γ
(
(a, b)

)
⊂ Em = {um < d}. (6.2)

Let γ : [a, b] → M̊ be a unit speed geodesic, and λ ∈ (0, 1), such that c(γ, λ, um) < 0. Let us assume that γ
does not verify (6.2). We will build a geodesic γ̂ that does verify (6.2), and λ̂ ∈ (0, 1), such that

c(γ̂, λ̂, um) < c(γ, λ, um).

First, notice that if γ(λab) /∈ Em, then we have um(γ(λab)) = d(γ(λab)), um(γ(a)) ≤ d(γ(a)) and um(γ(b)) ≤
d(γ(b)), and so

c(γ, λ, um) ≥ c(γ, λ, d) > 0, (6.3)

where the last inequality comes from the C-semiconcavity of d. This is contradictory, so γ(λab) ∈ Em. As γ
does not verify (6.2), there exists t ∈ (0, λab) ∪ (λab, 1), such that γ(tab) /∈ Em. Up to reparametrization of γ,
we may assume that t ∈ (0, λab). We can define

µ := min {s ∈ (0, λ) : ∀r ∈ (s, λ), γ(rab) ∈ Em} .
We have γ(µab) /∈ Em, and γ((µab, λab]) ⊂ Em. Figure 2 may help justify intuitively the following construction.
Let λ̃ ∈ (0, 1) be such that

λ̃µabb = λab. (6.4)

t

f(t)

•

•

•

•

a µab λab = λ̃µabb
b

Figure 2. Construction of γ̃ and λ̃.

Let γ̃ be the unit speed geodesic defined by γ̃ := γ|[µab,b]. Let us set f(t) := (C + η)t2 − um(γ(t)). Then

c(γ̃, λ̃, um) = (1− λ̃)f(µab) + λ̃f(b)− f(λ̃µabb)

= (1− λ̃)f(µab) + λ̃f(b)− f(λab)

= c(γ, λ, um)− (1− λ)f(a) + (λ̃− λ)f(b) + (1− λ̃)f(µab). (6.5)
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Now after some elementary calculations, (6.4) translates into
{
1− λ = (1− λ̃)(1− µ),

λ̃− λ = −(1− λ̃)µ,

so (6.5) becomes

c(γ̃, λ̃, um) = c(γ, λ, um)− (1 − λ̃)
(
(1 − µ)f(a) + µf(b)− f(µab)

)

= c(γ, λ, um)− (1 − λ̃)c(γ, µ, um).

Using the fact that γ(µab) /∈ Em, we deduce, as in (6.3), that

c(γ, µ, um) ≥ c(γ, µ, d) > 0.

This yields
c(γ̃, λ̃, um) < c(γ, λ, um).

Moreover the unit speed geodesic γ̃ : [µab, b] → M̊ verifies γ̃((µab, λ̃µabb]) ⊂ Em. Now, arguing as above, if there
exists t ∈ (λ̃, 1) such that γ̃(tµabb) /∈ Em, then we may build two numbers ν ∈ (λ̃, 1) and λ̂ ∈ (0, 1) such that
the unit speed geodesic γ̂ := γ̃|[µab,νab]

verifies

c(γ̂, λ̂, um) < c(γ̃, λ̃, um),

and
γ̂((µab, νab)) ⊂ Em.

So we now need to show that
inf
γ,λ

c(γ, λ, um) ≥ 0, (6.6)

where the infimum is taken over unit speed geodesics γ : [a, b] → M̊ such that γ
(
(a, b)

)
⊂ Em.

By continuity of um, (6.6) is equivalent to simply saying that um is (C + η)-semiconcave on Em. Therefore,
as um is smooth on Em, by Proposition 2.2, we only need to show the pointwise condition

D2um ≤ (C + η)Id on Em. (6.7)

Now, let C1, C2, C3 > 0 be some constants to be determined later, and ε > 0 to be chosen small enough later.
For p ∈ Em and X ∈ Sn−1(TpM), we define

fε(p,X) := D2um(X,X) + ε
(
C1 |∇um|2 (p) + C2u

2
m(p)− C3um(p)

)
. (6.8)

We will show that for a good choice of constants C1, C2, C3, depending only of M and |d|L∞ , for any ε > 0
small enough, depending only on M , |d|L∞ and η, we have for any m large enough,

fε(p,X) ≤ C +
2η

3
for every p ∈ Em and every X ∈ S

n−1(TpM). (6.9)

This will conclude the proof since, as um is bounded by |d|L∞ and 1-Lipschitz, we will then get

D2um(X,X) ≤ C +
2η

3
+ εC(M, |d|L∞),

where C(M, |d|L∞) > 0 is a constant depending on M and |d|L∞ only. But this implies (6.7) if ε has been taken
small enough.

Suppose by contradiction that

sup
p∈Em

X∈S
n−1(TpM)

fε(p,X) > C +
2η

3
. (6.10)

Let us assume that m is large enough so that D2um ≤ (C + η/3)Id in a neighborhood of ∂Em. In particular,
we get that for ε small enough, depending only on M , |d|L∞ and η,

fε < C +
2η

3
in a neighborhood of ∂Em.

Thus, by (6.10) and the precompactness of Em, there exist q ∈ Em and Y ∈ Sn−1(TqM) such that

fε(q, Y ) = sup
p∈Em

X∈S
n−1(TpM)

fε(p,X). (6.11)
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In the following, CM will denote any constant that depends only on M . Let us pick some normal coordinates at
q such that ∂1(q) = Y . We then extend the vector Y into a vector field (still denoted by Y ) in a neighborhood of
q, by setting Y := ∂1/ |∂1|. As D∂1(q) = 0, we also have DY (q) = 0. Moreover, as the manifold M is compact,
D2Y (q) is bounded by a constant that depends on M only: we have

∣∣D2Y (q)
∣∣ ≤ CM . (6.12)

We will show that the Laplacian of p 7→ fε(p, Y (p)) is positive at q, which contradicts the maximality of (q, Y (q))
in (6.11). Let us estimate ∆(D2um(Y, Y )) at the point q, using the abstract index notation.

∆(D2um(Y, Y )) = gabDaDb(D
2
cdumY

cY d)

= gab
(
D4

abcdumY
cY d +D3

acdumDb(Y
cY d)

+D3
bcdumDa(Y

cY d) +D2
cdumD

2
ab(Y

cY d)
)
. (6.13)

We may divide the right-hand side into four terms and estimate them at the point q individually. The second
term is null because it contains Db(Y

cY d) = (DbY
c)Y d + Y cDbY

d, and DY = 0. The third term is also null,
for the same reason. By (6.12), we can estimate the fourth term as follows:

gabD2
cdumD

2
ab(Y

cY d) ≥ −CM
∣∣D2um

∣∣ ≥ −C
M

ε
− ε

∣∣D2um
∣∣2 . (6.14)

It now remains to estimate the first term of (6.13). Using the notation

D[ab] := DaDb −DbDa,

we compute

DaDbDcDdum = DaD[bc]Ddum +D[ac]DbDdum +DcDaD[bd]um +DcD[ad]Dbum +DcDdDaDbum.

By definition of the Riemann tensor we have

DaD[bc]Ddum = Da(RbcedD
eum) = (DaRbced)D

eum +RbcedDaD
eum,

and so ∣∣DaD[bc]Ddum
∣∣ ≥ −CM |∇um| − CM

∣∣D2um
∣∣ . (6.15)

Likewise, ∣∣DcD[ad]Dbum
∣∣ ≥ −CM |∇um| − CM

∣∣D2um
∣∣ . (6.16)

To compute the term D[ac]DbDdum, let us pick some coordinates (xi) and write DbDdum = D2
ijumdxibdx

j
d.

Then, we have

D[ac]DbDdum = D[ac](D
2
ijumdxibdx

j
d)

= (D[ac]D
2
ijum)dxibdx

j
d +D2

ijum(D[ac]dx
i
b)dx

j
d +D2

ijumdxib(D[ac]dx
j
d)

= 0 +D2
ijumRaceb(dx

i)edxjd +D2
ijumdxibRaced(dx

j)e

= RacebD
eDdum +RacedDbD

eum,

and so ∣∣D[ac]DbDdum
∣∣ ≥ −CM

∣∣D2um
∣∣ . (6.17)

By symmetry of the tensor D2um, we have

DcDaD[bd]um = 0. (6.18)

Putting (6.15), (6.16), (6.17) and (6.18) together, we find
∣∣gabDaDbDcDdum

∣∣ ≥ −CM |∇um| − CM
∣∣D2um

∣∣−
∣∣gabDcDdDaDbum

∣∣ .
In Em, um has constant Laplacian, so

gabDcDdDaDbum = DcDdg
abDaDbum = DcDd∆um = 0.

So we get ∣∣gabDaDbDcDdum
∣∣ ≥ −CM |∇um| − CM

∣∣D2um
∣∣ .

From this and the fact Y has norm 1, we deduce
∣∣gabDaDbDcDdumY

cY d
∣∣ ≥ −CMε−1 − ε |∇um|2 − ε

∣∣D2um
∣∣2 .

Combining this equation with (6.13) and (6.14), we obtain at the point q,

∆(D2um(Y, Y )) ≥ −CMε−1 − 2ε
∣∣D2um

∣∣2 − ε |∇um|2 . (6.19)
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We recall the Bochner-Weitzenböck formula:

∆
(
|∇um|2

)
= 2Ric(∇um,∇um) + 2

∣∣D2um
∣∣2 + 2(∇∆um,∇um).

As M is compact, there exists a constant K > 0 such that Ric ≥ −K. Using the fact that um has constant
Laplacian in Em, we get

∆
(
|∇um|2

)
≥ 2

∣∣D2um
∣∣2 − 2K |∇um|2 . (6.20)

Furthermore, using the fact that ∆um = −2m in Em again, we find

∆
(
u2m
)
= 2 |∇um|2 − 2mum

≥ 2 |∇um|2 − 2m |d|L∞ , (6.21)

∆um = −2m. (6.22)

Using (6.20), (6.21) and (6.22), we get

∆
(
ε |∇um|2 + (K + 1)εu2m − ((K + 1) |d|L∞ + 1)εum

)
≥ 2ε

∣∣D2um
∣∣2 + ε |∇um|2 + εm.

Setting (C1, C2, C3) = (1,K+1, ((K+1) |d|L∞ +1)), and recalling the definition of fε (6.8), we obtain thanks
to (6.19):

∆(fε(p, Y (p)))p=q ≥ −CMε−1 + εm.

In particular, if m is large enough, depending on M and ε, this contradicts the maximality of (q, Y (q)) in (6.11).
This concludes the proof of (6.9) and Proposition 6.1. �

In order to apply Proposition 6.1 to problem (1.14), we will need the following lemma.

Lemma 6.2 (Bound of D2um near ∂Em). Let um be the solution of (1.3), as in Theorem 1.3. Let ε > 0 be
smaller than the distance from b to Cutb(M). Let Em := {um < db}. From Proposition 5.2, we know that for
m large enough, we have Em ⊂M \B(b, ε). Let C > 0 be such that db is C-semiconcave on M \B(b, ε). Then,
for any m large enough, for any η > 0, there is a neighborhood Nη,m of ∂Em in M \B(b, ε) such that

D2um ≤ (C + η) Id in Em ∩ Nη,m. (6.23)

Proof. We will use a theorem for obstacle problems on R
n. Let us show that um is the solution of an obstacle

problem on an open subset of Rn. Then, we will apply [13, Chapter 2, Theorem 3.8] to conclude that (6.23)
holds.

The minimality of um in (1.14) implies

−∆um − 2m ≥ 0, um ≤ db and (−∆um − 2m)(um − db) = 0. (6.24)

Let Ω̃ be defined as in the proof of Proposition 3.4. Let φ : Ω̃ → Ũ be a normal coordinates chart. Writing
down (6.24) in these coordinates, we find

Aũm − 2m ≥ 0, ũm ≤ ψ and (Aũm − 2m)(ũm − ψ) = 0,

where A is the Laplacian of M in the coordinates defined by φ, ũm = um ◦ φ−1 and ψ = db ◦ φ−1. This is the
form of [13, Chapter 2, equation (3.16)], so we can apply [13, Chapter 2, Theorem 3.8], to deduce that

∀p ∈ ∂Em, ∀X ∈ R
n lim

q→p
q∈Em

D2ũm(φ(q))(X,X) ≤ D2ψ(φ(p))(X,X). (6.25)

Moreover, we have

D2ũm = D2um ◦ (Dφ−1, Dφ−1) +Dum ◦D2φ−1,

D2ψ = D2db ◦ (Dφ−1, Dφ−1) +Ddb ◦D2φ−1,

and Dum = Ddb on ∂Em because um is C1. Thus, (6.25) yields:

∀p ∈ ∂Em, ∀X ∈ R
n lim

q→p
q∈Em

D2um(q)(Xq, Xq) ≤ D2db(p)(Xp, Xp),

where we have set Xq := Dφ−1(φ(q))X . As db is C-semiconcave, with Proposition 2.2, we get

∀p ∈ ∂Em, ∀X ∈ R
n lim

q→p
q∈Em

D2um(q)(Xq, Xq) ≤ C |Xp|2 . (6.26)

From there, we deduce that

for q ∈ Em close enough to ∂Em, we have D2um(q) ≤ C + η. (6.27)
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Indeed, if not, there exist a sequence (qk) of points of Em whose distance to ∂Em goes to 0, and a sequence
(Xk) of unit vectors of R2 such that for any k ∈ N,

D2um(qk)
(
(Xk)qk , (Xk)qk

)
> C + η. (6.28)

As Em is precompact, up to extracting a subsequence, we can assume that (qk) converges to a point p ∈ ∂Em,
and (Xk) converges to a vector Y ∈ Rn. Because of (6.26), we have

lim
k→∞

D2um(qk)(Yqk , Yqk) ≤ C. (6.29)

Furthermore, we know from Proposition 3.4 that D2um is locally bounded. As (Xk)qk − Yqk converges to 0
when k goes to ∞, this implies

lim
k→∞

D2um(qk)
(
(Xk)qk , (Xk)qk

)
−D2um(qk)(Yqk , Yqk) = 0. (6.30)

Inequalities (6.28), (6.29) and (6.30) yield a contradiction. So (6.27) is true. This concludes the proof. �

7. Convergence of the gradients

In this section, we show that the uniform semiconcavity of um implies the convergence of the gradients in the
sense of Theorem 1.3 (T6). We notice that the results from this section also apply to more general sequences
of semiconcave functions.

7.1. Lower semicontinuity. In this section, we prove the first inequality in Theorem 1.3 (T6) (see Proposition 7.2).
We start by the following lemma.

Lemma 7.1. Let u : M → R be a C-semiconcave function. Let p, q ∈ M be such that there exists a geodesic
from p to q. Then,

u(q) ≤ u(p) + |∇u(p)| d(p, q) + C

2
d(p, q)2,

where |∇u|(p) is the norm of the generalized gradient, defined in (2.3).

Proof. Let γ : [0, d(p, q)] →M be a geodesic from p to q. Consider the function f(t) = 1
2Ct

2 − u(γ(t)). By the
semiconcavity of u, we know that f is convex. Thus, we have

f(d(p, q)) ≥ f(0) + f ′(0)d(p, q).

On the other hand, setting γ̇(0) := v ∈ Tp(M), by construction, we have

f(0) = −u(p) , f(d(p, q)) =
C

2
d(p, q)2 − u(q) , and f ′(0) = −∂+v u(p).

Thus, we obtain

u(q) ≤ u(p) + d(p, q)∂+v u(p) +
C

2
d(p, q)2 ≤ u(p) + |∇u(p)| d(p, q) + C

2
d(p, q)2. �

Proposition 7.2. Let M be a Riemannian manifold and let C > 0 be a fixed constant. Let uk : M → R

be a sequence of C-semiconcave continuous functions that converges locally uniformly to a continuous function
u∞ : M → R. Then, u∞ is also C-semiconcave, and for any sequence of points pk → p∞ ∈M , we have

|∇u∞| (p∞) ≤ lim inf
k→∞

|∇uk| (pk). (7.1)

Proof. First, notice that the C-semiconcavity of u∞ is an immediate consequence of the pointwise convergence
and the C-semiconcavty of uk. In particular, the generalized gradients |∇umk

| (pk) and |∇u∞| (p∞) are well-
defined by Proposition 2.4. Thus, we only need to prove (7.1). We notice that (7.1) is trivial if |∇u∞| (p∞) = 0.
Thus, we suppose that |∇u∞| (p∞) > 0. In particular, there are a vector v ∈ Sn−1(Tp∞

M) and a unit speed
geodesic γ with γ(0) = p∞ and γ̇(0) = v such that

|∇u∞(p∞)| = lim
t→0+

u∞(γ(t))− u∞(p∞)

t
.

In particular, for any ε > 0, we can find q ∈M such that d(p∞, q) ≤ ε and

|∇u∞(p∞)| ≤ u∞(q)− u∞(p∞)

d(q, p∞)
+ ε.
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Then, by the uniform convergence of uk and Lemma 7.1, we get

|∇u∞(p∞)| ≤ lim inf
k→∞

uk(q)− uk(pk)

d(q, pk)
+ ε ≤ lim inf

k→∞
|∇uk(pk)|+

C

2
d(q, pk) + ε

≤ lim inf
k→∞

|∇uk(pk)|+ (C + 1)ε,

which concludes the proof, as the inequality holds for any ε. �

7.2. Proof of Theorem 1.3 (T6). The claim (1.8) follows from Proposition 7.2. Thus, we only need to prove
(1.9). First, notice that, if |∇db|(p∞) = 1, then (1.9) follows from (1.8) and the fact that um is 1-Lipschitz. Let
now |∇db|(p∞) < 1. Suppose by contradiction that there are a subsequence mk −→

k→+∞
+∞ and constants ε > 0

and η0 > 0 such that

|∇db|(p∞) + ε ≤ |∇umk
|(p) for every p ∈ Bη0(p∞) and every k ≥ 0.

We now fix η ≤ η0, which will be chosen later in the proof. Let (qt)t≥0 be the curve defined by

q0 = p∞ and
dqt
dt

= ∇umk
(qt).

Let T > 0 be such that for any t ∈ [0, T ], d(qt, p∞) ≤ η, and in particular

|∇db|(p∞) + ε ≤ |∇umk
|(qt) for every t ∈ [0, T ].

We have

umk
(qT )− umk

(p∞) =

∫ T

0

|∇umk
(qt)|2 dt ≥

∫ T

0

(
|∇db|(p∞) + ε

)2
dt = T

(
|∇db|(p∞) + ε

)2
.

As umk
is bounded by the diameter of M , this estimate implies that there exists a finite biggest time T > 0

such that for any t ∈ [0, T ], d(qt, p∞) ≤ η. In particular, d(p∞, qT ) = η. Let γ be a unit speed minimizing
geodesic between p∞ and qT . By Proposition 2.7, there is a constant Cd > 0 such that db is Cd-semiconcave in
Bη0(p∞). In particular, by Lemma 7.1, we have that

db(qT )− db(p∞) ≤ |∇db(p∞)| d(p∞, qT ) + Cd(d(p∞, qT ))
2 = |∇db(p∞)| η + Cdη

2 . (7.2)

On the other hand,

umk
(qT )− umk

(p∞) =

∫ T

0

|∇umk
(qt)|

∣∣∣∣
dqt
dt

∣∣∣∣ dt ≥
∫ T

0

(
|∇db|(p∞) + ε

) ∣∣∣∣
dqt
dt

∣∣∣∣ dt

=
(
|∇db|(p∞) + ε

) ∫ T

0

∣∣∣∣
dqt
dt

∣∣∣∣dt ≥
(
|∇db|(p∞) + ε

)
d(q0, qT )

=
(
|∇db|(p∞) + ε

)
η. (7.3)

Combining (7.2) and (7.3), we get that

εη − Cdη
2 ≤

(
umk

(qT )− umk
(p∞)

)
−
(
db(qT )− db(p∞)

)
≤ 2‖umk

− db‖L∞(M).

Now, taking η small enough, we get that
1

2
εη ≤ 2‖umk

− db‖L∞(M) for every k ≥ 0,

but this is in contradiction with the uniform convergence of um to db. �

Appendix A. Appendix about semiconcavity

In this section we prove that defining local semiconcavity through charts (as in [20]), or through geodesics,
is the same (see Proposition 2.3). We recall the notation λab = (1− λ)a+ λb, for a, b ∈ R and λ ∈ [0, 1] and we
notice that the C-semiconcavity of u : M → R (in the sense of Definition 1.8) can be rewritten as

λu(γ(a))u(γ(b)) − u(γ(λab)) ≤ Cλ(1 − λ)(b − a)2,

for every unit speed geodesic γ : [a, b] →M and any λ ∈ [0, 1].
In order to prove Proposition 2.3, we need the following lemma, which shows how to estimate the difference

between two geodesics linking a pair of given points, for two different metrics.

Lemma A.1. Let g be a metric on the unit ball B1(0) ⊂ Rn. There exists a constant B > 0 such that for any
unit speed geodesic γ : [a, b] → (B1(0), g) and λ ∈ [0, 1], we have

∣∣γ(λab)− λγ(a)γ(b)
∣∣ ≤ Bλ(1− λ)(b − a)2.



CUT LOCUS AND VARIATIONAL INEQUALITIES 23

Proof. It suffices to prove that the estimate holds for λ ≤ 1
2 , as the case λ ≥ 1

2 can be deduced by considering
γ̃ : t 7→ γ(b− t) instead of γ. A unit speed geodesic γ : [a, b] → (B1(0), g) satisfies the geodesic equation

γ̈l + Γl
ij γ̇

iγ̇j = 0,

where Γl
ij are the Christoffel symbols of the metric g. As γ is unit speed, the (γ̇i) are bounded, uniformly in γ.

Therefore, there exists a constant α > 0 independent of γ such that |γ̈| ≤ α. By integration, we find

|γ(t)− γ(a)− γ̇(a)(t − a)| ≤ α(t − a)2.

Evaluating this expression at b yields

|γ(b)− γ(a)− γ̇(a)(b− a)| ≤ α(b − a)2.

From these two estimates, we deduce
∣∣∣∣γ(t)− γ(a)− γ(b)− γ(a)

b− a
(t− a)

∣∣∣∣ ≤ α(t− a)2 + α(b− a)(t− a).

Taking t = (1− λ)a+ λb in this estimate yields

|γ((1− λ)a+ λb)− ((1− λ)γ(a) + λγ(b))| ≤ αλ(1 + λ)(b − a)2 =
α(1 + λ)

1− λ
λ(1− λ)(b − a)2.

Taking B := α(1+1/2)
1−1/2 , this proves the desired estimate when λ ≤ 1/2. This concludes the proof. �

Proof of Proposition 2.3. Let us assume that u is locally semiconcave. Let ψ : U → V be a chart from an open
set U of M to on open set V of Rn, and y ∈ V . Let f := u ◦ ψ−1. We want to show that f is semiconcave in a
neighborhood of y, as a function of Rn. We first observe that f is locally semiconcave on the manifold (V, ψ⋆g).
Let V ′ ⊂ V be a neighborhood of y that is geodesically convex for the metric ψ⋆g, and such that there exists
a constant C > 0 such that f is C-semiconcave on (V ′, ψ⋆g). Let d denote the distance function on (V ′, ψ⋆g).
Up to taking V ′ smaller, we may assume that the metric ψ⋆g is bounded on V ′, and so there exists a constant
β > 0 such that

∀x, y ∈ V ′, d(x, y) ≤ β |x− y| .
Let x, y ∈ V ′ be such that [x, y] ⊂ V ′, and λ ∈ [0, 1]. Let γ : [a, b] → V ′ be a unit speed geodesic of (V ′, ψ⋆g)
from x to y. By the C-semiconcavity of f on (V ′, ψ⋆g), we have

λf(x)f(y) − f(λxy) = λf(γ(a))f(γ(b)) − f(λγ(a)γ(b))

≤ Cλ(1 − λ)(b − a)2 + f(γ(λab))− f(λγ(a)γ(b))

≤ Cλ(1 − λ)(b − a)2 + Lip(f)
∣∣γ(λab)− λγ(a)γ(b)

∣∣ .

Applying Lemma A.1 above, we get a constant B > 0 such that

λf(x)f(y) − f(λxy) ≤ (C + Lip(f)B)λ(1 − λ)(b − a)2

= (C + Lip(f)B)λ(1 − λ)(d(x, y))2

≤ (C + Lip(f)B)β2λ(1 − λ) |x− y|2 ,

and so f is semiconcave on V ′, as a function of Rn.
Reciprocally, let us assume that u ◦ψ−1 is locally semiconcave as a function of Rn for any chart ψ. Then, we

can show that u ◦ ψ−1 is locally semiconcave for the metric ψ⋆g, for any chart ψ, by using the same technique.
From there we deduce that u is locally semiconcave. This concludes the proof. �

Appendix B. A counter-example to the equivalence of (1.3) and (1.14) for small m

Theorem B.1. There exist a surface of revolution M and a parameter m > 0 such that um 6= udm.

Proof of Theorem B.1. Let rθ denote the rotation of R3 of angle θ ∈ [0, 2π) around the z-axis.
Let T := 1010 and r, h : [0, T ] → R be two smooth functions such that:
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γ : t 7→ (r(t), 0, h(t)) is a unit speed curve.

M := {rθ(γ(t)) : (t, θ) ∈ [0, T ]× [0, 2π)]} is a smooth surface,

r(0) = r(T ) = 0,

r ≤ 2,

r([1, 2]) ⊂ [1, 2],

r([3, 4]) ⊂ (0, 10−10),

r([5, T − 1]) ⊂ [1, 2].

This information is pictured in Figure B. We chose b = (0, 0, 0) as the
base point on M , and m = 10−10. Let us assume that udm = um and
build a better competitor in (1.14) to contradict the minimality of udm.
We will first reduce (1.14) to a one-dimensional problem. Note that the
functional we are minimizing is rotation-invariant. More precisely, for any
θ ∈ (0, 2π) and u ∈ H1(M), we have∫

M

|∇(u ◦ rθ)|2 −m(u ◦ rθ) =

∫

M

|∇u|2 −mu. (B.1)

By the uniqueness of the minimizer udm, we deduce that udm is rotation-
invariant, i.e. there exists a function ρm : [0, T ] → R such that for any
θ ∈ [0, 2π) and t ∈ [0, T ], udm(rθ(γ(t))) = ρm(t). Thus udm is a minimizer
of (1.14) among rotation-invariant functions.

x

z

γ(0)
•

γ(1)
•

γ(1)
•

γ(2)
•γ(3)•

γ(4)•
γ(5)

•

γ(T − 1)
•γ(T )•

r(t)
•γ(t)

Figure 3. The curve γ.

Let u : M → R be any rotation-invariant function, and ρ : [0, T ] → R be such that for any θ ∈ [0, 2π),
u(rθ(γ(t))) = ρ(t). We will translate the minimization problem (1.14) on u into a problem on ρ.

First, because M is a surface of revolution, all the geodesics starting from b = (0, 0, 0) have a constant angle
θ. Thus, they are of the form t 7→ rθ(γ(t)) for some θ ∈ [0, 2π). These are actually unit speed geodesics as γ is
unit speed. Hence, db(rθ(γ(t))) = t, and the constraint u ≤ db in (1.14) is equivalent to ρ(t) ≤ t.

Secondly, we translate the H1 constraint. To this end, let us define some coordinates (t, θ) on M via the map

φ : (0, T )× (0, 2π) →M , φ(t, θ) = rθ(γ(t)).

We have ∫

M

|∇u|2 =

∫ 2π

0

∫ T

0

(|∇u|2 ◦ φ)Jφdt dθ

=

∫ 2π

0

∫ T

0

|∇u|2 (rθ(γ(t)))r(t) dt dθ = 2π

∫ T

0

|∇u|2 (γ(t))r(t) dt, (B.2)

because u is rotation-invariant. Moreover, as u is rotation-invariant, its gradient at the point γ(t) is parallel to
γ′(t), and so

|ρ′(t)| = |∇u(γ(t)) · γ′(t)| = |∇u(γ(t))| |γ′(t)| = |∇u(γ(t))| .
Hence (B.2) gives ∫

M

|∇u|2 = 2π

∫ T

0

ρ′(t)2r(t) dt

Thus, the constraint u ∈ H1(M) in (1.14) is equivalent to v ∈ H1((0, T ), r(t)dt).
Thirdly, we may compute the functional likewise:

∫

M

|∇u|2 −mu = 2π

∫ T

0

(
ρ′(t)2 −mρ(t)

)
r(t)dt.

All in all, as udm is a minimizer in (1.14), ρm is a minimizer of :

inf

{∫ T

0

(
ρ′(t)2 −mρ(t)

)
r(t)dt : ρ ∈ H1

(
(0, T ), r(t)dt

)
, ρ(t) ≤ t

}
. (B.3)

The idea of the rest of the proof is the following. First, we recall the assumption udm = um, which means that∣∣∇udm
∣∣ ≤ 1, and so |ρ′m| ≤ 1. Now, if ρm(4) is close to 4, then ρ′m(t) is close to 1 for t ≤ 4, so a competitor

v such that ρ′(t) is small for t ≤ 4 will contradict the minimality of ρm in (B.3). If on the contrary ρm(4) is
significantly smaller than 4, then for t ≥ 4, ρm(t) will be significantly smaller than t, so a competitor ρ such
that ρ(t) is closer to t for t ≥ 4 will contradict the minimality of ρm in (B.3). Because we chose r very small on
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the interval [3, 4] (see Figure 3), we can define a competitor ρ independently on [0, 3] and [4, T ], without paying
much for the behavior of ρ on [3, 4].

Case one: ρm(4) ∈ [3.5, 4]. Let us define a competitor ρ for (B.3):

ρ : [0, T ] → R , ρ(t) =





0 if t ∈ [0, 3]

4(t− 3) if t ∈ [3, 4]

ρm(t) + 4− ρm(4) if t ≥ 4

.

Let us call F(ρ) the functional appearing in (B.3). We have, from the definition of r and ρ,

F(ρ) =

∫ 4

3

(
16− 4m(t− 3)

)
r(t)dt+

∫ T

4

(
ρ′2m(t)−mρm(t)

)
r(t)dt −m(4− ρm(4))

∫ T

4

r(t)dt

≤ (16− 0) · 10−10 +

∫ T

4

(
ρ′2m(t)−mρm(t)

)
r(t)dt − 0 (B.4)

so

F(ρ)−F(ρm) ≤ 16 · 10−10 −
∫ 4

0

(
ρ′2m(t)−mρm(t)

)
r(t) dt

≤ 16 · 10−10 −
∫ 2

1

ρ′2m(t)r(t) dt +m

∫ 4

0

ρm(t)r(t) dt

≤ 16 · 10−10 −
∫ 2

1

ρ′2m(t)r(t) dt +m

∫ 4

0

2t dt

= 16 · 10−10 −
∫ 2

1

ρ′2m(t)r(t) dt + 16m. (B.5)

We are left to bound from below the integral term in (B.5). By the Hölder inequality we have
∫ 2

1

ρ′m ≤
(∫ 2

1

1

r

)1/2(∫ 2

1

ρ′2mr

)1/2

,

and so
∫ 2

1

ρ′2mr ≥
(ρm(2)− ρm(1))2∫ 2

1
1
r

≥ (ρm(2)− ρm(1))2, (B.6)

by the construction of r. Now we use the fact udm = um, which means that
∣∣∇udm

∣∣ ≤ 1, and so |ρ′m| ≤ 1. With
the running assumption ρm(4) ≥ 3.5, this implies ρm(2) ≥ 1.5. As ρm(1) ≤ 1, we get ρm(2) − ρm(1) ≥ 0.5.
Then, (B.6) and (B.5) yield

F(ρ)−F(ρm) ≤ 16 · 10−10 − 0.25 + 16m. (B.7)

Recalling that we have chosen m = 10−10, it contradicts the minimality of ρm in (B.3).
Case two: ρm(4) ≤ 3.5. We use the same competitor ρ as in case one. We even perform similar estimates,

the only difference being that we don’t estimate the term −m(4 − ρm(4))
∫
(4,T )

r(t)dt by 0 as in (B.4). Thus
(B.5) becomes instead:

F(ρ)−F(ρm) ≤ 16 · 10−10 −
∫ 2

1

ρ′2m(t)r(t)dt + 16m−m(4− ρm(4))

∫ T

4

r(t)dt.

≤ 16 · 10−10 + 16m− 0.5m

∫ T

4

r(t)dt

≤ 16 · 10−10 + 16m− 0.5m

∫ T−1

5

r(t)dt.

Recalling that we have chosenm = 10−10, T = 1010 and r ≥ 1 between 5 and T−1, it contradicts the minimality
of ρm in (B.3). This concludes the proof. �
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