

Minimizing within convex bodies using a
convex hull method


Thomas Lachand-Robert Édouard Oudet∗
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Abstract


We present numerical methods to solve optimization problems on
the space of convex functions or among convex bodies. Hence convex-
ity is a constraint on the admissible objects, whereas the functionals
are not required to be convex. To deal with, our method mix geomet-
rical and numerical algorithms.


We give several applications arising from classical problems in geo-
metry and analysis: Alexandrov’s problem of finding a convex body of
prescribed surface function; Cheeger’s problem of a subdomain min-
imizing the ratio surface area on volume; Newton’s problem of the
body of minimal resistance.


In particular for the latter application, the minimizers are still
unknown, except in some particular classes. We give approximate
solutions better than the theoretical known ones, hence demonstrating
that the minimizers do not belong to these classes.
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1 Introduction


In this paper, we present numerical methods to solve optimization problems
among convex bodies or convex functions. Several problems of this kind
appear in geometry, calculus, applied mathematics, etc. As applications, we
present some of them together with our corresponding numerical results.


Dealing with convex bodies or convex functions is usually considered
easier in optimization theory. Unfortunately this is not true when the optim-
ization space itself is (a subset of) the set of convex functions or bodies. As
an example, consider the following minimization problem, where M > 0 is a
given parameter, Ω a regular bounded convex subset of Rn and g a continuous
function on Ω× R× Rn:


inf
u∈CM


∫
Ω


g(x, u(x),∇u(x)) dx, (1)


where CM = {u : Ω→ [−M, 0], u convex } .


Without the convexity constraint, this problem is usually handled in a nu-
merical way by considering the associated Euler equation g′2(x, u(x),∇u(x)) =
div g′3(x, u(x),∇u(x))). Such an equation is discretized and solved on a mesh
defined on Ω (or more precisely, a sequence of meshes, in order to achieve a
given precision), using for instance finite element methods.


1.1 Dealing with the convexity constraint


The classical numerical methods do not work at all with our problem:


1. The convexity constraint prevents us from using an Euler equation. In
fact, just stating a correct Euler equation for this sort of problem is
a difficult task [12, 20, 8]. Discretizing the corresponding equation is
rather difficult, then.


2. The set CM of admissible functions, considered as a subset of a Sobolev
space like H1


loc(Ω), is compact [5]. This makes it easy to prove the
existence of a solution of (1) without any other assumption on g. But
this also implies that CM is a very small subset of the functions space,
with empty interior. Therefore most numerical approximations of a
candidate function u are not convex. Evaluating the functional on
those approximations is likely to yield a value much smaller than the
sought minimum.


3. The natural way to evade the previous difficulty is to use only convex
approximations. For instance, on a triangular mesh of Ω, it is rather
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easy to characterize those P1-functions (that is, continuous and affine
by parts functions) which are convex. Unfortunately, such an approx-
imation introduces a geometric bias from the mesh. The set of convex
functions that are limits of this sort of approximation is much smaller
than CM [13].


4. Penalization processes are other ways to deal with this difficulty. But
finding a good penalization is not easy, and this usually yields very
slow algorithms, which in this particular case are not very convincing.
This yields approximation difficulties similar to those given in 2 above.


A first solution for this kind of numerical problems was presented in
[10], and an improved version is given in [9]. However the algorithms given
in these references are not very fast, since they deal with a large number
of constraints, and do not apply to those problems where local minimizers
exist. The latter are common in the applications since there is not need for
the functional itself to be convex to prove the existence of solution of (1):
the mere compacity of CM , together with the continuity of the functional on
an appropriate functions space, is sufficient.


1.2 A mixed-type algorithm


Our main idea to handle numerically (1) is to mix geometrical and numerical
algorithms. It is standard that any convex body (or equivalently, the graph of
any convex function) can be described as an intersection of half-spaces or as a
convex hull of points. Our discretization consists in considering only a finite
number of half-spaces, or a finite number of points (this is not equivalent,
and choosing either mode is part of the method). Reconstructing the convex
body is a standard algorithm, and computing the value of the functional is
straightforward then. Obviously the convex hull algorithm used implies an
additional cost that can not be neglected. On the other hand, this method
makes it easy to deal with additional constraints like the fact that functions
get values in [0, M ], for instance. We also show that it is possible to compute
the derivative of the functional. Hence we may use gradient methods for
minimization.


Note that since this always deals with convex bodies, we are guaranteed
that the evaluations of the functional are not smaller than the sought min-
imum, up to numerical errors. Because the approximation process is valid
for any convex body, we can ensure that all minimizers can be approximated
arbitrary closely.


The detailed presentation of the method requires to explain how the half-
spaces or points are moved, whether or not their number is increased, and
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which information on the specific problem is useful for this. We present quite
different examples in our applications, in order to pinpoint the corresponding
difficulties. Whenever the minimizer of the functional is not unique, gradient
methods may get stuck in local minima. We present a “genetic algorithm”
to deal with these, too.


In this paper, we concentrate on the three-dimensional settings. The
two-dimensional case is much easier, and convex sets in the plane can be
parametrized in a number of very simple ways. Even though our methods
could be applied to dimensions n ≥ 4, the convex hull computation may
become too expensive.


1.3 Generalized problem


This algorithm’s design does not involve any mesh or interpolation process.
As an important consequence, we are not limited to convex functions but
may also consider convex bodies. This allows us to study problems like


inf
A∈A
F(A), where F(A) :=


∫
∂A


f(x, νA(x), ϕA(x)) dH2(x), (2)


and A is a subset of the class of closed convex bodies of R3. We make use of
the notations:


• ∂A is the boundary of a convex body A;


• νA is the almost everywhere defined outer normal vector field on ∂A,
with values on the sphere S2;


• ϕA(x) is the signed distance from the supporting plane at x to the
origin of coordinates;


• f is a continuous function R3 × S2 × R→ R.


Since ϕA(x) = x · νA(x) the expression of the functional F is somehow
redundant. But the particular case of functions f depending only on ν, ϕ is
important both in applications and in the algorithm used, as we shall see.


As reported in [7], the problem (1) can be reformulated in terms of (2)
whenever g depends only on its third variable. In this formulation A stands
for the set of convex subsets of QM := Ω× [0, M ] containing Q0 = Ω× {0}.
Any convex body A ∈ A has the form


A = {(x′, x3) ∈ Ω× R, 0 ≤ x3 ≤ −u(x′)}, with u ∈ CM .
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Therefore any x ∈ ∂A \Q0 has the form x = (x′,−u(x′)), with x′ ∈ Ω. Then


νA(x) = (∇u(x′), 1)/
√


1 + |∇u(x′)|2, and the function f is deduced from g


by the relation f(ν) = ν3g
(


1
ν3


ν ′
)
, for every ν = (ν ′, ν3) ∈ S2. Several other


problems with a geometrical background may also be formulated in a similar
way.


Actually the formulation (2) allows us to study any problem of the form (1).
It is enough to define f(x, ν, ϕ) = ν3g(x′,−x3,


1
ν3


ν ′), taking into account that
x = (x′,−u(x′)).


On the other hand, it is much more practical in the numerical implement-
ation to consider functions f depending only on ν, ϕ. This avoids numerical
surface integration altogether, as explained in section 2 hereafter, hence re-
ducing greatly the computation time. With such a restriction, only some
problems of the form (1) can be considered. Since


ϕA(x) =
1√


1 + |∇u(x′)|2
(x′ · ∇u(x′) + u(x′)),


we can handle functions g depending on∇u(x′) and the aggregate x′·∇u(x′)+
u(x′).


2 Half-spaces and discretization


For every ν ∈ S2 and every ϕ ≥ 0, let us define the half-space of R3 using
the following notation:


[[ν, ϕ]] :=
{
x ∈ R3, x · ν ≤ ϕ


}
.


Lemma 1 Let A be a convex body of R3. Then ∀ε > 0, there exists a convex
polytope P ⊃ A such that:


|F(P )−F(A)| ≤ ε.


Proof. Let us note


∂∗A := {a ∈ ∂A; νA(a) exists}.


Let (Xj)j∈N be a dense sequence of points in ∂∗A and consider the sequence
of convex polytopes (Pj)j∈N defined by:


Pj :=


j⋃
k=1


[[νA(Xk), ϕA(Xk)]].
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Clearly Pj ⊃ A and limj→∞ Pj = A for the Hausdorff distance. From a
classical theorem of Rockafellar [22], for any a ∈ ∂∗A, and any sequence (pj),
converging to a, with pj ∈ ∂∗Pj for all j, we have νPj


(pj) converges to νA(a).
Since ∂A \ ∂∗A is H2-negligible, we get F(Pj)→ F(A).


As every convex polytope is the finite intersection of half-spaces, the
natural discretization of (2) is the finite dimensional problem:


min
N,Φ


G(N, Φ) (3)


where N := (ν1, . . . , νk) ∈ (S2)k, Φ := (ϕ1, . . . , ϕk) ∈ Rk,


G(N, Φ) :=


∫
∂P


f(x, νP (x), ϕP (x)) dH2(x),


and P := P (N, Φ) :=
k⋂


i=1


[[νi, ϕi]].


Notice that, whenever f does not depend explicitly on x, G(N, Φ) can be
computed as a finite sum, namely


G(N, Φ) =
k∑


i=1


f(νi, ϕi)H2(Fi), where Fi := [[νi, ϕi]] ∩ ∂P.


This is of primary importance in the numerical algorithms. More general
functions f require the computation of integrals like


∫
Fi


f(x, νi, ϕi) dH2(x),
which are computationally expensive.


2.1 Computation of the derivatives


In this paragraph we compute the derivatives of G, in order to use the results
in a gradient-like method. We focus on the case where f depends only on ν, ϕ,
since this is the special case used in our actual programs. Straightforward
modifications can be done to handle the general case. It suffices to change the
term ∂f


∂ϕi
(νi, ϕi) H2(Fi) by the integral


∫
Fi


∂f
∂ϕi


(x, νi, ϕi) dH2(x), and similarly


with the H1 term.


Theorem 1 Let P := P (N, Φ) be a convex polytope and Fi = [[νi, ϕi]] ∩ ∂P .
Then for almost every value of ϕi we have:


∂G


∂ϕi


(N, Φ) =
∂f


∂ϕi


(νi, ϕi) H2(Fi)


+
∑
j 6=i


H1(Fi∩Fj) 6=0


H1(Fi ∩ Fj)


(
f(νj, ϕj)− cos θijf(νi, ϕi)


sin θij


)
, (4)
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Figure 1: Variation of the surface area of Fj (pictured in the plane of Fj),
for the variation ϕi → ϕi + ε.


where θij ∈ [−π
2
, π


2
] is defined by cos θij = |νi · νj| and sin θij(νi · νj) ≥ 0.


Proof. For any ε ∈ R consider the difference


G(. . . , ϕi + ε, . . . )−G(. . . , ϕi, . . . ) = f(νi, ϕi + ε) H2(F ε
i )− f(νi, ϕi) H2(F ε


i )


+
∑


j


f(νj, ϕj) (H2(F ε
j )−H2(Fj))


where
F ε


j = [[νj, ϕj]] ∩ ∂P (. . . , ϕi + ε, . . . ).


The first difference f(νi, ϕi + ε) H2(F ε
i )− f(νi, ϕi) H2(F ε


i ) has the form
ε ∂f


∂ϕi
(νi, ϕi) H2(Fi) + o(ε).


To evaluate the remaining sum asymptotically we have to assume that
the value of ϕi is such that there is no topological change in the polytope
whenever ϕi becomes ϕi + ε. This is obviously true for all except a finite
number of values of ϕi. We then distinguish two cases:


• j 6= i: H2(F ε
j )−H2(Fj) = ε


H1(Fi ∩ Fj)


sin θij


+ o(ε) since the trace of Fi in


the plane Fj is offset by ε/ sin θij, see Figure 1;


• j = i: H2(F ε
i ) − H2(Fi) = −ε


∑
j 6=i


H1(Fi∩Fj) 6=0


H1(Fi ∩ Fj) cot θij + o(ε), since the


trace of Fj in the plane Fi is offset by ε cot θij, see Figure 2.


This completes the proof of the theorem.
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Figure 2: Variation of the surface area of Fi (pictured in the plane of Fi), for
the variation ϕi → ϕi + ε.


Remark 2.A. The polyhedral representation, as an intersection of half-
planes, yields a technical difficulty that should not be underestimated: some
of the boundary planes ∂[[νi, ϕi]] are “dormant”, meaning the polytope is
actually included in the interior of [[νi, ϕi]].


In such a situation, formula (4) effectively yields zero, since H2(Fi) = 0 =
H1(Fi ∩ Fj).


A similar computation can be achieved for derivatives of G with respect
to νi, with another algebraic formula as a result. However numerical evidence
proves that using a “full” gradient method is of little advantage.


It turns out that it is faster and accurate enough to use only the deriv-
atives with respect to ϕi (as detailed in the next section), and to increase
if necessary the number of planes by considering additional half-spaces. We
can make profit of the “dormant” property by introducing these new ones in
a tangent dormant position, letting the minimization method changing their
position after that. This can be done in different ways, depending on the
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actual problem considered.


2.2 Summary of the algorithm


Thanks to Theorem 1, it is possible to apply a classical gradient algorithm
to the problem (3). Let us summarize the different steps:


0. Choose one admissible polytope P ([[ν1, ϕ
0
1]], . . . , [[νk, ϕ


0
k]]), set n = 0.


1. Compute the geometry (vertexes, faces ...) of the polytope


P ([[ν1, ϕ
n
1 ]], . . . , [[νk, ϕ


n
k ]]).


2. Evaluate the gradient of G with respect to the ϕj using (4). If the
Euclidean norm of the gradient is small, then stop here.


3. Project the gradient into the set of admissible directions.


4. Set ρn = arg min
ρ>0


G(ν1, . . . , νk, ϕ
n
1 − ρ ∂G


∂ϕ1
, . . . , ϕn


k − ρ ∂G
∂ϕk


).


5. Define the new variables ϕn+1
1 = ϕn


1 − ρn
∂G
∂ϕ1


, . . . , ϕn+1
k = ϕn


k − ρn
∂G
∂ϕk


,
n← n + 1 and go to step 1.


Step 3 in particular depends on the set of admissible bodies. So additional
details are given in the examples hereafter. Note that it is possible in step 5


to change the number of planes, by adding or removing “dormant” ones. It is
also possible to change the value of νi whenever the i-th plane is “dormant”.


2.3 Application to Alexandrov’s Theorem


It is a classical result from Minkowski [21], that given n different vectors
ν1, . . . , νn on S2 such that the dimension of Span{ν1, . . . , νn} is equal to 3,
and n positive real numbers a1, . . . , an such that


∑n
i=1 aiνi = 0, then there


exists a three-dimensional convex polytope having n faces F1, . . . , Fn such
that the outward normal vector to Fi equals νi and H2(Fi) = ai. Moreover
this polytope is unique up to translations.


This result has been extended by Alexandrov [1] to arbitrary convex bod-
ies as follows: given a positive measure µ on S2 satisfying


∫
S2 y dµ(y) = 0


and Span(supp µ) = R3, then there exists a unique convex body A, up to
translations, whose surface function measure is equal to µ.
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Figure 3: A 1000 faces convex polyhedron of given faces areas and normals
reconstructed.


G. Carlier proved recently [6] that this body is the unique (up to trans-
lations) solution of the variational problem


sup
ϕ∈Σ
|Aϕ| , (5)


with Σ :=
{
ϕ ∈ C0(S2, R+);


∫
S2 ϕ dµ = 1


}
and Aϕ :=


⋂
ν∈S2


[[ν, ϕ(ν)]],


where |Aϕ| is the volume of Aϕ. Whenever Aϕ is optimal, its support function
equals ϕ on the support of µ [6].


Now we recall that the volume of a convex body can be expressed as a
boundary integral of its support function, that is:


|A| = 1


3


∫
∂A


ϕA(x) dH2(x).


Consequently Alexandrov’s problem can be formulated in the form (2)
with f(x, ν, ϕ) = −ϕ and


A =
{
A ⊂ R3, A convex ; ϕA ≥ 0,


∫
S2 ϕA dµ = 1


}
.


(The sign condition on ϕA is only a normalization expressing the fact that
0 ∈ A.)


Whenever µ has a discrete support, namely µ =
∑


aiδνi
, then (5) solves


Minkowski’s problem for polytopes. In particular, the value of ϕ outside the
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Figure 4: Computed solutions for the Cheeger problem in the cube and the
dodecahedron.


support of µ does not matter for the maximization, hence only the numbers
ϕi := ϕ(νi) have to be considered.


Replacing an arbitrary measure µ on S2 by a sum of Dirac masses is also
the more natural discretization of this problem. For polytopes, the set of
admissible bodies has the form


A =
{


P = P (N, Φ); ϕi ≥ 0,
n∑


i=1


ϕiai = 1
}


.


(Again the conditions ϕi ≥ 0 are only here to limit translations ensuring
that 0 ∈ A. This is essential in the numerical method.) These are very
simple constraints on the admissible values, so step 3 in the algorithm is an
elementary projection onto Rn


+ and a hyperplane. Hence the given algorithm
can be implemented in a straightforward way.


We present an example result on figure 3. Here we chose at random 999
vectors νi on S2, and 999 numbers ai in [0, 1] uniformly; ν1000 and a1000 are
determined such that the existence condition


∑1000
i=1 aiνi = 0 is satisfied.


2.4 Application: Cheeger sets


Let us now present a more involved application. In 1970, Jeff Cheeger [11]
proposed to study the problem


inf
X⊂M


Hn−1(∂X)


Hn(X)
(6)
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where M is an n-dimensional manifold with boundary. The resulting optimal
value, known as the Cheeger constant, can be used to give bounds for the first
eigenvalue of the Laplace-Beltrami operator on M , and even more general
operators [14]. There is a number of variations and applications of this
problem, see for example [2, 16].


The theoretical results on the problem (6) are rather sparse. It is easy
to show that the infimum is usually not attained in this general formulation.
On the other hand it can be proved that minimizers exist whenever M = Ω,
where Ω ⊂ Rn is a nonempty open set. Moreover, if Ω is convex and n = 2,
there is a unique convex optimum X which can be computed by algebraic
algorithms [18]. On the other hand, if n ≥ 3, it is not known whether the
optimum set is unique or convex, even with Ω convex. However Ω convex
implies that there exists at least one convex optimum [17]. But this optimum
is not known for any particular Ω except balls.


Our algorithm allows us to compute an approximation of a convex op-
timum when Ω ⊂ R3 is convex. Indeed (6) can be reformulated as follows:


min
A∈A


3
∫


∂A
dH2(x)∫


∂A
ϕA(x) dH2(x)


, with A = {A ⊂ Ω, A convex and 3-dimensional }.


So the numerator and denominator here have the form
∫


∂A
f(νA, ϕA), and


our algorithm can be applied with straightforward modifications.
A key difference with respect to our previous application is the manage-


ment of the constraint A ⊂ Ω. The set Ω itself is approximated by a polytope
(whenever necessary). The corresponding enclosing half-spaces are kept in
the algorithm in order to ensure that the approximating polytopes belong
to A. For example, if Ω is a unit cube, we fix ν1 = (1, 0, 0), . . . , ν6 = (0, 0,−1)
and ϕ1 = · · · = ϕ6 = 1.


This approach allows to handle any problem with constraints of the form


Q0 ⊂ A ⊂ Q1, (7)


assuming that Q1 is convex. (For Q0 it is not a restriction to assume it is
convex.) Other examples of problems of this kind come from mathematical
economy, see references in [9], and also [4].


3 Newton’s problem of the body of minimal


resistance


The problem of the body of minimal resistance has been settled by I. Newton
in its Principia: given a body progressing at constant speed in a fluid, what
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Figure 5: Profile of computed optimal shape (M = 3/2): the solution is not
developable.


shape should it be given in order to minimize its resistance? Expressed in
its more classical way, this can be formulated as the following optimization
problem:


min
u:Ω→[−M,0]


u convex


∫
Ω


dx


1 + |∇u|2
, (8)


where M > 0 is a given parameter and Ω is the unit disk of R2. There is a
lot of variants from this formulation and a huge literature on this problem,
see [5, 19] and their references.


I. Newton considered only radial solutions of this problem, and his solu-
tion was already considered surprising. But it has been proved in [3] that
the solutions of (8) are not radially symmetric. Unfortunately it has been
impossible until now to describe more precisely the minimizers. Some the-
oretical results suggests that they should be developable in a sense given
in [19]: a developable body being the convex hull of the unit circle in the
plane x3 = 0 and a convex set in the plane x3 = −M .


So in this application, we are considering a problem of the form (1), with
g(x, u, p) = 1/(1+|p|2). As explained in Section 1.3, this can be reformulated
as (2) with f(x, ν, ϕ) = (ν3)


3
+, where t+ := max(t, 0) for any t ∈ R. The


set A is the set of convex bodies with a constraint of the kind (7), with
Q0 := Ω× {0} and Q1 := Ω× [0, M ].


In the classical application, Ω is a disk. So we discretize these constraints
by replacing the disk by a regular polygon Ω`, with ` sides. (In practice we
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M = 3/2 M = 1


M = 7/10 M = 4/10


Figure 6: Computed solutions of Newton’s problem of the body of minimal
resistance.


used ` = 300.) In this particular problem, this yields an overestimated value
of the functional. Indeed if A ⊂ Ω` × [0, M ] is convex, then Ã := A ∩ Q1


belongs to A, and F(Ã) ≤ F(A) since f ≥ 0 and vanishes on ∂Ã\∂A, where
the normal vectors belong to {e3}⊥. Obviously for a minimization problem,
this is not a predicament to overestimate the functional.


14







M Newton’s radial value best theoretical values numerical values
3/2 0.7526 0.7019 0.7012
1 1.1775 1.1561 1.1379


7/10 1.5685 1.5566 1.5457
4/10 2.1074 2.1034 2.1006


Table 1: Minimal values of the Newton’s resistance.


Using our gradient method on this problem yields different results starting
with different initial shapes. This is likely the consequence of the existence
of local minima. (Note that no theoretical result is known on the number or
on the kind of critical points in this problem.) So our method needs to be
preprocessed to start closer from a global minimum.


We use a genetic algorithm for this task. It is inspired from the ideas
developed by J. Holland [15].


Our tests exhibit a behavior corresponding to the theoretical results given
in [19]. Even for local minimizers, the image set of νA is sparse in S2. This
suggests that optimal sets could be described with a lot fewer parameters
as convex hulls of points instead of as an intersection of half-spaces. There-
fore, we use the information given in the stochastic step (from the genetic
algorithm) in two ways: as an initial set for the gradient method, and as
an initial guess of the appropriate set of normal vectors to use. But the
stochastic step itself represents the convex bodies as convex hull of points
in Ω` × [0, M ], together with the vertices Ω` × {0}. The genetic algorithm
optimizes the position of these points.


With these improvements, we get similar shapes for any run of the al-
gorithm. Some of them are pictured in Figure 3, for different values of the
parameter M . These solutions are not developable in the sense of [19]. This
can be seen more precisely on Figure 5, where only the profile of the body is
pictured.


Note that the corresponding values obtained by our method are smal-
ler than the best theoretical values described in [19], even though they are
slightly overestimated as explained before: see Table 1.


It is a common conjecture on this problem that the solution is smooth
except on the top and bottom parts, that is on u(−1)(0, M). However C2-
regularity would imply the developability property [19, Conjecture 2]. Our
results demonstrate the non optimality of the best previously known profiles,
and consequently the non regularity of the minimizers.
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