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Abstract

We consider the volume-constrained minimization of the sum of the
perimeter and the Riesz potential. We add an external potential of the
form |x|β that provides the existence of a minimizer for any volume con-
straint, and we study the geometry of large volume minimizers. Then we
provide a numerical method to address this variational problem.

1 Introduction
Gamow’s liquid drop model for the atomic nucleus consists in:

inf
E⊂Rn,|E|=m

P (E) + Vα(E). (1.1)

where

• P (E) is the perimeter of E,

• Vα(E) :=
∫
E×E

dxdy
|x−y|n−α ,

• n ∈ N∗ (the dimension of the ambient space), m > 0 (called the mass)
and α ∈ (0, n) are constants.

More precisely, the physical case corresponds to n = 3 and α = 2. As shown
in [5], this model is also related to diblock copolymers. Problem (1.1) has
been studied as an interesting extension of the classical isoperimetric problem.
Indeed, two terms are competing: the perimeter tends to round things up (and
is minimized by balls), whereas the non-local Vα term, which can be viewed as
an electrostatic energy if n = 3 and α = 2, tends to spread the mass (and is
maximized by balls). It was shown in [6] that if the mass m is small enough,
then the problem (1.1) admits a unique minimizer (up to translation), namely
the ball of volume m (see also [9], [12] and [3] for partial results). On the other
hand, for α ∈ (0, 2), it was shown in [12] that for m large enough there is no
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minimizer of problem (1.1). This result was simultaneously proved in [11] in the
physical case. See also [7] for a short proof with a quantitative bound.

To restore the existence of a minimizer for large masses, we add the energy
associated to the potential A |x|β to our functional, as we expect it to counter
the spreading effect of the Vα term. Thus we are interested in the following
modification of the original problem (1.1):

inf
E⊂Rn,|E|=m

Eα,β,A(E) := P (E) + Vα(E) + Uβ,A(E), (1.2)

where

• Uβ,A :=
∫
E
A |x|β dx,

• A ≥ 0 is constant.

See also [1] and [2] (which appeared independently and simultaneously with
this work), where the authors use a different and interesting confining potential.

As easily proved in section 2, we indeed have the existence of a minimizer
in (1.2) for any mass m. In section 3, we extend some known results about
minimality of small balls, and the domain (of masses m) of local minimality of
balls. We don’t give complete proofs, but recall briefly the techniques used in
[6] to get these results.

In section 4, we study large volume minimizers (i.e. when m is large) of
(1.2) when α < β. More precisely we prove the following theorems:

Theorem 1.1. Given α ∈ (0, n), β > 0 and A > 0, assume α < β. Let
(Em)m>0 be a family of minimizers in (1.2), such that |Em| = m, and let E∗m

be the rescaling of Em of the same mass as the unit ball B (ie E∗m =
(
|B|
m

) 1
n

Em).
Then the boundaries of the sets (E∗m) Hausdorff-converge to the boundary of B
as m→ +∞.

From proposition 3.3, we know that if β < 1 then large volume minimizers
are not exactly balls, but if we assume in addition that α > 1, then we have:

Theorem 1.2. Given α ∈ (1, n), β > 0 and A > 0, assume α < β. There
exists a mass m1 = m1(n, α, β,A) > 0 such that for any m > m1 the ball of
volume m centered at 0 is the unique minimizer (1.2).

In section 5, we present a numerical method for problem (1.2). We also apply
this method to the original problem (1.1). Indeed, the theoretical knowledge we
have so far on problem (1.1) raises to natural questions. Is it always the case
(i.e. for any value of α ∈ (0, n)) that there is no minimizer for m big enough?
Is there a set of parameters n, α and m, such that there exists a minimizer that
is different from a ball? Our numerical results indicate that in dimension 2, the
answers are positive and negative respectively.
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2 Existence of a minimizer in (1.2)
In this section, we prove the following easy proposition:

Proposition 2.1. As long as A > 0, problem (1.2) admits a minimizer for any
mass m > 0.

Notation. We denote by B the unit ball of Rn, and by B[m] the ball of volume
m centered at 0.

Proof. Let (Ek) be a minimizing sequence for the variational problem (1.2). By
replacing Ek with the ball B[m] if necessary, we can assume

Eα,β,A(Ek) ≤ Eα,β,A(B[m]), for all k ∈ N. (2.1)

Set g(x) = A |x|β . As g(x) −→
|x|→+∞

+∞, we can take a sequence of positive radius

(Rk)k∈N and a sequence of positive constants (Aj)j∈N such that Aj −→
j→∞

+∞ and

for all x /∈ BRj , g(x) > Aj . For any j ∈ N, the sequence (Ek ∩ BRj )k∈N is a
sequence of uniformly bounded borel sets, with uniformly bounded perimeters.
Indeed, the inequalities P (Ek ∩ BRj ) ≤ P (Ek), P ≤ Eα,β,A and (2.1) together
give P (Ek ∩BRj ) ≤ Eα,β,A(B[m]) for all k.

Therefore we can extract a L1-converging subsequence of (Ek ∩ BRj )k∈N.
Doing that for all j ∈ N and using a diagonal argument, we get a subsequence
of (Ek)k∈N that converges locally in L1 to a borel set E ⊂ Rn. Using the lower
semi-continuity of the perimeter and Fatou’s lemma in Vα(Ek) and Uβ,A(Ek),
we get that

Eα,β,A(E) ≤ lim inf
k→∞

Eα,β,A(Ek). (2.2)

Now we show that |E| = m. By Fatou’s lemma, from |Ek| = m, we get
|E| ≤ m. Also, for any j ∈ N, from the inequalities Uβ,A(Ek \BRj ) ≤ Uβ,A(Ek),
Uβ,A ≤ Eα,β,A and (2.1) we get

Uβ,A(Ek \BRj ) ≤ Eα,β,A(B[m]). (2.3)

But
Uβ,A(Ek \BRj ) =

∫
Ek\BRj

g(x)dx ≥ Aj
∣∣Ek \BRj ∣∣ . (2.4)

Thus (2.3) and (2.4) together give∣∣Ek ∩BRj ∣∣ = m−
∣∣Ek \BRj ∣∣ ≥ m− Eα,β,AB[m]

Aj
.

Taking the limit k →∞, then j →∞, we obtain∣∣E ∩BRj ∣∣ ≥ m− Eα,β,AB[m]

Aj
, then |E| ≥ m.

Thus |E| = m. With (2.2), it means that E is a minimizer of the variational
problem (1.2).
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Remark 2.2. It is clear from the proof that proposition 2.1 is true if we replace
the potentialA |x|β by any L1

loc non-negative function g such that g(x) −→
|x|→+∞

+∞.

3 Extension of some known results
In this section we recall two known results about the variational problem (1.1),
and extend it to (1.2), recalling only the techniques used in [6]. The first result
state that if the mass m is small enough, then problem (1.1) admits a unique
(up to translation) minimizer, namely the ball of volume m. The same holds
for problem (1.2):

Proposition 3.1. Given α ∈ (0, n), β > 0, A > 0, there exists a constant
m0(n, α, β,A) > 0 such that for any m ∈ (0,m0), problem (1.2) admits the ball
of volume m centered at 0 as its unique minimizer.

It is a direct consequence of the same theorem for problem (1.1) (see [6,
theorem 1.3]), as balls centered at 0 are also volume-constrained minimizers of
Uβ,A. This last fact is a consequence of Riesz inequality regarding symmetric
decreasing rearrangements (see [10] for rearrangement inequalities). Note that
proposition 3.1 is true if we replace the potential A |x|β with a symmetric non-
decreasing function g.

The second result deals with local minimality of balls.
Terminology 3.2. We say that E ⊂ Rn is a L1-local minimizer in (1.2) if there
exists ε > 0 such that for any set F ⊂ Rn such that |F | = |E| and |E∆F | < ε,
Eα,β,A(E) ≤ Eα,β,A(F ).

In the case of problem (1.1), we know from [6, theorem 1.5] that there exists
a m∗ > 0 such that if m < m∗, then B[m] is a L1-local minimizer in (1.1), and
if m > m∗ then B[m] is not a L1-local minimizer in (1.1). As stated in the next
theorem, the addition of the Uβ,A term may modify this situation, but we can
still apply the techniques used in [6] to get a similar result.

Proposition 3.3. Given α ∈ (0, n), β > 0 and A > 0,

(i) if α > β, then there exists a mass m∗(n, α, β,A) > 0 such that if m < m∗,
then B[m] is a L1-local minimizer in (1.2), and if m > m∗ then B[m] is
not a L1-local minimizer in (1.2),

(ii) if α = β, then either the same holds, or (if α > 1 and A is small enough)
B[m] is a L1-local minimizer in (1.2) for any m > 0,

(iii) if α < β and β > 1, then there exists a mass m∗(n, α, β,A) > 0 such that
if m > m∗ then B[m] is a L1-local minimizer in (1.2),

(iv) if α < β and β < 1, then there exists a mass m∗(n, α, β,A) > 0 such that
if m > m∗ then B[m] is not a L1-local minimizer in (1.2),

(v) if α < β and β = 1, then the conclusion of either (iii) or (iv) holds
(depending on the value of A).
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Remark 3.4. The conclusions in points (iii), (iv) and (v) are less precise than
in points (i) and (ii).

Ideas of the proof. The method used in [6] still applies to our functional Eα,β,A =
P +Vα +Uβ,A. Given m > 0, let us procede to a rescaling of the functional and
set

γ =

(
m

|B|

)1/n

and Eα,β,A,γ := P + γ1+αVα + γ1+βUβ,A,

so that for any set E of volume m, the set E∗ = 1
γE has volume |B| and

Eα,β,A(E) = γn−1Eα,β,A,γ(E∗).

Thus we are reduced to finding the γ > 0 such that the unit ball B is a local
minimizer of Eα,β,A,γ .

Following [6, section 6] we can compute the second variation of Eα,β,A,γ at
B. The terms P and Vα are treated in [6] and the term Uβ,A adds no further
difficulty. We find that given any smooth compactly supported vector field X,
such that the volume of B is preserved under the flow (ΦXt )t>0 of X, we have:

δ2Eα,β,A,γ(B)[X] =
∑
k≥2

(λk−λ1)

(
1− γ1+αµ

α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1

)
ak(X·νB)2,

where

• δ2Eα,β,A,γ(B)[X] := d2

dt2 [Eα,β,A,γ(ΦXt (B))]t=0,

• νB is the unit outer normal vector to ∂B,

• ak(X ·νB) are the coefficient of the function X ·νB : ∂B → R with respect
to an othonormal basis of spherical harmonics,

• λk = k(n+k−2) is the k-th eigen value of the laplacian on the sphere ∂B,

• µαk is the k-th eigen value of the operator Rα defined by

Rαu(x) := 2

∫
∂B

u(x)− u(y)

|x− y|n−α
dHn−1(y), ∀u ∈ C1(∂B).

From there we deduce that, defining

S∗ = {γ > 0 : 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
≥ 0,∀k ≥ 2}, (3.1)

if γ /∈ S∗, then there exists a vector field X such that∣∣φXt (B)
∣∣ = |B| and Eα,β,A,γ(φXt (B)) < Eα,β,A,γ(B) for t small enough.

Thus B is not a L1-local minimizer of Eα,β,A,γ if γ /∈ S∗.
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Now let us set

S̃∗ = {γ > 0 : 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
> 0,∀k ≥ 2}. (3.2)

We assume γ ∈ S̃∗ and explain how to show that B is a L1-local minimizer
of Eα,β,A,γ . First, we note that it is true in a certain class of nearly spherical
sets. More precisely, let E be a nearly spherical set associated to a C1 function
u : ∂B → R:

E := {s(1 + u(x))x, x ∈ ∂B, 0 ≤ s ≤ 1}.
Assume that |E| = |B| and

∫
E
|x|β−2

xdx = 0. Then using some explicit
computations and taylor expansions, we can show that there exist some con-
stants ε(n, α, β,A, γ) > 0 and C(n, α, β,A, γ) > 0 such that if ‖u‖C1(∂B) ≤
ε(n, α, β,A, γ), then

Eα,β,A,γ(E)− Eα,β,A,γ(B) ≥ C(n, α, β,A, γ)
(
‖u‖2L2(∂B) + ‖∇(u)‖2L2(∂B)

)
.

(3.3)
Next we argue by contradiction and assume that we have a sequence of borel
sets (Ek) such that for any k, |Ek| = |B|, Eα,β,A,γ(Ek) < Eα,β,A,γ(B[m]) and
|Ek∆B| −→

k→∞
0. We consider a set Fk solution of the penalized problem:

inf{Eα,β,A,γ(E) +M |E∆Ek| , E ⊂ Rn},

with M > 0 to be taken large enough. The role of the set Fk is to be "close to
Ek", and to be a Λ-minimizer in the sense that

P (Fk) ≤ P (E) + Λ |E∆Fk| , for any borel set E.

Thus we show that Fk is a Λ-minmizer for some Λ uniform in k, and that
|Fk∆B| −→

k→∞
0, which implies by classical regularity theory that Fk is an almost

spherical set. Up to translating and rescaling Fk we can apply inequality (3.3).
Only simple manipulations are left to get a contradiction.

At this stage we have two sets S∗ and S̃∗ defined by (3.1) and (3.2), such that

if
(
m
|B|

)1/n

∈ S̃ then B[m] is a L1-local minimizer in (1.2), and if
(
m
|B|

)1/n

/∈ S∗
thenB[m] is not a L1-local minimizer in (1.2). We are left to study the variations
of the functions

γ 7→ 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
, k ≥ 2

to get the conclusions of the theorem. This is done in appendix A.

4 Large volume minimizers for α < β

4.1 Hausdorff convergence of large volume minimizers for
α < β

Here we prove theorem 1.1, i.e. that large volume minimizers of (1.2) are almost
balls if α < β. Note that if β < 1, we know that large volume minimizers are
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not exactly balls. Indeed, in virtue of proposition 3.3, balls are not even local
minimizers in this case.

The idea behind the proof is that if α < β, then for a borel set E ⊂ Rn
of volume m > 0 with m large, the predominant term in Eα,β,A(E) is Uβ,A(E).
This can be seen by rescaling:

Eα,β,A(E) = γn−1
(
P (E∗) + γ1+αVα(E∗) + γ1+βUβ,A(E∗)

)
, (4.1)

where we have set γ :=
(
m
|B|

) 1
n

and E∗ := 1
γE. As the unique volume con-

strained minimizer of Uβ,A is the ball B[m], this implies that if E is a minimizer
of Eα,β,A at mass m for m large, Uβ,A(E) must be close to Uβ,A(B[m]). This in
turn will imply that E is close to B[m]. Note that according to the rescaling
(4.1), proving theorem 1.1 is equivalent to proving that if (Eγ)γ>0 is a family
of borel sets such that |Eγ | = |B|, and each set Eγ is a volume-constrained
minimizer of the functional

Eα,β,A,γ := P + γ1+αVα + γ1+βUβ,A, (4.2)

then the boundaries of the sets (Eγ) Hausdorff-converge to the boundary of
the unit ball B as γ → +∞. First we will show the following convergence in
measure:

Lemma 4.1. We have
|Eγ∆B| −→

γ→∞
0.

We will need the following stability lemma for the potential energy Uβ,A.

Lemma 4.2. For any borel set E ⊂ Rn of volume |B|, we have

Uβ,A(E)− Uβ,A(B) ≥ Aβ

8P (B)
|E∆B|2 .

Proof. Let E ⊂ Rn be a borel set of volume |B|. Define r1 ≥ 0 and r2 > 0 to
be such that |{x ∈ Rn : r1 ≤ |x| ≤ 1}| = |{x ∈ Rn : 1 ≤ |x| ≤ r2}| = |E \B| =

|B \ E|. Explicitely, r1 =
(

1− n |E\B|P (B)

) 1
n

and r2 =
(

1 + n |E\B|P (B)

) 1
n

. We then
have

Uβ,A(E)− Uβ,A(B) =

∫
E\B

A |x|β dx−
∫
B\E

A |x|β dx

≥
∫
{x∈Rn : 1≤|x|≤r2}

A |x|β dx−
∫
{x∈Rn : r1≤|x|≤1}

A |x|β dx

7



(for x→ |x|β is symmetric non-decreasing),

= AP (B)

(∫ r2

1

rβrn−1dr −
∫ 1

r1

rβrn−1dr

)
=
AP (B)

n+ β

(
rn+β
2 − 1−

(
1− rn+β

1

))
=
AP (B)

n+ β

((
1 + n

|E \B|
P (B)

)n+β
n

− 1

−

(
1−

(
1− n |E \B|

P (B)

)n+β
n

))
. (4.3)

Now, setting λ := n+β
n and f(r) :=

(
(1 + r)

λ − 1−
(

1− (1− r)λ
))

, we have

f ′′(r) = λ (λ− 1)
(
(1 + r)λ−2 + (1− r)λ−2

)
≥ λ (λ− 1). As f ′(0) = f(0) = 0,

we get f(r) ≥ λ(λ− 1) r
2

2 , which yields the result with (4.3).

Lemma 4.1 is then easily deduced from lemma 4.2 :

Proof of lemma 4.1. We have

γ1+βUβ,A(Eγ) ≤ Eα,β,A,γ(Eγ)

≤ Eα,β,A,γ(B)

= P (B) + γ1+αVα(B) + γ1+βUβ,A(B),

so
Uβ,A(Eγ)− Uβ,A(B) ≤ 1

γ1+β

(
P (B) + γ1+αVα(B)

)
.

This implies Uβ,A(Eγ) − Uβ,A(B) −→
γ→∞

0, which concludes the proof thanks to

Lemma 4.2.

We are now in position to prove theorem 1.1.

Proof of theorem 1.1. Step one. We show that given R > 1, for γ large enough
we have Eγ ⊂ BR.

Given R > 1, set F = µ (Eγ ∩BR), with µ > 0 such that |F | = |B|, ie

µ =
(
|Eγ |

|Eγ∩BR|

) 1
n

=
(

1
1−u

) 1
n

, where u =
|Eγ\BR|
|Eγ | . We have

Eα,β,A,γ(F ) = µn−1P (Eγ ∩BR) + µn+αγ1+αVα(Eγ ∩BR)

+ µn+βγ1+βUβ,A(Eγ ∩BR)

≤ µn+βEα,β,A,γ(Eγ ∩BR). (4.4)

Take η > 0 to be chosen later, and then ε > 0 such that for all v ∈ [0, ε),(
1

1−v

)n+β
n ≤ 1 +

(
n+β
n + η

)
v. According to Lemma 4.1, if γ has been taken

8



large enough, we can assume that u ≤ ε, and so µn+β ≤ 1 +
(
n+β
n + η

)
u. Then

using P (Eγ ∩BR) ≤ P (Eγ), Vα(Eγ ∩BR) ≤ Vα(Eγ) and Uβ,A(Eγ)−Uβ,A(Eγ ∩
BR) ≥ A |Eγ \BR|Rβ , we find

Eα,β,A,γ(F ) ≤
(

1 +

(
n+ β

n
+ η

)
u

)
Eα,β,A,γ(Eγ ∩BR)

≤ Eα,β,A,γ(Eγ)− γ1+βA |Eγ \BR|Rβ +

(
n+ β

n
+ η

)
uEα,β,A,γ(Eγ)

= Eα,β,A,γ(Eγ) +

((
n+ β

n
+ η

)
Eα,β,A,γ(Eγ)− γ1+βARβ |B|

)
u

≤ Eα,β,A,γ(Eγ) +

((
n+ β

n
+ η

)
Eα,β,A,γ(B)− γ1+βARβ |B|

)
u.

(4.5)

But as γ →∞,

Eα,β,A,γ(B) = γ1+βUβ,A(B) + o(γ1+β)

= γ1+βA
1

n+ β
P (B) + o(γ1+β)

= γ1+βA
n

n+ β
|B|+ o(γ1+β).

So with (4.5),

Eα,β,A,γ(F ) ≤ Eα,β,A,γ(Eγ) +

(
γ1+βA |B| (1 +

n

n+ β
η −Rβ) + o(γ1+β)

)
u.

Recall that R > 1, so that if η has been taken small enough, we get that for γ
large enough, Eα,β,A,γ(F ) ≤ Eα,β,A,γ(Eγ), with equality if and only if u=0, i.e.
Eγ ⊂ BR.

Step two. We show that given δ > 0, for γ large enough we have B1−δ ⊂ Eγ .
This is done by taking some mass of Eγ outside a certain ball BR and putting
it in Eγ ∩Br for a well chosen r. In the proof we use lemma 4.4 below to show
that the perimeter decreases under such a transformation for a well chosen
r ∈ (1 − δ, 1). On the other hand, the increase of Vα is compensated by the
decrease of Uβ,A if γ has been taken large enough.

Let us set F = B \Eγ and ε = δ/2. From lemma 4.1 we know that that if γ
has been taken large enough we have |F | < |B|

(
ε
2

)n. Thus we can apply lemma
4.4 below with r0 = 1− ε, to get a r ∈ (1− δ, 1− ε) such that

P (F,Br) ≥ Hn−1(F ∩ ∂Br). (4.6)

As |Eγ | = |B|, we have |Eγ \B| = |B \ Eγ | ≥ |Br \ Eγ |, so there exists R ≥ 1
such that |Eγ \BR| = |Br \ Eγ |. Now let us set

E′γ = (Eγ ∩BR) ∪Br,

9



and compare Eα,β,A,γ(E′γ) and Eα,β,A,γ(Eγ). Using classical formulae for the
perimeter of the union or the intersection of a set with a ball (see [8, remark
2.14]), we have

P (E′γ) = Hn−1(Eγ ∩ ∂BR) + P (Eγ , Br
c ∩BR) +Hn−1(Ecγ ∩ ∂Br),

P (Eγ) = P (Eγ , B
c
R) + P (Eγ , Br

c ∩BR) + P (Eγ , Br),

so that

P (E′γ)− P (Eγ) = Hn−1(Eγ ∩ ∂BR)− P (Eγ , B
c
R)

+Hn−1(Ecγ ∩ ∂Br)− P (Eγ , Br). (4.7)

From the classical inequality P (Eγ ∩ BR) ≤ P (Eγ), we get that Hn−1(Eγ ∩
∂BR) ≤ P (Eγ , B

c
R), so (4.7) gives

P (E′γ)− P (Eγ) ≤ Hn−1(Ecγ ∩ ∂Br)− P (Eγ , Br).

But

Hn−1(Ecγ ∩ ∂Br) = Hn−1(Ecγ ∩B ∩ ∂Br) = Hn−1((B \ Eγ) ∩ ∂Br),

and
P (Eγ , Br) = P (Ecγ , Br) = P (Ecγ ∩B,Br) = P (B \ Eγ , Br),

So, recalling that F = B \ Eγ , we obtain

P (E′γ)− P (Eγ) ≤ Hn−1(F ∩ ∂Br)− P (F,Br)

≤ Hn−1(F ∩ ∂Br)− P (F,Br),

so by the choice of r,
P (E′γ) ≤ P (Eγ). (4.8)

Now we estimate the variation of Vα. Let us define the non-local potential:

ΦαE(x) =

∫
E

dx

|x− y|n−α
.

With this notation, we have

Vα(E′γ)− Vα(Eγ) =

∫
E′γ

ΦαE′γ −
∫
Eγ

ΦαEγ

=

∫
E′γ

ΦαE′γ −
∫
Eγ

ΦαE′γ +

∫
E′γ

ΦαEγ −
∫
Eγ

ΦαEγ

=

∫
E′γ\Eγ

ΦαE′γ −
∫
Eγ\E′γ

ΦαE′γ +

∫
E′γ\Eγ

ΦαEγ −
∫
Eγ\E′γ

ΦαEγ

≤ 4 sup
|F |=|B|

‖ΦαF ‖∞
∣∣Eγ \ E′γ∣∣ .
10



So using the simple lemma 4.5,

Vα(E′γ)− Vα(Eγ) ≤ C(n, α) |Eγ \Br| . (4.9)

As for Uβ,A, we have

Uβ,A(E′γ)− Uβ,A(Eγ) =

∫
Br\Eγ

A |x|β dx−
∫
Eγ\BR

A |x|β dx

≤
∫
Br\Eγ

Arβdx−
∫
Eγ\BR

ARβdx

≤
∫
Br\Eγ

A(1− ε)βdx−
∫
Eγ\BR

Adx

= A
(
(1− ε)β |Br \ Eγ | − |Eγ \BR|

)
= A

(
(1− ε)β − 1

)
|Eγ \Br| .

This last estimate with (4.8) and (4.9) gives

Eα,β,A,γ(E′γ)−Eα,β,A,γ(Eγ) ≤
(
γ1+αC(n, α) + γ1+βA

(
(1− ε)β − 1

))
|Eγ \Br| .

As Eγ is a minimizer, we have Eα,β,A,γ(E′γ)−Eα,β,A,γ(Eγ) ≥ 0, so for α < β and
γ large enough (depending only of n, α, β, A, δ), this last inequality implies

|Br \ Eγ | = 0, i.e. Br ⊂ Eγ .

This concludes Step two.
The theorem is just Step one and Step two together.

Remark 4.3. With this proof, we see that the result of theorem 1.1 is also valid
for any α ∈ (0, n) and β > 0 if, instead of letting the mass m go to +∞, we let

the quantity Aγβ−α go to +∞ (with γ =
(
m
|B|

) 1
n

).

Lemma 4.4. Given F ⊂ Rn a set of finite perimeter, r0 > 0, and ε > 0, assume
that

|F | ≤ |B|
( ε

2

)n
. (4.10)

Then there exists r ∈ (r0 − ε, r0) such that,

P (F,Br) ≥ Hn−1(F ∩ ∂Br). (4.11)

Proof. We argue by contradiction and assume that (4.10) holds, and

∀r ∈ (r0 − ε, r0), P (F,Br) < Hn−1(F ∩ ∂Br).

Adding Hn−1(F ∩ ∂Br) to both sides, this is equivalent to

P (F ∩Br) < 2Hn−1(F ∩ ∂Br).

11



Using the isoperimetric inequality we get(
|F ∩Br|
|B|

)n−1
n

P (B) < 2Hn−1(F ∩ ∂Br). (4.12)

Now set for r ≥ 0, f(r) = |F ∩ Br|. We can assume f(r) 6= 0 for all r ∈ (r0 −
ε, r0) otherwise the lemma is trivially true. We have for almost all r ∈ (0,∞),

f ′(r) = Hn−1(F ∩ ∂Br).

Thus (4.12) gives for almost all r ∈ (r0 − ε, r0),

1

n
f ′(r)f(r)

1
n−1 >

P (B)

2n |B|
n−1
n

=
|B|

1
n

2
.

Integrating on the interval (r0 − ε, r0), we get

f(r0)
1
n − f(r0 − ε)

1
n >

ε |B|
1
n

2
,

so

f(r0)
1
n >

ε |B|
1
n

2
,

which contradicts (4.10).

4.2 Large volume minimizers = balls for α < β and β > 1

Here we prove theorem 1.2, i.e. that if we assume in addition that α > 1, then
large volume minimizers are exactly balls. We conjecture that the theorem is
also true when α ∈ (0, 1], as long as β > 1. For β < 1, it cannot be true as
we know from proposition 3.3 that for m large the ball B[m] is not even a local
minimizer. Note that in dimension 1, using theorem 1.1, one can perform some
computations to show that the theorem is indeed true under the more general
assumption β > max(1, α).

The proof relies heavily on the following simple lemma:

Lemma 4.5. If α > 1, then there exists a constant C(n, α) > 0 such that for
any set E ⊂ Rn of volume |E| = |B|, we have

‖ΦαE‖C1(Rn) ≤ C(n, α), where ΦαE(x) =

∫
E

dx

|x− y|n−α
.

This lemma is not true as soon as α ≤ 1, where we just get α-Hölder continuity
instead of Lipschitz continuity. We refer to [3] for a proof.

Proof of theorem 1.2. Rescaling the functional as usual, we need to show that
if E ⊂ Rn is such that |E| = |B|, and E is a volume-constrained minimizer of

12



Eα,β,A,γ (see (4.2)), then E=B. Let us show that for γ > 0 large enough, we
have

γ1+αVα(E) + γ1+βUβ,A(E) ≥ γ1+αVα(B) + γ1+βUβ,A(B). (4.13)

The theorem will then result from the isoperimetric inequality: P (E) > P (B)
if E 6= B. We divide the proof of (4.13) into two steps. In step one we compare
E to the subgraph of a function over the sphere, by concentrating the mass of
E on each half line through the origin. In step two, we show that (4.13) holds
for subgraphs of sufficiently small functions over the sphere.
Step one. For any x ∈ ∂B, define u(x) ∈ R by the equation∫ 1+u(x)

0

rn−1dr =

∫
R+

1rx∈Er
n−1dr. (4.14)

Then set
Eu = {t(1 + u(x)), t ∈ [01), x ∈ ∂B}. (4.15)

We have

|Eu| =
∫
∂B

∫ 1+u(x)

0

rn−1drdHn−1(x) (4.16)

=

∫
∂B

∫
R+

1rx∈Er
n−1drdHn−1(x) (4.17)

= |E| , (4.18)

thus Eu satisfies the volume constraint. Now we estimate the variation of Uβ,A.
From theorem 1.1 we know that, taking γ large enough, we can assume B 1

2
⊂ E.

Thus we have

Uβ,A(Eu)− Uβ,A(E) =

∫
Eu\B 1

2

A |x|β dx−
∫
E\B 1

2

A |x|β dx

=

∫
∂B

∫
( 1
2 ,u(x))

Arβrn−1dHn−1(x)

−
∫
∂B

∫
( 1
2 ,∞)

1rx∈EAr
βrn−1dHn−1(x)

=

∫
∂B

(∫
( 1
2 ,u(x))

Arβrn−1dr −
∫
Ex

Arβrn−1dr

)
dHn−1(x),

(4.19)

where we have set
Ex := {r ≥ 1

2
: rx ∈ E}.

Here we need a simple lemma from optimal transportation on the real line.
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Lemma 4.6. Given a measurable set S ⊂ (1/2,∞) such that
∫
S
rn−1dr <∞,

let u > 0 be such that ∫
S

rn−1dr =

∫
( 1
2 ,u)

rn−1dr.

Then there exists a measurable map T : (1/2, u)→ (1/2,∞) such that

1Sr
n−1dr = T#(1(1/2,u)r

n−1dr),

i.e. for any non-negative measurable function f ,∫
S

f(r)rn−1dr =

∫
(1/2,u)

f(T (r))rn−1dr.

What is more we have
∀r ∈ (1/2, u), T (r) ≥ r.

The existence of the map T is a consequence of the existence of an optimal
transport map for non-atomic probability measures on the real line. For each
x ∈ ∂B, we apply this lemma to S = Ex, to get a corresponding map Tx. Then
(4.19) becomes

Uβ,A(Eu)− Uβ,A(E) =

∫
∂B

(∫
( 1
2 ,u(x))

(
Arβ −ATx(r)β

)
rn−1dr

)
dHn−1(x).

(4.20)
Now let us compute the variation of the Riesz energy Vα in a similar fashion :

Vα(Eu)− Vα(E) =

∫
Eu

ΦαEu −
∫
E

ΦαE

=

∫
Eu

ΦαEu +

∫
Eu

ΦαE −
∫
E

ΦαEu −
∫
E

ΦαE

=

∫
Eu

(ΦαEu + ΦαE)−
∫
E

(ΦαEu + ΦαE)

=

∫
∂B

∫
(1/2,u(x))

[
(ΦαEu + ΦαE)(rx)

− (ΦαEu + ΦαE)(Tx(r)x)
]
rn−1drdHn−1(x). (4.21)

To estimate (4.20) and (4.21), we use the two following inequalities:

∀x ∈ ∂B,∀s ≥ r > 1

2
, rβ − sβ ≤ −C(β) |r − s| ,

(ΦαEu + ΦαE)(rx)− (ΦαEu + ΦαE)(sx) ≤ C(n, α) |r − s| ,
where the second inequality comes from lemma 4.5. With these and (4.20) and
(4.21), we get(

γ1+αVα(Eu) + γ1+βUβ,A(Eu)
)
−
(
γ1+αVα(E) + γ1+βUβ,A(E)

)
≤
∫
∂B

∫
(1/2,u(x))

(
γ1+αC(n, α)− γ1+βAC(β)

)
|r − Tx(r)| rn−1drdHn−1(x).
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From this inequality we get that if γ is large enough (depending only on n, α,
β, A), then

γ1+αVα(Eu) + γ1+βUβ,A(Eu) ≤ γ1+αVα(E) + γ1+βUβ,A(E). (4.22)

Step two. We show that there exists ε = ε(n, α, β,A) > 0, such that for any γ
large enough, if ‖u‖L∞(∂B) < ε, then

γ1+αVα(B) + γ1+βUβ,A(B) ≤ γ1+αVα(Eu) + γ1+βUβ,A(Eu). (4.23)

Remark that by theorem 1.1, the condition ‖u‖L∞(∂B) < ε is satisfied if γ has
been taken large enough. The inequality (4.23) will result from this computa-
tional lemma, whose proof is postponed :

Lemma 4.7. Given a measurable function u : ∂B → R with ‖u‖L∞(∂B) < 1,
set for t ≥ 0

Et := {s(1 + tu(x))x, x ∈ ∂B, s ∈ [0, 1)}.
Assume that |Et| = |B|. Then for t small enough, depending only on the di-
mension n, we have

Uβ,A(Et) ≥ Uβ,A(B) +Aβ
t2

2
‖u‖2L2(∂B) − C(n, β)t3‖u‖2L2(∂B), (4.24)

and

Vα(Et) ≥ Vα(B)− t2

2

(
[u]21−α

2

− α(n+ α)‖u‖2L2(∂B)

)
− C(n)t3

(
[u]21−α

2

+ αVα(B)‖u‖2L2(∂B)

)
, (4.25)

where

[u]21−α
2

=

∫
∂B×∂B

|u(x)− u(y)|2

|x− y|n−α
dHn−1(x)dHn−1(y).

Indeed for α > 1, we have

[u]21−α
2

≤
∫
∂B×∂B

2(|u(x)|2 + |u(y)|)2

|x− y|n−α
dHn−1(x)dHn−1(y)

= 4

∫
∂B×∂B

|u(x)|2

|x− y|n−α
dHn−1(x)dHn−1(y)

= 4

∫
∂B

(∫
∂B

dHn−1(y)

|x− y|n−α

)
|u(x)|2 dHn−1(x)

= C(n, α)

∫
∂B

|u(x)|2 dHn−1(x)

= C(n, α)‖u‖2L2(∂B),

so that (4.25) gives

Vα(Et) ≥ Vα(B)− t2

2
C(n, α)‖u‖2L2(∂B) − C(n, α)t3‖u‖2L2(∂B).
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This implies that for t small enough, depending only on n and α, we have

Vα(Et) ≥ Vα(B)− t2C(n, α)‖u‖2L2(∂B).

Likewise, we get from (4.24) that for t small enough, depending only on n, β
and A, we have

Uβ,A(Et) ≥ Uβ,A(B) + t2C(n, β,A)‖u‖2L2(∂B).

These last two inequalities imply that there exists ε = ε(n, α, β,A) > 0, such
that if ‖u‖L∞(∂B) < ε, then

γ1+αVα(B) + γ1+βUβ,A(B) ≤ γ1+αVα(Eu) + γ1+βUβ,A(Eu)

+
(
γ1+αC(n, α, β,A)‖u‖2L2(∂B) − γ

1+βC(n, α, β,A)‖u‖2L2(∂B)

)
,

which in turn implies (4.23) for γ large enough.
The estimate (4.13) is now a consequence of (4.22) and (4.23). The theorem

results from (4.13) and the isoperimetric inequality.

Proof of lemma 4.7. The proof of (4.25) is given in [6, equation (5.20)], under
the hypothesis ‖u‖C1(∂B) ≤ 1 instead of ‖u‖L∞(∂B) ≤ 1. However it is clear
from the proof that it holds also for ‖u‖L∞(∂B) ≤ 1 only. (The reason why it
was stated with the stronger hypothesis ‖u‖C1(∂B) ≤ 1 is because it is needed
to get the corresponding estimate for the perimeter.)

Let us prove (4.24). Using spherical coordinates, we can compute

Uβ,A(Et) =

∫
∂B

∫ 1+tu(x)

0

A |rx|β rn−1drdHn−1(x)

=

∫
∂B

∫ 1

0

A(1 + tu(x))n+βrn+β−1drdHn−1(x)

=

∫
∂B

A
(1 + tu)n+β

n+ β
dHn−1.

Setting h(t) :=
∫
∂B

(1 + tu)n+βdHn−1, we then have Uβ,A(Et) − Uβ,A(B) =
A
n+β (h(t)− h(0)). Let us proceed to a Taylor expansion of h. We have

(1 + tu)n+β ≥ 1 + (n+ β)tu+ (n+ β)(n+ β − 1)
(tu)2

2
− C(n, β)

(tu)3

3
,

So

1

n+ β
(h(t)− h(0)) ≥

∫
∂B

tudHn−1 + (n+ β − 1)

∫
∂B

(tu)2

2
dHn−1 − C(n, β)t3

∫
∂B

u3dHn−1

≥
∫
∂B

tudHn−1 + (n+ β − 1)

∫
∂B

(tu)2

2
dHn−1 − C(n, β)t3‖u‖2L2(∂B).

(4.26)
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Now we use the volume constraint |Et| = |B| to estimate
∫
tu. The volume

constraint can be expressed as∫
∂B

(1 + tu)ndHn−1 =

∫
∂B

1dHn−1,

and so∫
∂B

tudHn−1 =

∫
∂B

(
tu− 1

n
((1 + tu)n − 1)

)
dHn−1

= −
n∑
k=2

1

n

(
n

k

)∫
∂B

(tu)kdHn−1

≥ −n− 1

2

∫
∂B

(tu)2dHn−1 − C(n)t3‖u‖2L2(∂B) (4.27)

This with (4.26) gives (4.24).

5 Numerical minimization
In this section we present our method and results for the numerical minimization
of the variational problem (1.2), the constant A ≥ 0 being potentially 0. In
particular we apply this method with A = 0 to give a numerical answer to the
two questions raised at the end of the introduction.

5.1 Method of the numerical minimization
We present a series of three modifications of the variational problem (1.2) to
arrive at a finite dimensional variational problem that can be easily numerically
solved. All steps are justified by a Γ-convergence and compactness result. We
refer to [4] for definition and properties of Γ-convergence.

Step one is standard when dealing with the perimeter. We use the classical
Modica-Mortola theorem to relax the functional on sets, i.e. charateristic func-
tions, into a functional on functions taking values in [0, 1]. This allows us to use
the vector space structure of functions and, after disctretization (step three),
usual optimization tools for functionals on Rd.

Step two is the key step for dealing with the non-local term Vα. We replace
the ambient space Rn with a large square with periodic boundary conditions,
whose size is a new relaxation parameter. Then we can approximate the non-
local term Vα by a simple expression in Fourier variable.

In step three, we discretize the problem by considering only trigonometric
functions with frequencies lower than some integer N , and by computing the
integral terms with riemann sums.
Terminology 5.1. We say that a family of functionals (Fε)ε>0 defined on a
metric space X enjoys property (C) (for compactness) if for any family (uε)ε>0

of elements of X such that (Fε(uε))ε>0 is bounded, there is a subsequence of
(uε)ε>0 that converges in X.

17



If a family of functionals (Fε)ε>0 enjoys property (C) and Γ-converges to a limit
functional F when ε goes to 0, then we know that for ε small enough, minimizers
of Fε are close to minimizers of F . Let us now describe and justify each step
precisely.

Step one. We use the classical Modica-Mortola theorem to replace this prob-
lem on subsets of Rn, i.e. functions taking only values 0 or 1, with a problem
on functions taking any value between 0 and 1. More precisely, given a (large)
smooth open bounded set Ω and a (small) ε > 0, we define the set X, and the
functionals Fε : X → R and F : X → R by

X := {u ∈ L1(Ω, [0, 1]) :

∫
u = m},

Fε(u) =


ε
∫
Rn |∇u|

2
+ 1

ε

∫
RnW (u) + Vα(u) +A

∫
Rn u(x) |x|β dx

if u ∈ H1(Rn),

+∞
otherwise,

(5.1)

F(u) =


P ({u = 1}) + Vα(u) +A

∫
Rn u(x) |x|β dx

if u only takes values 0 and 1,
+∞
otherwise,

(5.2)

where we have used the natural notation Vα(u) =
∫
Rn×Rn

u(x)u(y)

|x−y|n−α dxdy, and W
is the following double well potential on [0, 1]: W (x) = x(1−x). Then from the
Modica-Mortola theorem and the fact that the two last terms of the functionals
Fε and F are continuous on X, we have

Fε
Γ−−−→
ε→0

F , and (Fε) enjoys property (C).

Note that considering functions on a bounded open set Ω is not restrictive
provided that Ω is large enough, as minimizers of (1.2) are necessarily bounded.

Step two. We wish to reduce the domain to a (large) square with periodic
boundary conditions, i.e. a torus. Indeed, the non-local repulsive term has a
simple expression in Fourier variable :

Vα(u) =
C(n, α)

(2π)n

∫
Rn
|ξ|−α |û(ξ)|2 dξ, (5.3)

with û the Fourier transform of u and C(n, α) :=
2απ

n
2 Γ(α2 )

Γ(n−α2 )
, and Γ the usual

gamma function. This can be seen by noting that Vα(u) =
∫
uIα(u) with Iα(u)

the Riesz potential of u, and using the Fourier expression of the Riesz potential
(see [13, Part V]). Thus we will approximate Vα(u) by

Vα,T (u) :=
C(n, α)

Tn

∑
k∈Zn\{0}

∣∣∣∣2kπT
∣∣∣∣−α |ck,T (u)|2 , (5.4)
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where ck,T (u) :=
∫

[−T/2;T/2]n
u(x)e

−2ikπx
T dx is the k-th Fourier coefficient of

u on [−T/2;T/2]n, for some (large) T > 0. More precisely, let us define the
functional Fε,T : X → R by

Fε,T (u) =


ε
∫
|∇u|2 + 1

ε

∫
W (u) + Vα,T (u) +A

∫
u(x) |x|β dx

if u ∈ H1(Rn),

+∞
otherwise.

Then we have

Fε,T
Γ−−−→

T→0
Fε, and (Fε,T )T>0 enjoys property (C). (5.5)

We omit the proof of (5.5), as it presents no major difficulty. It relies mostly on
convergence of Riemann sums. However, we emphasize the following remark:

Remark 5.2. For property (C) to be valid, it is necessary to assume that all
functions are supported in a given bounded set Ω (see section 5.2 for further
comments).

Step three. As the final step, we discretize the variational problem. Let us
first extend Fε,T to the functions u ∈ H1([−T/2;T/2]n) that are not supported
in Ω by setting Fε,T (u) = +∞ in this case. For N ∈ 2N large, instead of
considering the whole space H1([−T/2;T/2]n), we only consider the space

EN = {u ∈ Vect(e
2iπ
T k·x)k∈{−N2 +1,...,N2 }n

:

∀j ∈ {−N
2

+ 1, . . . ,
N

2
}n, u(jT/N) ∈ [0, 1],

u(jT/N) = 0 if jT/N /∈ Ω, and
∫
u = m}. (5.6)

For u ∈ EN , we set

WN (u) = (T/N)n
∑

j∈{−N/2+1,...,N/2}n
W (u(jT/N)),

and
Uβ,A,N (u) = A(T/N)n

∑
j∈{−N/2+1,...,N/2}n

u(jT/N)) |jT/N |β .

Then we define the functional Fε,T,N : H1([−T/2;T/2]n)→ R by

Fε,T,N (u) =


ε
∫
|∇u|2 + 1

εWN (u) + Vα,T (u) + Uβ,A,N
if u ∈ EN ,
+∞
otherwise.
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We have in the sense of the weak H1 topology,

Fε,T,N
Γ−−−−→

N→∞
Fε,T and (Fε,T,N ) enjoys property (C). (5.7)

In the proof of (5.7), we will use the following technical lemma, which shows
that a triogonometric function whose frequencies are lower than N is well rep-
resented by its values on a grid with step size 1/N .

Lemma 5.3. Let (uN ) be a converging sequence in L2([0; 1]n), such that for
every N ≥ 0, uN ∈ EN . Then for any bounded uniformly continuous functions
φ : R→ R and ψ : [0, 1]n → R, we have∣∣∣∣∣∣ 1

Nn

∑
j∈ 1

N Zn∩[0;1)n

ψ(j)φ(uN (j))−
∫

[0;1]n
ψ(x)φ(uN (x))dx

∣∣∣∣∣∣ −→N→∞
0.

Proof of (5.7). First we prove property (C). Given a sequence (uN ) such that
for any N , uN ∈ EN , and (Fε,T,N (uN )) is bounded, it is easy to show that
(uN ) converges weakly to a function u ∈ H1([−T/2;T/2]n), such that

∫
u = m.

We are left to show that u takes its values in the interval [0, 1]. But this
is a consequence of lemma 5.3 applied to a sequence of functions (φi) that
converges from above to the indicator function of [0, 1], and ψ = 1. As for the
Γ-convergence, the only problematic terms areWN (u) and Uβ,A,N (u). They can
also be taken care of with lemma 5.3.

5.2 Numerical results
In dimension n = 3 and for α = 2, R. Choksi and M. Peletier conjectured the
following (see [5, Conjecture 6.1]):

Conjecture 5.4. As long as there is a minimizer in (1.1), it is a ball. Also,
when there is no minimizer, the infimum of the energy is attained by a finite
number of balls of the same volume, infinitely far away from each other.

In any dimension n ≥ 2, for α close enough to n, this is mostly a theorem
of M. Bonacini and R. Cristoferi (see [3, Theorem 2.12]). Our numerical results
suggest that in dimension 2, the conjecture holds for any α ∈ (0, 2) (i.e. the
hole admissible range). Note that if the conjecture holds, we can compute
explicitely the mass m1(n, α) > 0 such that there is a minimizer in (1.1) if and
only if m < m1. Indeed, given m > 0, let us set

f(m) = P (B[m]) + Vα(B[m]).

Then define mk as the unique solution of

kf(
m

k
) = (k + 1)f(

m

k + 1
).
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Note that kf(mk ) is the energy of k balls of volume m/k, infinitely far away from
each other. Using the homogeneity of P and Vα we find that

mk = |B|

(
(k + 1)

1
n − k 1

n

(k)−
α
n − (k + 1)−

α
n

P (B)

Vα(B)

) n
1+α

. (5.8)

We also set m0 = 0. The sequence (mk) is increasing. Then an equivalent
formulation of conjecture 5.4 is:

Conjecture 5.5. In dimension n = 2, if m ∈ [mk−1,mk],

inf
E⊂Rn,|E|=m

P (E) + Vα(E) = kf(
m

k
).

In particular, as long as there is a minimizer in (1.1), it is a ball. When there
is no minimizer, in some sense an optimal set is given by k balls of the same
volume infinitely far from each other.

To get minimizers of (1.1) for different volume constraint, we set the volume
constraint to 1 and add a constant cm to the term Vα. Indeed, minimizing

inf
E⊂Rn,|E|=1

P (E) + cmVα(E)

is equivalent to minimizing (1.1) provided

cm = m
1+α
n . (5.9)

The choice of T is made so that, if 1NB[1] is the discretization of the ball of
volume 1 with side step T/N , we have

Vα,T (1NB[1])− Vα(B[1])

Vα(B[1])
≤ 1%.

Meanwhile, given the number of discretization points N = 211, we can’t increase
T too much, otherwise the discretization of candidate minimizers is less and less
precise.

For instance, for α = 1 and n = 2, we have

• for T = 5π: Vα,T (1NB )−Vα(B[1])
Vα(B[1]) ' 0.08,

• for T = 10π: Vα,T (1NB )−Vα(B[1])
Vα(B[1]) ' 0.04,

• for T = 20π: Vα,T (1NB )−Vα(B[1])
Vα(B[1]) ' 0.01.

These numerical estimates lead us to chose T = 20π. See appendix B for the
method used to compute Vα(B[1]).

We display the results obtained for α = 1, and cm = 1.5, 1.6 in figure 2.
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(a) cm = 1.5 (b) cm = 1.6

Figure 1: α = 1, A = 0, Ω is a square.

Here the box Ω in which all functions are supported (see subsection 5.1) has
been chosen to be a square of diagonal length π (and is represented by white
lines). We emphasize that this box is needed to get the right minimizers, both
theoretically and numerically. Theoretically, the condition that functions are
supported in a fixed bounded set is needed for the compactness property (C)
(again see subsection 5.1) to be satisfied, both in step one and in step two, as
we let the size of the domain T go to infinity. Numerically, without this box,
for cm = 1.5, simulations yield two balls (instead of one as shown on figure
1a) that get further and further away from each other as T increases. But
this configuration does not converge to an admissible candidate, so it definitely
doesn’t converge to a minimizer.

We observe that for cm = 1.6, we get two balls in opposite corners of the
square Ω: it is consistent with the expected repulsive behaviour of the non-local
term Vα. Moreover, using (5.8) and (5.9), we find that, if conjecture 5.5 is true,
there must be a minimizer up to cm ' 1.67. Numerically, we find that there is
a minimizer up to a constant cm ∈ (1.5, 1.6), which is relatively close to 1.67.
We also observe similar results for different values of α, including in the near
field-dominated regime α < 1.

For Ω a disk of diameter π, if one increases further cm, we get three balls
located near the boundary of Ω, as shown in figure 2a for cm = 3.0. This is
consistent with the conjecture that the energy is minimized by balls of the same
volume. To illustrate the effect of the confining potential, we display in figure
2b the minimizer for cm = 3.0, A = 1 and β = 16.

Finally, let us mention that the number of discretization points is N = 211

in each direction. Numerical minimization is made using the solver IPOPT [14].
The computation time on a standard computer is about an hour.
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(a) A = 0 (b) A = 1

Figure 2: α = 1, cm = 3.0, β = 16, Ω is a disk.

A Appendix: Study of the sets S̃∗ and S∗ from
the proof of proposition 3.3

In this appendix, we give explicit forms of the sets S̃∗ and S∗, needed in the
proof of proposition 3.3. Let us define, for all k ≥ 2, a function fk : (0,∞)→ R
by

fk(γ) = 1− γ1+αµ
α
k − µα1
λk − λ1

+ γ1+β Aβ

λk − λ1
.

Then the sets S̃∗ and S∗ from the proof of proposition 3.3 are defined by

S̃∗ = {∀k ≥ 2, fk > 0} and S∗ = {∀k ≥ 2, fk ≥ 0}.

As stated in [6, equations (7.4), (7.5) and (7.6)], we have

µαk =


21+απ

n−1
2

1−α
Γ( 1+α

2 )

Γ(n−α2 )

(
Γ(k+n−α

2 )

Γ(k+n−2+α
2 )

− Γ(n−α2 )

Γ(n−2+α
2 )

)
if α ∈ (0, 1),

2απ
n−1
2

Γ(α−1
2 )

Γ(n−α2 )

(
Γ(n−α2 )

Γ(n−2+α
2 )

− Γ(k+n−α
2 )

Γ(k+n−2+α
2 )

)
if α ∈ (1, n),

4π
n−1
2

Γ(n−1
2 )

(
Γ′(k+n−1

2 )

Γ(k+n−1
2 )
− Γ′(n−1

2 )

Γ(n−1
2 )

)
if α = 1.

(A.1)

Recall also that for any k ≥ 0, λk = k(n + k − 2). Now let us treat each case
enumerated in proposition 3.3 separately.

Case (i): α > β. A simple study of the sign of f ′k shows that each fk is
increasing from 0 to a point γk, then decreasing from γk to +∞. What is more
fk(0) = 1 and lim+∞ fk = −∞, so each fk has exactly one zero and is positive
left of this zero and negative right of it. At last, for any constant K > 0,
fk(γ) −→

k→∞
1 uniformly in γ ≤ K. Putting these facts together shows that the

sets S̃∗ and S∗ have the forms:

S̃∗ = (0,m∗) and S∗ = (0,m∗],
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for some critical mass m∗ > 0 (depending on n, α, β and A).
Case (ii): α = β. For any k, fk is either decreasing or increasing or constant

(depending on the size of A). If none of them is decreasing, then for any k,
fk ≥ fk(0) = 1, so

S̃∗ = S∗ = (0,+∞).

Otherwise the same arguments as in case one shows again that

S̃∗ = (0,m∗) and S∗ = (0,m∗],

for some critical mass m∗ > 0 (depending on n, α, β and A).
Cases (iii), (iv) and (v): α < β. A simple study of the sign of f ′k shows that

each fk is decreasing from 0 to a point γk, then increasing from γk to +∞, and
we have:

γk =

(
1 + α

Aβ(1 + β)
(µαk − µα1 )

) 1
β−α

. (A.2)

Another simple computation shows that

min fk = fk(γk) = 1−
(

1 + α

Aβ(1 + β)

) 1+α
β−α β − α

1 + β

(µαk − µα1 )
1+β
β−α

λk − λ1
. (A.3)

We must treat the subcases α > 1, α = 1 and α < 1 separately.
Subcase one: α > 1. We use the following classical Stirling formula:

Γ(x) ∼
x→+∞

√
2π

x

(x
e

)x
,

to find that
Γ(k + n−α

2 )

Γ(k + n−2+α
2 )

∼
k→∞

k1−α.

With (A.1), this means that the sequence (µαk ) is bounded. As λk −→
k→∞

∞, we

get from (A.3)
min fk −→

k→∞
1.

Thus there exists an index k0 such that

S̃∗ =

k0⋂
k=2

{fk > 0} and S∗ =

k0⋂
k=2

{fk ≥ 0}. (A.4)

As for any k, lim+∞ fk = +∞, we get that S̃∗ and S∗ both contain an unbounded
interval, which is what we wanted.
Subcase two: α = 1. We use the classical asymptotics of the digamma function
Γ′

Γ :
Γ′

Γ
(x) ∼

x→+∞
ln(x),
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to find that, according to (A.3),

min fk −→
k→+∞

1.

We conclude as above.
Subcase three: α < 1. Once again we use the asymptotics

Γ(k + n−α
2 )

Γ(k + n−2+α
2 )

∼
k→∞

k1−α,

to find that
(µαk − µα1 )

1+β
β−α

λk − λ1
∼

k→∞

(k1−α)
1+β
β−α

k2
= k

(1−β)(1+α)
β−α . (A.5)

If β > 1, once again we have

min fk −→
k→+∞

1,

and we conclude as above. If β < 1, then we have

min fk −→
k→+∞

−∞ (A.6)

Also, by definition we have

fk+1(γk)− 1 = −γ1+α
k

µαk+1 − µα1
λk+1 − λ1

+ γ1+β
k

Aβ

λk+1 − λ1
.

As the sequence (µαk ) is increasing we get

fk+1(γk)− 1 ≤ −γ1+α
k

µαk − µα1
λk+1 − λ1

+ γ1+β
k

Aβ

λk+1 − λ1

= (fk(γk)− 1)
λk − λ1

λk+1 − λ1

−→
k→∞

−∞. (A.7)

With (A.6), this means that

[γk, γk+1] ⊂ (S̃∗)
c ∩ (S∗)

c.

What is more, from (A.2), we have γk −→
k→+∞

+∞, so S̃∗ and S∗ are both

bounded, which is what we wanted. At last, if β = 1 we find using (A.5)
that there exists a constant Cα such that

min fk −→
k→∞

1− Cα

A
1+α
β−α

.
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For A
1+α
β−α > Cα, we conclude as in case one. For A

1+α
β−α < Cα, we conclude as

above that S̃∗ and S∗ are both bounded. For A
1+α
β−α < Cα, we have to use the

following more precise form of Stirling’s approximation:

Γ(x) ∼
x→+∞

√
2π

x

(x
e

)x
(1 +O(

1

x
)).

Proceeding to simple asymptotic expansions, we find that for k large enough we
have

min fk > 0.

We conclude as in case one.

B Computation of Vα(B[1])

Here we explain how we compute Vα(B[1]) numerically, as needed in subsection
5.2 to choose the value of T . In order to compute numerically the improper
integral

Vα(B[1]) =

∫
B[1]×B[1]

dxdy

|x− y|2−α
,

we add a small term ε > 0 to the denominator of the integrand. So we compute

Vα,ε(B[1]) =

∫
B[1]×B[1]

dxdy

|x− y|2−α + ε
.

To control the error introduced by the parameter ε, we need to estimate the
difference ∆ε := Vα(B[1])− Vα,ε(B[1]). We have

∆ε =

∫
B[1]×B[1]

dxdy

|x− y|2−α
−
∫
B[1]×B[1]

dxdy

|x− y|2−α + ε

=

∫
B[1]×B[1]

εdxdy

|x− y|2−α (|x− y|2−α + ε)

≤
∫
B[1]×B[1]

1|x−y|<r
dxdy

|x− y|2−α
+

∫
B[1]×B[1]

1|x−y|≥r
εdxdy

|x− y|2−α r2−α

≤
∫
B[1]×R2

1|x−y|<r
dxdy

|x− y|2−α
+

ε

r2−α

∫
B[1]×B[1]

dxdy

|x− y|2−α

≤
∫
B[1]×R2

1|y|<r
dxdy

|y|2−α
+

ε

r2−α

∫
B[1]

∫
B[1]

dxdy

|y|2−α

=

∫
|y|<r

dy

|y|2−α
+

ε

r2−α

∫
B[1]

dy

|y|2−α

= 2π

∫ r

0

r2−1dr

r2−α +
ε

r2−α 2π

∫ 1√
π

0

r2−1dr

r2−α

=
2π

α
(rα +

ε

r2−απ
α
2

),
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for some r > 0. This last bound attains its minimum for r =
(

(2−α)ε

απ
α
2

) 1
2

. From
there we deduce

∆ε ≤
2π

α

2

2− α

(
2− α
α

)α
2 ( ε

π
α
2

)α
2

.

With α = 1, we get
∆ε ≤ 4π

3
4
√
ε.

Now the proper integral Vα,ε(B[1]) can be expressed in polar coordinates, and
computed with arbitrary precision in the Julia language, using the HCubature
package.
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