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Abstract. Gradient flows in the Wasserstein space have become a powerful
tool in the analysis of diffusion equations, following the seminal work of Jordan,
Kinderlehrer and Otto (JKO). The numerical applications of this formulation
have been limited by the difficulty to compute the Wasserstein distance in
dimension > 2. One step of the JKO scheme is equivalent to a variational
problem on the space of convex functions, which involves the Monge-Ampère
operator. Convexity constraints are notably difficult to handle numerically,
but in our setting the internal energy plays the role of a barrier for these
constraints. This enables us to introduce a consistent discretization, which in-
herits convexity properties of the continuous variational problem. We show the
effectiveness of our approach on nonlinear diffusion and crowd-motion models.


1. Introduction


1.1. Context.


Optimal transport and displacement convexity. In the following, we consider two
probability measures µ and ν on Rd with finite second moments, the first of which
is absolutely continuous with respect to the Lebesgue measure. We are interested
in the quadratic optimal transport problem between µ and ν:


min


{∫
X


‖T (x)− x‖2 dµ(x); T : X → Rd, T#µ = ν


}
(1.1)


where T#µ denotes the pushforward of µ by T . A theorem of Brenier shows that
the optimal map in (1.1) is given by the gradient of a convex function [8]. Define the
Wasserstein distance between µ and ν as the square root of the minimum in (1.1),
and denote it W2(µ, ν). Denoting by K the space of convex functions, Brenier’s
theorem implies that for ϕ ∈ K,


W2
2(µ,∇ϕ#µ) =


∫
Rd
‖x−∇ϕ(x)‖2 dµ(x) (1.2)


and that the map defined


ϕ ∈ K 7→ ∇ϕ#µ ∈ P(Rd), (1.3)


is onto. This map can be seen as a parameterization, depending on µ, of the space of
probability measures by the set of convex potentials K. This idea has been exploited
by McCann [20] to study the steady states of gases whose energy F : P(Rd)→ R is
the sum of an internal energy U , such as the negative entropy, and an interaction
energy E . McCann gave sufficient conditions for such a functional F to be convex
along minimizing Wasserstein geodesics. These conditions actually imply a stronger
convexity property for the functional F : this functional is convex under generalized
displacement: for any absolutely continuous probability measure µ, the composition
of F with the parameterization given in Eq. (1.3), ϕ ∈ K 7→ F(∇ϕ#µ), is convex.
Generalized displacement convexity allows one to turn a non-convex optimization
problem over the space of probability measures into a convex optimization problem
on the space of convex functions.
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Gradient flows in Wasserstein space and JKO scheme. Our goal is to simulate
numerically non-linear evolution PDEs which can be formulated as gradient flows
in the Wasserstein space. The first formulation of this type has been introduced in
the seminal article of Jordan, Kinderlehrer and Otto [16]. The authors considered
the linear Fokker-Planck equation


∂ρ


∂t
= ∆ρ+ div(ρ∇V )


ρ(0, .) = ρ0


, (1.4)


where ρ(t, .) is a time-varying probability density on Rd and V is a potential energy.
The main result of the article is that (1.4) can be reinterpreted as the gradient flow
in the Wasserstein space of the energy functional


F(ρ) =


∫
Rd


(log ρ(x) + V (x))ρ(x) dx. (1.5)


Jordan, Kinderlehrer and Otto showed how to construct such a gradient flow
through a time-discretization, using a generalization of the backward Euler scheme.
Given a timestep τ , one defines recursively a sequence of probability densities
(ρk)k>0 :


ρk+1 = arg min
ρ∈Pac(Rd)


1


2τ
W2


2(ρk, ρ) + F(ρ). (1.6)


The main theorem of [16] is that the discrete gradient flow constructed by (1.6) con-
verges to the solution of the Fokker-Planck equation (1.4) in a suitable weak sense
as τ tends to zero. Similar formulations have been proposed for other non-linear
partial differential equations : the porous medium equation [25] and more general
degenerate parabolic PDEs [3], the sub-critical Keller-Segel equation [6], macro-
scopic models of crowds [19], to name but a few. The construction and properties
of gradient flows in the Wasserstein space have been studied systematically in [5].
Finally, even solving for a single step of the JKO scheme leads to nontrivial non-
local PDEs of Monge-Ampère type which appear for instance in the Cournot-Nash
problem in game theory [7].


1.2. Previous work.


Numerical resolution of gradient flows. Despite the potential applications, there
exists very few numerical simulations that use the Jordan-Kinderlehrer-Otto scheme
and its generalizations. The main reason is that the first term of the functional
that one needs to minimize at each time step, e.g. Eq. (1.6), is the Wasserstein
distance. Computing the Wasserstein distance and its gradient is notably difficult in
dimension two or more. In dimension one however, the optimal transport problem
is much simpler because of its relation to monotone rearrangement. This remark
has been used to implement discrete gradient flows for the quadratic cost [17, 6, 7]
or for more general convex costs [4]. In 2D, the Lagragian method proposed in
[12, 9] is inspired by the JKO formulation but the convexity of the potential is not
enforced.


Calculus of variation under convexity constraints. When the functional F is con-
vex under generalized displacement, one can use the parameterization Eq. (1.3)
to transform the problem into a convex optimization problem over the space of
convex functions. Optimization problems over the space of convex functions are
also frequent in economy and geometry, and have been studied extensively, from a
numerical viewpoint, when F is an integral functional that involve function values
and gradients:


min
ϕ∈K


∫
Ω


F (x, ϕ(x),∇ϕ(x)) dx (1.7)
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The main difficulty to solve this minimization problem numerically is to construct
a suitable discretization of the space of convex functions over Ω. The first approach
that has been considered is to approximate K by piecewise linear functions over
a fixed mesh. This approach has an important advantage: the number of linear
constraints needed to ensure that a piecewise linear function over a mesh is convex is
proportional to the size of the mesh. Unfortunately, Choné and Le Meur [13] showed
that there exists convex functions on the unit square that cannot be approximated
by piecewise-linear convex functions on the regular grid with edgelength δ, even as
δ converges to zero. This difficulty has generated an important amount of research
in the last decade.


Finite difference approaches have been proposed by Carlier, Lachand-Robert and
Maury [11], based on the notion of convex interpolate, and by Ekeland and Moreno-
Bromberg using the representation of a convex function as a maximum of affine
functions [14], taking inspiration from Oudet and Lachand-Robert [18]. In both
methods, the number of linear inequality constraints used to discretize the convexity
constraints is quadratic in the number of input points, thus limiting the applicability
of these methods. More recently, Mirebeau proposed a refinement of these methods
in which the set of active constraints is learned during the optimization process
[22]. Oberman used the idea of imposing convexity constraints on a wide-stencils
[24], which amounts to only selecting the constraints that involve nearby points
in the formulation of [11]. Oudet and Mérigot [21] used interpolation operators
to approximate the solutions of (1.7) on more general finite-dimensional spaces of
functions. All these methods can be used to minimize functionals that involve the
value of the function and its gradient only. They are not able to handle terms
that involve the Monge-Ampère operator det D2 ϕ of the function, which appears
when e.g. considering the negative entropy of ∇ϕ|# ρ. It is worth mentioning
here that convex variational problems with a convexity constraint and involving
the Monge-Ampère operator det D2 ϕ appear naturally in geometric problems such
as the affine Plateau problem, see Trudinger and Wang [27] or Abreu’s equation,
see Zhou [28]. The Euler-Lagrange equations of such problems are fully nonlinear
fourth-order PDEs and looking numerically for convex solutions can be done by
similar methods as the ones developed in the present paper.


1.3. Contributions. In this article, we construct a discretization in space of the
type of variational problems that appear in the definition of the JKO scheme. More
precisely, given two bounded convex subsets X,Y of Rd, and an absolutely contin-
uous measure µ on X, we want to discretize in space the minimization problem


min
ν∈P(Y )


W2
2(µ, ν) + E(ν) + U(ν), (1.8)


where P(Y ) denotes the set of probability measures on Y , and where the potential
energy E and the internal energy U are defined as follows:


E(ν) =


∫
Rd


∫
Rd
W (x, y) d[ν ⊗ ν](x, y) +


∫
Rd
V (x) d ν(x) (1.9)


U(ν) =



∫
Rd
U(σ(x)) dx if d ν = σ dHd, σ ∈ L1(Rd)


+∞ if not
(1.10)


We assume McCann’s sufficient conditions [20] for the generalized displacement
convexity of the functional F = W2


2(µ, .) + E + U , namely:
(HE) the potential V : Rd → R and interaction potential W : Rd × Rd → R are


convex functions. (If in addition V or W is strictly convex, we denote this
assumption (HE+))
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(HU) The function U : R+ → R is such that the map r 7→ rdU(r−d) is convex
and non-increasing, and U(0) = 0. (If the convexity of r 7→ rdU(r−d) is
strict, we denote this assumption (HU+).)


Under assumptions (HE) and (HU), the problem (1.8) can be rewritten as a convex
optimization problem. Introducing the space KY of convex functions on Rd whose
gradient lie in Y almost everywhere, (1.8) is equivalent to


min
ϕ∈KY


W2
2(µ,∇ϕ#µ) + E(∇ϕ#µ) + U(∇ϕ#µ). (1.11)


Our contributions are the following:
• In Section 2, we discretize the space KY of convex functions with gradi-


ents contained in Y by associating to every finite subset P of Rd a finite-
dimensional convex subset KY (P ) contained in the space of real-valued
functions on the finite-set P . We construct a discrete Monge-Ampère oper-
ator, in the spirit of Alexandrov, which satisfies some structural properties
of the operator ϕ 7→ det(D2 ϕ), such as Minkowski’s determinant inequal-
ity. Moreover, we show how to modify the construction of KY (P ) so as to
get a linear gradient operator, following an idea of Ekeland and Moreno-
Bromberg [14].


• In Section 3, we construct a convex discretization of the problem (1.11). In
order to do so, we need to define an analogous of ∇ϕ#µ, where ϕ is a func-
tion in our discrete space KY (P ) and where µP is a measure supported on
P . It turns out that in order to maintain the convexity of the discrete prob-
lem, one needs to define two such notions: the pushforward Gac


ϕ#µP which
is absolutely continous on Y and whose construction involves the discrete
Monge-Ampère operator, and Gϕ#µP which is supported on a finite set
and whose construction involves the discrete gradient. The discretization
of (1.11) is given by


min
ϕ∈KY (P )


W2
2(µ,Gϕ#µP ) + E(Gϕ#µP ) + U(Gac


ϕ#µP ). (1.12)


• In Section 4, we show that if (µPn)n>0 is a sequence of probability mea-
sures on X that converge to µ in the Wasserstein sense, minimizers of the
discretized problem (1.12) with P = Pn converge, in a sense to be made
precise, to minimizers of the continuous problem. In order to prove this
result, we need a few additional assumptions: the density of µ should be
bounded from above and below on the convex domain X, and the integrand
in the definition of the internal energy (1.10) should be convex.


• Finally, in Section 5 we present two numerical applications of the space-
discretization (1.12). Our first simulation is a meshless Lagrangian simula-
tion of the porous medium equation and the fast-diffusion equation using
the gradient flow formulation of Otto [25]. The second simulation concerns
the gradient-flow model of crowd motion introduced by Maury, Roudneff-
Chupin and Santambrogio [19].


Notation. The Lebesgue measure is denoted Hd. The space of probability mea-
sures on a domain X of Rd is denoted P(X), while Pac(X) denotes the space of
probability measures that are absolutely continuous with respect to the Lebesgue
measure.


2. Discretization of the space of convex functions


The first goal of this section is to discretize the space of convex functions whose
gradients lie in a prescribed convex set Y . Then, we will define a notion of discrete
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Monge-Ampère operator for functions in this space. We will consider functions
from Rd to the set of extended reals R := R ∪ {+∞}.


Definition 2.1 (Legendre-Fenchel transform). The Legendre transform ψ∗ of a
function ψ : Y → R, is the function ψ∗ : Rd → R defined by the formula


ψ∗(x) := sup
y∈Y
〈x|y〉 − ψ(y). (2.13)


The space of Legendre-Fenchel transforms of functions defined over a convex set
Y is denoted by KY := {ψ∗;ψ : Y → R}. A function on Rd is called trivial if it
is constant and equal to +∞. The space of non-trivial functions in KY is denoted
K0
Y .


Lemma 2.1. Assume that Y is a bounded convex subset of Rd. Then,
(i) functions in KY are trivial or finite everywhere: KY = K0


Y ∪ {+∞};
(ii) a convex function ϕ belongs to C1 ∩ K0


Y if and only if ∇ϕ(Rd) ⊆ Y ;
(iii) the set C1 ∩ K0


Y is dense in the set K0
Y for ‖.‖∞;


(iv) the space KY is convex;
(v) (stability by maximum) given a family of functions (ϕi)i∈I in KY , the function


ϕ(x) := supi∈I ϕi(x) is also in KY .


Proof. (i) We assume that ϕ belongs to KY , i.e. ϕ = ψ∗, where ψ is a function
from Y to R. We will first show that if ϕ is non-trivial, then ψ is lower bounded
by a constant on Y . By contradiction, assume that there exists a set of points yk
in Y such that ψ(yk)→ −∞. In this case, given any point x in X we have


ψ∗(x) > max
k
〈x|yk〉 − ψ(yk) > max


k
−‖x‖ ‖yk‖ − ψ(yk) = +∞,


so that ϕ is trivial.
(iii) Assume that ϕ belongs to K0


Y , so that there exists a convex function ψ : Y →
R lower bounded by a constant and such that ψ∗ = ϕ. Then, we can approximate ψ
by uniformly convex functions ψε(y) := ψ(y)+ε ‖y‖2 on Y . The functions ϕε := ψ∗ε
belong to KY , are smooth, and uniformly converge to the function ϕ. �


Definition 2.2 (KY -envelope and KY -interpolate). The KY –envelope of a function
ϕ defined on a subset P of Rd is the largest function in KY whose restriction to P
lies below ϕ. In other words,


ϕKY := max{ψ ∈ KY ; ψ|P 6 ϕ|P }. (2.14)


A function ϕ on a set P ⊆ Rd is a KY -interpolate if it coincides with the restriction
to P of its KY –envelope. The space of KY –interpolates is denoted


KY (P ) := {ϕ : P → R;ϕ = ϕKY |P }. (2.15)


2.1. Subdifferential and Laguerre cells. Consider a convex function ϕ on Rd,
and a point x. A vector y ∈ Rd is a subgradient of ϕ at x if for every z in Rd, the
inequality ϕ(z) > ϕ(x) + 〈z − x|y〉 holds. The subdifferential of ϕ at x is the set of
subgradients to ϕ at x, i.e.


∂ϕ(x) := {y ∈ Rd;∀z ∈ Rd, ϕ(z) > ϕ(x) + 〈z − x|y〉} (2.16)


The following lemma allows one to compute the subdifferential of the KY –envelope
of a function in KY (P ).


Definition 2.3 (Laguerre cell). Given a finite point set P contained in Rd, a
function ϕ on P , we denote the Laguerre cell of a point p in P the polyhedron


LagϕP (p) := {y ∈ Rd;∀q ∈ P,ϕ(q) > ϕ(p) + 〈q − p|y〉}.
Note that the union of the Laguerre cells covers the space, while the intersection of
the interior of two Laguerre cells is always empty.
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Lemma 2.2. Let P be a finite point set. A function ϕ on P belongs to KY (P ) if
and only if for every p in P , the intersection LagϕP (p)∩Y is non-empty. Moreover,
if this is the case, then


∂ϕKY (p) = LagϕP (p) ∩ Y. (2.17)


Proof. Denote K := KRd and ϕK the convex envelope of ϕ. It is then easy to see
that for every point p in P such that ϕK(p) = ϕ(p),


∂ϕK(p) = LagϕP (p).


Since KY ⊆ K and by definition, one has ϕKY (x) 6 ϕK(x), with equality when x is
a point in P . This implies the inclusion ∂ϕKY (p) ⊆ Y ∩ ∂ϕK(p). In order to show
that the converse also holds, one only needs to remark that


Y ⊆
⋃
p∈P


∂ϕKY (p). �


Lemma 2.3. Let ϕ0, ϕ1 in KY (P ), let ϕt = (1−t)ϕ0+tϕ1 be the linear interpolation
on P between these functions, and denote ϕ̂t := [ϕt]KY . Then for any p in P ,


∂ϕ̂t(p) ⊇ (1− t)∂ϕ̂0(p) + t∂ϕ̂1(p) (2.18)


LagϕtP (p) ∩ Y ⊇ (1− t)(Lagϕ0


P (p) ∩ Y ) + t(Lagϕ1


P (p) ∩ Y ) (2.19)


Proof. Thanks to the previous lemma, the two inclusions are equivalent. Now, let
yi be a point in LagϕiP (p) ∩ Y , so that


∀q ∈ P, ϕi(q) > ϕi(p) + 〈q − p|yi〉.


Taking a linear combination of these inequalities, we get


∀q ∈ P, (1− t)ϕ0(q) + tϕ1(q) > (1− t)ϕ0(p) + tϕ1(p) + 〈q − p|yt〉,


with yt = (1− t)y0 + ty1. In other words, the point yt belongs to the Laguerre cell
LagϕtP (p). Since this holds for any pair of points y0 in Lagϕ0


P (p) and y1 in Lagϕ1


P (p),
we get the desired inclusion. �


Remark 2.1. A corollary of the two previous lemmas is the convexity of the space
KY (P ) of KY -interpolates, a fact that does not obviously follow from the definition.


Remark 2.2. The convex envelope of a function defined on a finite set is always
piecewise-linear. In contrast, when the domain Y is bounded, the KY -envelope of
an element ϕ of the polyhedron KY (P ) does not need to be piecewise linear, even
when restricted to the convex hull of P . Fortunately, for the applications that we
are targeting, we will never need to compute this envelope explicitely, and we will
only use formula (2.17) giving the explicit expression of the subdifferential.


2.2. Monge-Ampère operator. In this paragraph, we introduce a notion of dis-
crete Monge-Ampère operator of KY -interpolates on a finite set. This definition is
closely related to the notion of Monge-Ampère measure introduced by Alexandrov.
Given a smooth uniformly convex function ϕ on Rd, a change of variable gives∫


B


det(D2 ϕ(x)) dx =


∫
∇ϕ(B)


1 dx = Hd(∇ϕ(B)). (2.20)


This equation allows one to define a measure on the source domain X ⊆ Rd, called
the Monge-Ampère measure and denoted MA[ϕ]. Using the right-hand side of the
equality, it is possible to extend the notion of Monge-Ampère measure to convex
functions that are not necessarily smooth (see e.g. [15]):


MA[ϕ](B) := Hd(∂ϕ(B)). (2.21)
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Definition 2.4. The discrete Monge-Ampère operator of a KY -interpolate ϕ : P →
R at a point p in P is defined by the formula:


MAY [ϕ](p) := Hd(∂ϕKY (p)), (2.22)


where Hd denotes the d-dimensional Lebesgue measure.


The relation between the discrete Monge-Ampère operator and the Monge-
Ampère measure is given by the formula:


∀ϕ ∈ KY (P ), MA[ϕKY ] =
∑
p∈P


MAY [ϕ](p)δp. (2.23)


In other words, the Monge-Ampère operator can be seen as the density of the
Monge-Ampère measure of ϕKY with respect to the counting measure on P . The
next lemma is crucial to the proof of convexity of our discretized energies. It is
also interesting in itself, as it shows that the interior of the set KY (P ) of convex
interpolates can be defined by |P | explicit non-linear convex constraints.


Lemma 2.4. For any point p in P , the following map is convex:


ϕ ∈ KY (P ) 7→ − log(MAY [ϕ](p)). (2.24)


Proof. Let ϕ0, ϕ1 in KY (P ), let ϕt = (1 − t)ϕ0 + tϕ1 be the linear interpolation
between these functions, and denote ϕ̂t := [ϕt]KY . Using Lemma 2.3, and with the
convention log(0) = −∞, we have


log(Hd(∂ϕ̂t(p))) > log(Hd((1− t)∂ϕ̂0(p) + t∂ϕ̂1(p)))


> (1− t) log(Hd(∂ϕ̂0(p))) + t log(Hd(∂ϕ̂1(p))),


where the second inequality is the logarithmic version of the Brunn-Minkowski
inequality. �


2.3. Convex interpolate with gradient. In applications, we want to minimize
energy functionals over the space KY , which involve potential energy terms such as


ϕ 7→
∫
X


V (∇ϕ(x)) dµ(x), (2.25)


where V is a convex potential on Rd. Any functional defined this way is convex
in ϕ, and one would like to be able to define a discretization of this functionals
that preserves this property. Given a function ϕ in the space KY (P ) and a point
p in P , one wants to select a vector in the subdifferential ∂ϕKY (p), and this vector
needs to depend linearly on ϕ. A way to achieve this is to increase the dimension
of the space of variables, and to include the chosen subgradients as unknown of the
problem. This can be done as in Ekeland and Moreno-Bromberg [14].


Definition 2.5 (Convex interpolate with gradient). A KY -interpolate with gradient
on a finite subset P of Rd is a couple (ϕ,Gϕ) consisting of a function ϕ in the space
of KY -interpolates KY (P ) and a gradient map Gϕ : P → Rd such that


∀p ∈ P, Gϕ(p) ∈ ∂ϕKY (p). (2.26)


The space of convex interpolates with gradients is denoted KGY (P ).


Note that the space KGY (P ) can be considered as a subset of the vector space of
function from P to R× Rd. Lemma 2.5 below implies that KGY (P ) forms a convex
subset of this vector space, for which one can construct explicit convex barriers.
Given a closed subset A of Rd and x a point of Rd, d(x,A) denotes the minimum
distance between x and any point in A.
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Lemma 2.5. Let ϕ0 and ϕ1 be two functions in KY (P ) and let vi a vector in the
subdifferential ∂ϕ̂i(p) for a certain point p in P . Then,


(i) the vector vt = (1− t)v0 + tv1 lies in ∂ϕ̂t(p);
(ii) the map t 7→ d(vt,Rd \ ∂ϕ̂t(p)) is concave;


Moreover, a function ϕ belongs to the interior of KY (P ) if and only if


∀p ∈ P, MAY [ϕ](p) > 0. (2.27)


Proof. The first item is a simple consequence of Lemma 2.3. In order to prove
the second item, we first remark that setting Ri := d(vi,Rd \ ∂ϕ̂i(p)), one has:
B(vi, Ri) ⊆ ∂ϕ̂i(p). Using the second inclusion from Lemma 2.3 and the explicit
formula for the Minkowski sum of balls, we get:


(1− t)B(v0, R0) + tB(v1, R1) = B(vt, (1− t)R0 + tR1) ⊆ ∂ϕ̂t(p).


This implies the desired concavity property:


d(vt,Rd \ ∂ϕ̂t(p)) > (1− t)R0 + tR1.


As for the last assertion, assume by contradiction that there is a p ∈ P such that
∂ϕKY (p) has empty interior, and let y ∈ ∂ϕKY (p). Since the Laguerre cells cover
the space, this means that y also belongs to (the boundary) of Laguerre cells with
nonempty interior corresponding to points p1, . . . , pk ∈ P k for some k ≥ 2. In this
case necessarily, p is in the relative interior of the convex hull of {p1, . . . , pk} and
ϕKY is affine on this convex hull, contradicting interiority of ϕ. �


3. Convex discretization of displacement-convex functionals


In the discrete setting, the reference probability density ρ is replaced by a proba-
bility measure µ on a finite point set. Since the subdifferential of a convex function
ϕ can be multi-valued, the pushforward ∇ϕ#µ is not uniquely defined in general.
In order to maintain the convexity properties of the three functionals in our discrete
setting, we will need to consider two different type of push-forwards.


Definition 3.1 (Push-forwards). Let µ be a probability measure supported on
a finite point set P , i.e. µ =


∑
p∈P µpδp. We consider a convex interpolate with


gradient (ϕ,Gϕ) in KGY (P ), and we define two ways of pushing forward the measure
µ by the gradient of ϕKY .


• The first way consists in moving each Dirac mass µpδp to the selected
subgradient Gϕ(p), thus defining


Gϕ#µ :=
∑
p∈P


µpδGϕ(p). (3.28)


• The second possibility, is to spread each Dirac mass µpδp on the whole
subdifferential ∂ϕKY (p). This defines, when ϕ is in the interior of KY (P ),
an absolutely continuous measure:


Gac
ϕ#µ :=


∑
p∈P


µp
Hd
∣∣
∂ϕKY (p)


Hd(∂ϕKY (p))
. (3.29)


Remark 3.1. Note that in both cases, the mass of µ located at p is transported
into the subdifferential ∂ϕKY (p). This implies that the transport plan between
µ and Gϕ#µ induced by this definition is optimal, and similarly for Gac


ϕ#µ. We
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Figure 1. We consider a point set P = {q, p±}, with q = (2, 0)
and p± = (0,±1), and a function ϕt which linearly interpolates
between ϕ0 = χ{q} and ϕ1 = 0. (Left) Laguerre cells LagϕtP (p)


intersected with the square [−1, 1]2 at t = 0. (Middle) Laguerre
cells at t = 1. (Right) Graph of the second moment of the mea-
sure Gac


ϕt#
µ as a function of t, showing the lack of convexity of a


discretized energy.


therefore have an explicit expression for the squared Wasserstein distance between
µ and these pushforwards:


W2
2(µ,Gϕ#µ) =


∑
p∈P


µp ‖p−Gϕ(p)‖2 (3.30)


W2
2(µ,Gac


ϕ#µ) =
∑
p∈P


µp
Hd(∂ϕKY (p))


∫
∂ϕKY (p)


‖p− x‖2 dx (3.31)


Theorem 3.1. Given a bounded convex set Y and a measure µ supported on a
finite set P , and under hypothesis (HE) and (HU), the maps


(ϕ,Gϕ) ∈ KGY (P ) 7→ E(Gϕ#µ) (3.32)
ϕ ∈ KY (P ) 7→ U(Gac


ϕ#µ) (3.33)


are convex. Moreover, under assumptions (HE+) and (HU+) the functional


(ϕ,Gϕ) ∈ KGY (P ) 7→ F(ϕ) := E(Gϕ#µ) + U(Gac
ϕ#µ) (3.34)


has the following strict convexity property: given two functions ϕ0 and ϕ1 in KGY (P ),
and ϕt = (1− t)ϕ0 + tϕ1 with t ∈ (0, 1), then


F(ϕt) 6 (1− t)F(ϕ0) + tF(ϕ1),


with equality only if ϕ0 − ϕ1 is a constant. In particular, there is at most one
minimizer of F up to an additive constant.


Proof. The proof of (3.33) uses the log-concavity of the discrete Monge-Ampère
operator as in Lemma 2.4 and McCann’s condition [20]. The proof of (3.32) is
direct: if (ϕ0, Gϕ0


) and (ϕ0, Gϕ0
) belong to KGY (P ), and Gϕt := (1− t)Gϕ0


+ tGϕ1
,


then the convexity of E follows from that of V and W . �


Remark 3.2. The convexity of the internal energy (3.33) also holds when con-
sidering the monotone discretization of the Monge-Ampère operator introduced by
Oberman in [23].


Remark 3.3. It seems necessary to consider two notions of push-forward of a
given measure µ. Indeed, the internal energy of a measure that is not absolutely
continuous is +∞, so that it only makes sense to compute the map U on the
absolutely continuous measure Gac


ϕ#µ. On the other hand, condition (HE) is not
sufficient to make the potential energy functional ϕ ∈ KGY (P ) 7→ E(Gac


ϕ#µ) convex.
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This can be seen on the example given in Figure 1: let Y = [−1, 1]2 and P = {q, p±}
with q = (2, 0) and p± = (0,±1). We let ϕt be the linear interpolation between
ϕ0 := 1{q}, and ϕ1 = 0, and We let µ = 0.8δq + 0.1δp+ + 0.1δp− . The third column
of Figure 1 displays the graph of the second moment of the absolutely continuous
push-forward, i.e.


t 7→ E(Gac
ϕt#µ), where E(ν) =


∫
Rd
‖x‖2 d ν(x), (3.35)


The graph shows that this function is not convex in t, even though E is convex
under generalized displacement since it satisfies McCann’s condition (HE).


Remark 3.4. The two maps considered in the Theorem can be computed more
explicitely:


E(Gϕ#µ) =
∑
p∈P


µpV (Gϕ(p)) +
∑
p,q∈P


µpµqW (Gϕ(p), Gϕ(q)) (3.36)


U(Gac
ϕ#µ) =


∑
p∈P


U


(
µp


MAY [ϕ](p)


)
MAY [ϕ](p) (3.37)


In particular, when U is the negative entropy (U(r) = r log r), one has:


U(Gac
ϕ#µ) = −


∑
p∈P


µp log(MAY [ϕ](p)). (3.38)


Consequently the internal energy term plays the role of a barrier for the constraint
set KY (P ), that is: if U(Gac


ϕ#µ) is finite, then ϕ belongs to the interior of KY (P ).
The same behavior remains true if the function U has super-linear growth at infinity.
This enables us to extend U(Gac


ϕ#µ) to the whole space RP , by setting it to +∞
when MAY [ϕ](p) = 0 for some p ∈ P .


4. A convergence theorem


Let X,Y be two convex domains in Rd, and µ be a probability measure on X
which is absolutely continuous with respect to the Lebesgue measure on X, and
whose density ρ is bounded from above and below: ρ ∈ [r, 1/r], with r > 0. We are
interested in the minimization problem


min
ν∈P(Y )


F(ν) = min{F(∇ϕ|# µ);ϕ ∈ KY }, (4.39)


where F(ν) := W2
2(µ, ν) + E(ν) + U(ν), (4.40)


and where the terms of the functional F satisfy the following assumptions:
(C1) the energy E (resp U) is weakly continuous (resp. lower semicontinuous)


on P(Y );
(C2) U is an internal energy, defined as in (1.10), where the integrand U :


R → R is convex, U(0) = 0 and U has superlinear growth at infinity
i.e. lims→∞ s−1U(s) = +∞.


Remark 4.1. Note that the condition (C2) is different from McCann’s condition
(HU) for the displacement convexity of an internal energy. Among the internal
energies that satisfy both McCann’s conditions and (C1)–(C2), one can cite those
that occur in the gradient flow formulation of the heat equation, where U(r) =
r log r, and of the porous medium equation, for which U(r) = 1


m−1r
m, with m > 1.


The superlinear growth assumption in (C2) ensures that the internal energy acts
as a barrier for the convexity constraint in the approximated problem (4.41).
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Theorem 4.1 (Γ-convergence). Assume (C1)– (C2). Let µn be a sequence of prob-
ability measures supported on finite subsets Pn ⊆ X, converging weakly to the prob-
ability density ρ, and consider the discretized problem


min
(ϕ,Gϕ)∈KGY (Pn)


W2
2(µn, Gϕn#µn) + E(Gϕn#µn) + U(Gac


ϕn#µn). (4.41)


Then, there exists a minimizer ϕn of (4.41). Moreover, the sequence of absolutely
continuous measure σn := Gac


ϕn#µn is a minimizing sequence for the problem (4.39).
If F has a unique minimizer ν on P(Y ), then σn converges weakly to ν.


Step 1. There exists a minimizer to (4.41).


Proof. Let (ϕkn)k be a minimizing sequence (which we can normalize by imposing
ϕkn(p) = 0 at a fixed p ∈ Pn). Since Y is bounded, we may assume that, up to some
not relabeled subsequences ϕkn and Gϕkn converge to some (ϕn, Gϕn). We can also
assume that ϕ̂kn := [ϕkn]KY converges uniformly to ϕ̂n = [ϕn]KY . The convergence
in the Wasserstein term and in E is then obvious, it remains to prove a liminf
inequality for the discretized internal energy. First note that thanks to (C2), we
also have that there is a ν > 0 such that MAY [ϕkn](p) ≥ ν for every k and every
p ∈ Pn. Then observe that the internal energy can be written as


U(Gac
ϕkn#µn) :=


∑
p∈Pn


F (p,MAY [ϕkn](p)), F (p, t) := tU
(µp
t


)
so that F (p, .) is nonincreasing thanks to (C2). It is then enough to prove that for
every p ∈ Pn one has:


lim sup
k


MAY [ϕkn](p) = lim sup
k
Hd(∂ϕ̂kn(p)) ≤ Hd(∂ϕ̂n(p)) (4.42)


but the latter inequality follows at once from Fatou’s Lemma and the fact that if y
belongs to ∂ϕ̂kn(p) for infinitely many k then it also necessarily belongs to ∂ϕ̂n(p).
This proves that ϕn solves (4.41). �


Let m and mn be the minima of (4.39) and (4.41) respectively. Our goal now
is to show that limn→∞mn = m. In order to simplify the proof, we will keep the
same notation for an absolutely continuous probability measure and its density.


Step 2. lim infn→∞mn > m


Proof. For every n, let ϕn ∈ KY (Pn) be a minimizer of the discretized problem
(4.41). By compactness of the set KY (up to an additive constant), and taking a
subsequence if necessary, we can assume that ϕ̂n := [ϕn]KY converges uniformly to
a function ϕ in KY . We can also assume that both sequence of measures σn :=
Gac
ϕn#µn and νn := Gϕn#µn converge to two measures σ and ν for the Wasserstein


distance. The difficulty is to show that these two measures ν and σ must coincide.
Indeed, let πn (resp. π′n) be optimal transport plans between µn and νn (resp. µn
and σn). Taking subsequences if necessary, these optimal transport plans converge
to two transport plans π (resp. π′) between ρ and ν (resp. ρ and σ) that are
supported on the graph of the gradient of ϕ. Since the first marginal of π and
π′ coincide, one must have π = π′ and therefore ν = σ. The result then follows
from the weak lower semicontinuity of U , and the continuity of (µ, ν) 7→W2


2(µ, ν)+
E(ν). �


We now proceed to the proof that lim supn→∞mn 6 m. Our first step is to show
that probability measures with a smooth density bounded from below and above
are dense in energy. More precisely, we have:


Step 3. m = minε>0 min{F(σ);σ ∈ Pac(Y ) ∩ C0(Y ), ε 6 σ 6 1/ε}
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Proof. Let σ be a probability density on Y such that F(σ) < +∞. Then, according
to Corollary 1.4.3 in [2], there exists a sequence of probability densities σn on Y
that satisfy the three properties:


(a) For every n > 0, σn is bounded from above and below:


0 < inf
y∈Y


σn(y) < sup
y∈Y


σn(y) < +∞;


(b) σn converges to σ in L1(Y );
(c) U(σn) 6 U(σ).


Moreover the proof of Corollary 1.4.3 in [2] can be modified by taking a smooth
convolution operator so as to ensure that each σn is continuous on Y . Our task is
then to show that


lim inf
n→∞


F(σn) 6 F(σ),


where F(σ) = W2
2(µ, σ) +E(σ) +U(σ). Thanks to (C1), and thanks to the Wasser-


stein continuity of the terms σ 7→ W2
2(µ, σ) + E(σ), we only need to show that σn


converges to σ in the Wasserstein sense. This follows from the easy inequality


W2
2(σ, σ′) 6 ‖σ − σ′‖L1(Y ) diam(Y )2. �


Step 4. Let σ ∈ P(Y ) ∩ C0(Y ), with ε 6 σ 6 1/ε. Then, for every n > 0, there
exists a convex interpolate ϕn ∈ KY (Pn) such that


∀p ∈ Pn, σ(∂[ϕn]KY (p)) = µn({p}). (4.43)


Proof. By Breniers’ theorem, there is a convex potential ψn on Y such that∇ψn#σ =
µn, so that ϕn := ψ∗n has the desired property. �


Step 5. Assuming that the functions ϕn in KY (Pn) are constructed as above, we
can bound the diameter of their subdifferentials:


lim
n→∞


max
p∈Pn


diam(∂[ϕn]KY (p)) = 0. (4.44)


Proof. Let ϕ̂ ∈ KY be a potential for the quadratic optimal transport problem
between ρ and σ. Let ϕ̂n := [ϕn]KY and ψ = ϕ̂∗ and ψn = ϕ̂∗n. First, we add a
constant to ϕ and ϕn such that the integral of ψ and ψn over σ is zero,∫


Y


ψ(y)σ(y) d y =


∫
Y


ψn(y)σ(y) d y = 0.


Poincaré’s inequality on Y with density σ gives us∫
Y


|ψn(y)− ψ(y)|2 σ(y) d y 6 const(p, Y, σ)


∫
Y


‖∇ψn −∇ψ(y)‖2 σ(y) d y,


and the weak continuity of optimal transport plans then ensures that the right-hand
term converges to zero. Noting that ψn and ψ are convex on Y and have a bounded
Lipschitz constant, because the gradients ∇ψ,∇ψn belong to X, this implies that
ψn converge uniformly to ψ. Taking the Legendre transform, this shows that ϕ̂n
converges uniformly to ϕ̂ on the compact domain X.


We now prove (4.44) by contradiction, and we assume that there exists a positive
constant r, and a sequence of points (pn), with pn ∈ Pn and such that there exists
yn, y


′
n ∈ ∂ϕ̂n with ‖yn − y′n‖ > r. By compactness, and taking subsequences if


necessary, we can assume that pn converges to a point p inX and that the sequences
(yn) and (y′n) converge to two points y, y′ in Y with ‖y − y′‖ > r. Since the point
yn belongs to ∂ϕ̂n(pn), one has:


∀x ∈ X, ϕ̂n(x) > ϕ̂n(pn) + 〈yn|x− p〉.
Taking the limit as n goes to ∞, this shows us that y (and similarly y′) belongs to
∂ϕ̂(p), so that diam(∂ϕ̂(p)) > r. The contradiction then follows from Caffarelli’s
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regularity result [10]: under the assumptions on the supports and on the densities,
the map ϕ̂ is C1,β up to the boundary of X. In particular, the subdifferential of ϕ̂
must be a singleton at every point of X, thus contradicting the lower bound on its
radius. �


Step 6. Let σn := Gac
ϕn#µn and νn := Gϕn#µn, where ϕn is defined above. Then,


lim
n→∞


‖σn − σ‖L∞(Y ) = 0. (4.45)


lim
n→∞


W2(νn, σ) = 0. (4.46)


Proof. First, note that since σ is continuous on a compact set, it is also uniformly
continuous. For any δ > 0, there exists ε > 0 such that ‖x− y‖ 6 ε implies
|σ(x)− σ(y)| 6 δ. Using Equation (4.44), for n large enough, the sets Vp :=
∂[ϕn]KY (p) have diameter bounded by ε for all point p in Pn. By definition, the
density σn is equal to


σn =
∑
p∈P


σ̂pχVp with σ̂p :=
1


Hd(Vp)


∫
Vp


σ(x) dx. (4.47)


By the uniform continuity property, on every cell Vp one has |σ(x)− σ̂p| 6 δ, thus
proving ‖σn − σ‖L∞(Y ) 6 δ for n large enough. This implies that σn converges to
σ uniformly, and a fortiori that limn→∞W2(σn, σ) = 0. Then,


W2(νn, σ) 6W2(νn, σn) + W2(σn, σ). (4.48)


Moreover, one can bound the Wasserstein distance explicitely between σn and νn by
considering the obvious transport plan on each of the subdifferentials (∂[ϕn]KY (p))p∈Pn :


W2
2(νn, σn) 6


∑
p∈Pn


diam(∂[ϕn]KY (p))µp 6 max
p∈Pn


diam(∂[ϕn]KY (p)). (4.49)


The second statement (4.46) follows from Eqs. (4.48), (4.49) and (4.44). �


Step 7. limn→∞W2
2(µn, νn) + E(νn) + U(σn) = W2


2(µ, σ) + E(σ) + U(σ)


Proof. The convergence of the first two terms follows from the Wasserstein conti-
nuity of the map (µ, ν) ∈ P(Y ) 7→W2


2(µ, ν) + E(ν). In order to deal with the third
term, we will assume that n is large enough, so that the densities σ, σn belong to
the segment Sε/2 = [ε/2, 2/ε]. The integrand U of the internal energy is convex on
R, and therefore Lipschitz with constant L on Sε/2, so that∣∣∣∣∫


Y


U(σn) dx−
∫
Y


U(σ(x)) dx


∣∣∣∣ 6 ∫
Y


|U(σn)− U(σ(x))|dx


6 L ‖σn − σ‖L∞(Y ) . �


5. Numerical results


5.1. Computation of the Monge-Ampère operator. In this paragraph we
explain how to evaluate the discretized internal energy of Gac


ϕ#µP , where ϕ is a
discrete convex function in KY (P ), and Y is a polygon in the euclidean plane.
Thanks to the equation


U(Gac
ϕ#µP ) =


∑
p∈P


U (µp/MAY [ϕ](p)) MAY [ϕ](p), (5.50)


one can see that the internal energy and its first and second derivatives can be easily
computed if one knows how to evaluate the discrete Monge-Ampère operator and
its derivatives with respect to ϕ. Our assumptions for performing this computation
will be the following:
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(G1) the domain Y is a convex polygon and its boundary can be decomposed as
a finite union of segments S = {s1, . . . , sk}


(G2) the points in P are in generic position, i.e. (a) there does not exist a triple
of collinear points in P and (b) for any pair p, q of distinct points in P ,
there is no segment s in S which is collinear to the bisector of [pq].


The Jacobian matrix of the discrete Monge-Ampère operator is a square matrix
denoted (JMAY [ϕ])p,q∈P , while its Hessian is a 3-tensor denoted (HMAY [ϕ])p,q,r∈P .
The entries of this matrix and tensor are given by the formulas


JMAY [ϕ]pq :=
∂MAY [ϕ](p)


∂1q
, (5.51)


HMAY [ϕ]pqr :=
∂2 MAY [ϕ](p)


∂1r∂1q
, (5.52)


where 1p denotes the indicator function of a point p in P . The goal of the remaining
of this section is to show how the computation of the Jacobian matrix and the
Hessian tensor are related to a triangulation which is defined from the Laguerre
cells by duality.


Abstract dual triangulation. Given any function ϕ on P , we introduce a notation
for the intersection of the Laguerre cell of P with Y , and we extend this notation
to handle boundary segments as well. More precisely, we set:


∀p ∈ P, V ϕ(p) := LagϕP (p) ∩ Y,
∀s ∈ S, V ϕ(s) := s.


(5.53)


We also introduce a notation for the finite intersections of these cells:


∀p1, . . . , ps ∈ P ∪ S, V ϕ(p1 . . . ps) := V ϕ(p1) ∩ ... ∩ V ϕ(ps) (5.54)


The decomposition of Y given by the cells V ϕ(p) induces an abstract dual triangu-
lation Tϕ of the set P ∪ S, whose triangles and edges are characterized by:


(i) a pair (p, q) in P ∪ S is an edge of Tϕ iff V ϕ(pq) 6= ∅;
(ii) a triplet (p, q, r) in P ∪ S is a triangle of Tϕ iff V ϕ(pqr) 6= ∅.


An example of such an abstract dual triangulation is displayed in Figure 2.
The construction of this triangulation can be performed in time O(N logN +k),


where N is the number of points and k is the number of segments in the boundary
of Y . The construction works by adapting the regular triangulation of the point
set, which is the triangulation obtained when Y = Rd, and for which there exists
many algorithms, see e.g. [1].


Jacobian of the Monge-Ampère operator. By Lemma 2.3, for any point p in P ,
the function ϕ 7→ MAY [ϕ](p) is log-concave on the set KY (P ). This function is
therefore twice differentiable almost everywhere on the interior of KY (P ), using
Alexandrov’s theorem. The first derivatives of the Monge-Ampère operator is easy
to compute, and involves boundary terms: two points p, q in P ,


JMAY [ϕ]pq =
H1(V ϕ(pq))


‖p− q‖
if q 6= p (5.55)


JMAY [ϕ]pq = −
∑
q∈P


(qp)∈Tϕ


H1(V ϕ(pq))


‖p− q‖
(5.56)


Note that every non-zero element in the square matrix corresponds to an edge in
the dual triangulation Tϕ.
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s3
s2


s1


s4


∂φHY (p1)


∂φHY (p2)


s1


s2


s4


p2
p1


s3


Figure 2. On the left, the intersection of power cells with a convex
polygon (in red), and on the right, the dual triangulation.


Hessian of the Monge-Ampère operator. We will not include the computation of
the second order derivatives, but we will sketch how it can be performed using the
triangulation Tϕ. First, we remark that thanks to our genericity assumption, for
every triangle pqr of Tϕ, the set V ϕ(pqr) consists of a single point, which we also
denote V ϕ(pqr). For any edge pq in the triangulation Tϕ, where p, q are two points
in P , the intersection V ϕ(pq) = V ϕ(q)∩ V ϕ(q) is a segment [x, y]. The endpoint x
of this segment needs to be contained in a third cell V ϕ(r) for a certain element r
of P ∪ S \ {p, q}, so that x = V ϕ(pqr). Similarly, there exists r′ in P ∪ S \ {p, q}
such that y = V ϕ(pqr′). One can therefore rewrite the length of V ϕ(pq) as


H1(V ϕ(pq)) = ‖V ϕ(pqr)− V ϕ(pqr′)‖ . (5.57)


The expression of the Hessian can be deduced from Equations (5.55)–(5.56) and
(5.57), and from an explicit computation for the point V ϕ(pqr). Moreover, to each
nonzero element of the Hessian one can associate a point, an edge or a triangle in
the triangulation Tϕ. More precisely:


HMAY [ϕ]pqr 6= 0 =⇒ p = q = r or (p = q and (pr) is an edge of Tϕ)


or (pqr) is a triangle of Tϕ.


In particular, the total number of non-zero elements of the tensor HMAY [ϕ] is at
most proportional to the number |P | of points plus the number |S| of segments.


5.2. Non-linear diffusion on point clouds. The first application is non-linear
diffusion in a bounded convex domain X in the plane. We are interested in the
following PDE, where the parameter m is chosen in [1 − 1/d,+∞). A numerical
application is displayed on Figure 3 .


∂ρ


∂t
= ∆ρm on X


∇ρ ⊥ nX on ∂X
(5.58)


When m = 1, this PDE is the classical heat equation with Neumann boundary
conditions. When m < 1, this PDE provides a model of fast dixffusion, while for
m > 1 it is a model for the evolution of gases in a porous medium. Otto [25]
reinterpreted this PDE as a gradient flow in the Wasserstein space for the internal
energy


Um(µ) =



∫
Rd
Um(ρ(x)) dx if µ� Hd, ρ :=


dµ


dHd
,


+∞ if not.
, (5.59)
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where Um(r) = rm(x)
m−1 when m 6= 1 and U1(r) = r log r. A time-discretization of


this gradient-flow model can be defined using the Jordan-Kinderlehrer-Otto scheme:
given a timestep τ > 0 and a probability measure µ0 supported on X, one defines
a sequence of probability measures (µk)k>1 recursively


µk+1 = arg min
µ∈P(X)


W2
2(µk, µ) + Um(µ) (5.60)


The energies involved in this optimization problem satisfy McCann’s assumption
for displacement convexity, and our discrete framework is therefore able to provide
a discretization in space of Equation (5.60) as a convex optimization problem. We
use this discretization in order to construct the non-linear diffusion for a finite point
set P0 contained in the convex domain X. Note that for this experiment, we do
not use the formulation involving the space of convex interpolates with gradient,
KGX(P ). For every function ϕ in KY (P ), and every point p in P , we select explicitely
a subgradient in the subdifferential ∂ϕKY (p) by taking its Steiner point [26].


We start with µ0 =
∑
p∈P δp/ |P | the uniform measure on the set P0, and we


define recursively



ϕk = arg min


{
1


2τ
W2


2(µk, Gϕ#µk) + U(Gac
ϕ#µk);ϕ ∈ KX(Pk)


}
µk+1 = Gϕk#µk,


Pk+1 = spt(µk+1)


, (5.61)


where Gϕ(p) is the Steiner point of ∂ϕKY (p). This minimization problem is solved
using a second-order Newton method. Note that, as mentioned in the remark fol-
lowing Theorem 3.1, the internal energy plays the role of a barrier for the convexity
of the discrete function ϕ. When second-order methods fail, one could also resort
to more robust first-order methods for the resolution of the optimization problem,
using for instance a projected gradient algorithm.


5.3. Crowd-motion with congestion. As a second application, we consider the
model of crowd motion with congestion introduced by Maury, Roudneff-Chupin
and Santambrogio [19]. The crowd is represented by a probability density µ0 on
a convex compact subset with nonempty interior X of R2, which is bounded by
a certain constant, which we assume normalized to one (so that we also naturally
assume that Hd(X) > 1). One is also given a potential V : X → R, which we
assume to be λ-convex, i.e. V (.)+λ ‖.‖2 is convex. The evolution of the probability
density describing the crowd is induced by the gradient flow of the potential energy


E(µ) =


∫
Rd
V (x) dµ(x), (5.62)


in the Wasserstein space, under the additional constraint that the density needs
to remain bounded by one. We rely again on time-discretization of this gradi-
ent flow using the Jordan-Kinderlehrer-Otto scheme. This gives us the following
formulation:


µk+1 = arg min
µ∈P(X)


1


2τ
W2


2(µk, µ) + E(µ) + U(µ), (5.63)


where U is the indicatrix function of the probability measures whose density is
bounded by one:


U(µ) =


 0 if µ� Hd and
dµ


dHd
6 1


+∞ if not.
(5.64)
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Figure 3. (Top) The original point set P0 in the square domain
X = [−2, 2]2 contains 2 900 points. (Bottom rows) The evolution of
the point cloud Pk at timesteps k = 5, 10, 20, 40, 80 with τ = 0.01 is
defined using Eq. (5.61) for various values of the exponentm. From
top to bottom, m takes increasing values in {0.6, 1, 2, 3}. Note
that the case m = 0.6 is outside of the scope of the Γ-convergence
theorem


In order to perform numerical simulations, we replace this indicatrix function by a
smooth approximation.


Uα(µ) =



∫
Rd
ρα(x)(− log(1− ρ(x)1/d) dx if µ� Hd and ρ :=


dµ


dHd
,


+∞ if not.
(5.65)
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Note that if Uα(µ) is finite, then the density of µ is bounded by one almost every-
where. Moreover, we have the following convexity and Γ-convergence results:


Proposition 5.1. (i) The energy Uα is convex under general displacement.
(ii) Uα Γ-converges (for the weak convergence of measures on X) to U as α


tends to +∞ ;
(iii) βU1 Γ-converges to U as β tends to 0.


Proof. The proof of (i) uses McCann’s theorem: one only needs rdU(r−d) to be
convex non-increasing and U(0) = 0, which follows from a simple computation.
(ii) The proof of the Γ-liminf inequality is obvious since Uα ≥ U and U is lower
semicontinuous. As for the Γ-limsup inequality, we proceed as follows: we first fix
µ ∈ P(X) such that U(µ) = 0 (otherwise, there is nothing to prove). Let us then
fix a set A ⊂ X such that Hd(A) > 1 and let m be the uniform probability measure
on A. For ε ∈ (0, 1), let us then define µε := (1 − ε)µ + εm so that µε has a
density bounded by 1−Cε where C := 1− 1


Hd(A)
> 0. Letting α→∞ and setting


εα ∼ α−1/2, one directly checks that lim supα Uα(µεα) = O(e−α
1/2


log(α)) = 0 =
U(µ) which proves the Γ-limsup inequality. For (iii), the proof is similar, choosing
εβ ∼ e−β


−1/2


as β → 0 for the Γ-limsup inequality. �


Numerical result. Figure 4 displays a numerical application, where we compute the
Wasserstein gradient flow of a probability density whose energy is given by


F(ρ) =


∫
X


V (x)ρ(x) dx+ αU1(ρ), (5.66)


where X = [−2, 2]2, and V (x) = ‖x− (2, 0)‖2 + 5 exp(−5 ‖x‖2 /2).


Note that the chosen potential is semi-convex. We track the evolution of a probabil-
ity density on a fixed grid, which allows us to use a simple finite difference scheme
to evaluate the gradient of the transport potential. From one timestep to another,
the mass of the absolutely continuous pushforward of the minimizer is redistributed
on the fixed grid.
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