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Abstract. We introduce a new numerical method to approximate partitions of a domain minimizing the sum of Dirichlet-
Laplacian eigenvalues of any order. First we prove the equivalence of the original problem and a relaxed formulation based
on measures. Using this result, we build a numerical algorithm to approximate optimal configurations. We describe numerical
experiments aimed at studying the asymptotic behavior of optimal partitions with large numbers of cells.
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1. Introduction and motivation. This paper deals with the optimal partition problem for Dirichlet-
Laplacian eigenvalues. Precisely, given a bounded open set D ⊂ R2, we are looking for a family of subsets
{Ωi}ni=1 such that

Ω1 ∪ · · · ∪ Ωn ⊆ D, Ωi ∩ Ωj = ∅ for i 6= j

and which minimizes

Jn(Ω1, . . . ,Ωn) =
n∑
i=1

λk(Ωi) (1.1)

among all possible such partitions. Above, λk(Ω) denotes the k-th eigenvalue of the Dirichlet-laplacian on
Ω, counted with multiplicity.

Existence of optimal partitions for problem (1.1) in the class of quasi-open sets was proved in [7]. For
k = 1 regularity and qualitative studies of the optimal partitions were obtained by Conti, Terracini, and
Verzini in [12] and Caffarelli, and Lin in [9]. Caffarelli and Lin obtained regularity results for the optimal
partition and estimates for the asymptotic behavior of (1.1) when n→ +∞. In particular, they conjectured
that for the optimal partition {Ω∗i }ni=1

n∑
i=1

λ1(Ω∗i ) ' n2λ1(H), (1.2)

where H is the regular hexagon of area 1 in R2. Roughly speaking this estimate says that, far from ∂D, a
tiling by regular hexagons of area |D|n is asymptotically close to the optimal partition.

A close problem, still for k = 1, was considered by Bonnaillie-Noël, Helffer and Vial in [4], where the
cost functional is replaced by

Ln(Ω1, . . . ,Ωn) = max
i=1...n

λ1(Ωi). (1.3)

We notice that for fixed n, problems (1.1) and (1.3) may have different solutions (see [7] for remarks in relation
with Payne conjecture). Nevertheless, Van den Berg conjectured the following asymptotic behavior :

lim
n→+∞

Ln(Ω∗1, . . . ,Ω
∗
n)

n
= λ1(H) (1.4)

It is quite easy to notice that, at least for smooth sets D, the asymptotic estimate (1.2) implies (1.4). The
main feature of the case k = 1 is that the cost function (1.1) is of energy type. Namely, it can be written as:

min
u1,...,un

{
n∑
i=1

∫
D

|∇ul|2 : ui ∈ H1
0 (D),

∫
D

u2
i = 1, uiuj = 0 for 1 ≤ i < j ≤ n

}
.

∗Support for the first author was provided in part by the National Science Foundation grant DMS-0605320. The numerical
experiments were performed using the National Science Foundation TeraGrid resources [14] provided by NCSA at the University
of Illinois at Urbana-Champaign and TACC at the University of Texas under the Resource Allocation TG-DMS060011N.
† Department of Mathematics, Louisiana State University, Baton Rouge LA 70803, USA, (bourdin@lsu.edu).
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This kind of energy formulation was used by Chang [11] (see also [10]) to carry out a numerical study of
optimal partitions of the disk. As expected, for m large enough, a regular hexagon tiling was observed.

The main purpose of this paper is to propose a numerical scheme for the approximation of the optimal
partitions of problem (1.1) for any k. Our method relies on the approximation of “true domains” by positive
Borel measures, the relaxation process introduced by Dal Maso and Mosco (see [13] and also Buttazzo and
Timofte [8]). Based on a density argument, we replace the unknown m-upple of domains (Ω1, . . . ,Ωn) by an
n-upple of functions (ϕ1, . . . , ϕn) such that

ϕl : D 7−→ [0, 1],
n∑
i=1

ϕi(x) = 1, a.e.x ∈ D

For each index i, the k-th eigenvalue associated to ϕi is defined by the k-th eigenvalue of{
−∆u+ C(1− ϕi)u = λk(ϕi)u in D,
u ∈ H1

0 (D).

We notice that if ϕi equals the characteristic function 1Ωi
of a smooth set Ωi and C → +∞, then λk(ϕl)→

λk(Ωl).
In this paper we propose a rigorous proof of the equivalence between problem (1.1) and our relaxed

formulation when C → +∞ providing a complete justification of our numerical approach. Based on this
method, we performed numerical simulations for k = 1, 2, 3 and large values of n. As expected, and up
to boundary effects, in our numerical experiments, we obtain partitions that are very close to a tiling by
regular hexagons in the case k = 1. Provided that the conjecture (1.2) is true, it can be easily proved that
the asymptotic optimal partition for k = 2 is made of unions of pairs of regular hexagons (of measure |D|2n ).
Again our numerical computations illustrate this fact.

Surprisingly as a consequence of our theoretical analysis, for every k ∈ N we prove the existence of an
optimal partition with a mild regularity property, precisely : it is not consisting of quasi-open but open
sets. Usually, the gain of regularity from quasi-open to open is a quite difficult task working only for energy
functionals (see [5]).

2. Analysis of the optimal partition problem. Let d ≥ 2 and D ⊆ Rd be a bounded open connected
set. For every open (or quasi-open) subset A ⊆ D we denote by λk(A) the k-th Dirichlet eigenvalue of the
Laplace operator (multiplicities are counted){

−∆u = λk(A)u in A
u = 0 on ∂A.

The previous equation has to be understood in a weak sense:

u ∈ H1
0 (A), ∀ϕ ∈ H1

0 (A)
∫
A

∇u · ∇ϕdx = λk(A)
∫
A

uϕdx,

the eigenvalues being given by the Courant Fischer formula

λk(A) = min
S∈Sk

max
u∈S

∫
A
|∇u|2dx∫
A
u2dx

,

where Sk denotes the family of subspaces of dimension k of H1
0 (A). Let

On = {(Ω1, ..,Ωn) : Ωi open,Ωi ⊆ D,Ωi ∩ Ωj = ∅, i 6= j}.

Given k, n ∈ N, the optimal partition problem reads

inf
(Ω1,..,Ωn)∈On

n∑
i=1

λk(Ωi) := O(k, n). (2.1)
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In order to justify the numerical computations, we first introduce a relaxed version of the problem. Let

Qn = {(A1, .., An) : Ai quasi-open, Ai ⊆ D, cap(Ai ∩Aj) = 0, i 6= j},

where cap(U) stands for the capacity of U , and consider the problem

inf
(A1,..,An)∈Qn

k∑
i=1

λk(Ai) := Q(k, n). (2.2)

For every k ≥ 1, the existence of a solution of problem (2.2) was proved in [7].
We begin with a first result asserting that problem (2.2) is indeed a relaxed version of problem (2.1).

We rely on the γ-convergence which is a suitable topology in the family of quasi-open sets for which the
eigenvalues are continuous (see [6]).

Theorem 2.1. The set On is dense in Qn for the γ-convergence. As a consequence, for every k, n ∈ N
we have

O(k, n) = Q(k, n).

Proof. Clearly, On ⊆ Qn. In order to prove the density for the γ-convergence, we consider (A1, .., An) ∈
Qn. For every Ai, there exists a sequence of open sets U ji such that

Ai ⊆ U ji , a.e., and cap(U ij \Ai)→ 0 when j →∞.

For each U j1 there exists a smooth open subset V j1 such that

V
j

1 ⊆ U
j
1 , dγ(U j1 , V

j
1 ) ≤ 1/j.

We set Ωj1 = V j1 and observe that Ωj1
γ→ A1, since

dγ(A1,Ω
j
1) ≤ dγ(A1, U

j
1 ) + dγ(U j1 , V

j
1 ).

For U j2 there exists a smooth open subset V j2 such that

V
j

2 ⊆ U
j
2 , dγ(U j2 \ V

j

1, V
j
2 \ V

j

1) ≤ 1/j.

We set Ωj2 = V j2 \ V
j

1 and observe that Ωj2
γ→ A2. Indeed,

dγ(A2,Ω
j
2) ≤ dγ(A2, U

j
2 \ V

j

1) + dγ(U j2 \ V
j

1, V
j
2 \ V

j

1).

The second term on the right hand is no greater than 1/j, while for the first term we notice that

cap(A2 \ (U j2 \ V
j

1)) = cap(A2 ∩ V
j

1) ≤ cap(A2 ∩ U j1 ) ≤ cap(U j1 \A1)→ 0,

and

cap((U j2 \ V
j

1) \A2) ≤ cap(U j2 \A2)→ 0.

Since in general cap(An∆A)→ 0 implies An
γ→ A, we get that Ωj2

γ→ A2.
We continue the same procedure taking Ωj3 = V j3 \ (V

j

1 ∪ V
j

2), where V j3 is chosen such that

dγ(V 3
j \ (V

j

1 ∪ V
j

2), U3
j \ (V

j

1 ∪ V
j

2)) ≤ 1/j,

and iterating the same construction, we obtain that (Ωj1, ..,Ω
j
n) ∈ On and

(Ωj1, ..,Ω
j
n)

γn

−→ (A1, .., An).
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The second assertion of the theorem is an immediate consequence of the density result.
Let M be a measurable subset of D. There exists a quasi-open set A such that

H1
0 (A) = {u ∈ H1

0 (D) : u = 0 a.e. on D \M}.

This set is precisely the union of all finely open sets U such that

1U ≤ 1M a.e.

This remark provides a natural way to extend the optimal partition problem to partitions of n measurable,
pairwise disjoint sets. Let ϕ : D → [0, 1] be a measurable function. For any C > 0, by λk(ϕ,C), we denote
the k-th eigenvalue (counting multiplicity) of −∆u+ C(1− ϕ)u, i.e.{

−∆u+ C(1− ϕ)u = λk(ϕ,C)u in D
u ∈ H1

0 (D) (2.3)

Again, we have

λk(ϕ,C) = min
S∈Sk

max
u∈S

∫
D
|∇u|2 + C(1− ϕ)u2dx∫

D
u2dx

,

Sk being the family of subspaces of H1
0 (D) of dimension k. We introduce the set

M = {(ϕ1, .., ϕn)|ϕ : D → [0, 1] measurable
n∑
i=1

ϕi = 1 a.e. D},

and the problem

inf
(ϕ1,..,ϕn)∈M

n∑
i=1

λk(ϕi, C) := M(C, k, n). (2.4)

Proposition 2.2. Problem (2.4) admits at least one solution (ϕC1 , .., ϕ
C
n ).

Proof. The existence of a solution is a consequence of the weak * L∞(D) sequential compactness of M

and of the fact that if ϕh
w∗−L∞(D)−→ ϕ then C(1− ϕh)dx

γ−→ C(1− ϕ)dx.
Theorem 2.3. Let k = 1. The mapping

ϕ −→ λ1(ϕ,C)

is concave and every solution of problem (2.4) is an extremal point of M .
Proof. We give the details of the proof for n = 2. It is straightforward to generalize the following

arguments for n > 2.
Let us first establish the concavity of

ϕ −→ λ1(ϕ,C)

Let ϕ1, ϕ2 ∈ L∞(D, [0, 1]) and θ ∈ (0, 1). Then

λ1(θϕ1 + (1− θ)ϕ2, C) =

∫
D
|∇u|2 + C[1− θϕ1 − (1− θ)ϕ2]u2dx∫

D
u2dx

where u is a non zero first eigenfunction associated to λ1(θϕ1 + (1− θ)ϕ2, C). Moreover, by definition of the
Rayleigh quotient we have

λ1(θϕ1 + (1− θ)ϕ2, C) = θ

∫
D
|∇u|2 + C(1− ϕ1)u2dx∫

D
u2dx

+ (1− θ)
∫
D
|∇u|2 + C(1− ϕ2)u2dx∫

D
u2dx

,
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so that

λ1(θϕ1 + (1− θ)ϕ2, C) ≥ θλ1(ϕ1, C) + (1− θ)λ1(ϕ2, C), (2.5)

which proves the concavity of the functional.
Let us prove now that every solution of problem (2.4) is an extremal point of M . First we notice

that if equality occurs in (2.5), then ϕ1 − ϕ2 must be a constant function. Indeed, if equality occurs, the
eigenfunction u associated to λ1(θϕ1 + (1− θ)ϕ2, C) is also a first eigenfunction of λ1(ϕ1, C) and λ1(ϕ2, C).
Subtracting the two equations of type (2.3) satisfied by u with ϕ = ϕ1 and ϕ = ϕ2 we get

ϕ1(x)− ϕ2(x) =
λ1(ϕ2, C)− λ1(ϕ1, C)

C
a.e. x ∈ D

since u 6= 0 a.e. on D.
Assume now that (ϕ1, .., ϕn) is an optimal solution for problem (2.4) and not an extremal point. We

may assume the existence of ε > 0, a measurable set A such that 0 < |A| < |D| and

A ⊆ {ε < ϕ1 < 1− ε} ∩ {ε < ϕ2 < 1− ε}.

We have from the concavity property

λ1(ϕ1, C) ≥ 1
2
λ1(ϕ1 + ε1A, C) +

1
2
λ1(ϕ1 − ε1A, C),

λ1(ϕ2, C) ≥ 1
2
λ1(ϕ2 − ε1A, C) +

1
2
λ1(ϕ2 + ε1A, C). (2.6)

or

λ1(ϕ1, C) + λ1(ϕ2, C) ≥ min{λ1(ϕ1 + ε1A, C) + λ1(ϕ2 − ε1A, C), λ1(ϕ1 − ε1A, C) + λ1(ϕ2 + ε1A, C)}.

Finally, we have

λ1(ϕ1, C) + λ1(ϕ2, C) = λ1(ϕ1 + ε1A, C) + λ1(ϕ2 − ε1A, C) = λ1(ϕ1 − ε1A, C) + λ1(ϕ2 + ε1A, C).

Since equality holds in all previous inequalities we should have that ϕ1 +ε1A−(ϕ1−ε1A) = 2ε1A is constant
in D. This last assertion is only possible only A = D, in contradiction with the assumption |A| < |D|.

Theorem 2.4. We have

lim
C→∞

M(C, k, n) = O(k, n). (2.7)

Moreover, if (ϕC1 , .., ϕ
C
n ) is an optimal solution for problem (2.4) and ϕCi

w∗L∞−→ ϕi then there exists an optimal
solution (Ai)i=1,..,n for problem (2.2) such that Ai ⊆ {ϕi = 1} a.e.

Proof. There exists a constant K such that for every C > 0 and for every i = 1, .., n∫
D

C(1− ϕCi )wCi dx ≤ K and ‖wCi ‖ ≤ K

where wCi is the solution of {
−∆wCi + C(1− ϕCi )wCi = 1 in D

wCi ∈ H1
0 (D)

Up to extracting a subsequence we have

wCi
H1

0 (D)
⇀ wi,
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and we get ∫
D

(1− ϕi)widx = 0

hence

wi = 0 a.e. on {ϕi < 1}.

We define the quasi-open sets Ai = {wi > 0} and notice that (Ai)i satisfy

n∑
i=1

λ1(Ai) ≤ lim
C→∞

M(C, k, n). (2.8)

For the converse inequality, we fix a partition (Ω1, ..,Ωn) consisting of open, smooth and disjoint sets. We
take

ϕi = 1Ωi

and observe that

M(C, k, n) ≤ lim
C→∞

n∑
i=1

λ1(C,ϕi) =
n∑
i=1

λ1(Ωi).

Using Theorem 2.1, and taking the infimum in the right hand side, we get (2.7).
The second assertion of the theorem is a consequence of inequality (2.8).

Theorem 2.5. If d = 2, for every k ≥ 1 there exists a solution of (2.1) consisting of open sets.
Proof. Thanks to Theorem 2.1, we may take a minimizing sequence (Ωh1 , ..,Ω

h
n) indexed by h consisting

on polygonal disjoint sets. Assume that R2 \ Ωh1 has more than k(n − 1) + 1 connected components. Since
for every i = 2, .., n, the k − th eigenvalue on Ωhi is given by at most k connected components, one can take
the unused connected components of R2 \ Ωh1 and add them to Ωh1 in such a way that the cost functional
decreases. The same procedure is repeated for every Ωhi , and finally we may assume that in the minimizing
sequence every R2 \ Ωhi has at most k(n− 1) + 1 connected components.

Using Šverák’s result (which is only valid in R2, see [17]) and the compactness of the Hausdorff comple-
mentary topology (see [6]), we can extract a subsequence (still denoted using the same index) such that

Ωhi
Hc

−→ Ωi and λk(Ωhi )→ λk(Ωi).

Since the Ωi are pairwise disjoint open sets, they form a solution of problem (2.1).

3. Implementation and numerical results. The key to our numerical approach is the approximation
Theorem 2.4. In order to obtain an approximation of the minimizers of (1.1), we fix C “large enough”, and try
to solve problem (2.4). In all the numerical experiments presented below, we assume that Ω = (0, 1)× (0, 1),
and use first order finite differences to represent the functions ϕl and their associated eigenvectors ul. We
decompose the domain D into a N ×N grid with spacing h = 1/(N − 1). In order to simplify notations, we
consider a renumbering operator I : (0, N − 1)× (0, N − 1) 7→ 0, N2 − 1 such I(i, j) = jN + i. We refer to
the components of a discrete field U as Ui,j or UI(i,j) (which we abbreviate as UI when there is no risk of
confusion) depending on wether we want to insist on the spatial relation between the components or U or not.
More precisely, to any ϕl ∈ H1

0 (D), we associate a vector Φl ∈ RN×N such that [Φl]i,j = ϕl((i−1)h, (j−1)h),
1 ≤ i, j ≤ N . By δ2

x and δ2
y, we denote the classical finite difference operators, i.e. for any vector U ∈ RN×N

[
δ2
xU
]
i,j

=
Ui−1,j − 2Ui,j + Ui+1,j

h2
,[

δ2
yU
]
i,j

=
Ui,j−1 − 2Ui,j + Ui,j+1

h2
.
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To each Φl, we associate the k-th Dirichlet eigenpair (λk,l(Φl), Uk,l(Φl)) (which we will denote by (λk,l, Uk,l)
when there are no confusion possible) of the discrete operator A(Φl) defined by

A(Φ)U :=
[
−(δ2

x + δ2
y) + CId

]
U − CM(Φ)U,

where [M(Φ)]I,J = δI,J [φ]I , for any 0 ≤ I ≤ N2−1, and Id denotes the identity matrix of dimension N ×N .
Accounting for the homogeneous Dirichlet boundary conditions, we have then

[A(Φl)Uk,l(Φl)]I = λk,l(Φl) [Uk,l(Φl)]I , (3.1)

for any I corresponding to an interior node I = I(i, j), 1 ≤ i, j < N − 1, and Uk,l(Φl) otherwise, and our
discrete problem is

inf

{
Jn (Φ1, . . . ,Φn) : Φl ∈ RN×N , 0 ≤ [Φl]I ≤ 1,

n∑
l=1

[Φl]I = 1, 0 ≤ I < N2, 1 ≤ l ≤ n

}
, (3.2)

where the discrete objective function Jn is defined by

Jn (Φ1, . . . ,Φn) :=
n∑
l=1

λk,l(Φl).

The main difficulty in tailoring a numerical method for this problem is due the non-convexity of Jn, as stated
in Theorem 2.3. As we are interested in the asymptotic behavior of the partitions function when n becomes
large, the total number of degrees of freedom in the problem can become quite large (in the experiment
presented in Figure 3.2, we have N = 505 and n = 512, leading to over 130,000,000 degrees of freedom),
and to our knowledge, there are no global optimization algorithm capable of solving non-convex problems
of this size. We note that the derivative of the objective function Jn with respect to the components of
each of the Φl are easily obtained using a classical method in optimal design (see [3], for instance). We
first differentiate (3.1) with respect to the I-th component of Φl (I corresponding to an interior node of the
discrete domain):

A(Φl)
∂Uk,l(Φl)
∂[Φ]I

− C ∂M(Φl)
∂[Φ]I

Uk,l(Φl) =
∂λk,l(Φl)
∂[Φ]I

Uk,l(Φl) + λk,l(Φl)
∂Uk,l(Φl)
∂[Φ]I

.

Taking the dot product with Uk,l(Φl) on both side gives

U tk,l(Φl)A(Φl)
∂Uk,l(Φl)
∂[Φ]I

− CU tk,l(Φl)
∂M(Φl)
∂[Φ]I

Uk,l(Φl)

=
∂λk,l(Φl)
∂[Φ]I

U tk,l(Φl)Uk,l(Φl) + λk,l(Φl)U tk,l(Φl)
∂Uk,l(Φl)
∂[Φ]I

.

Noticing now that the operator A(Φ) is self-adjoint, and using (3.1) we obtain

−CU tk,l(Φl)
∂M(Φl)
∂[Φ]I

Uk,l(Φl) =
∂λk,l(Φl)
∂[Φ]I

U tk,l(Φl)Uk,l(Φl).

Last, we notice that
[
U tk,l(Φl)

∂M(Φl)
∂ΦI

Uk,l(Φl)
]
J

= [Uk,l(Φl)]
2
I δI,J , so that

[
∂λk,l(Φl)
∂[Φ]I

]
J

= −C
[Uk,l(Φl)]

2
I δI,J

U tk,l(Φl)Uk,l(Φl)
,

and with the convention that the eigenvectors Uk,l are normalized, we obtain the final expression for the
sensitivity of λk,l with respect to each component of each Φ field:[

∂λk,l(Φp)
∂[Φ]I

]
J

=

{
−C [Uk,l(Φl)]

2
I if l = p and I = J,

0 otherwise.
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3.1. Minimization algorithm. From Theorem (2.3), we know that the functional Jn is concave, (at
least when k = 1) and expect therefore that it admits many local minima. Due to the overall size of the
problem, global minimization approaches are not practical. Instead, our numerical method is based on a
projected-gradient descent with adaptive step described in Algorithm 3.1, where ΠSn−1 denotes a projection
operator over the n− 1 dimensional unit simplex Sn−1 defined by

Sn−1 =

{
X = (X1, . . . , Xn) ∈ [0, 1]n :

n∑
l=1

Xl = 1

}
.

Note that since each λk,l depends only on Φl, the parallelization of (3.2) is very natural. In our implementa-

Algorithm 1 General form of the projected gradient algorithm
Require: α (step), αmin, αmax, ω, ε (tolerance), pmax

1: p = 1
2: repeat
3: for l = 1 to n do
4: Compute the eigenpair (λk,l, Uk,l) of A(Φl)
5: Φl ← Φl − α∇Φl

λk,l
6: end for
7: Φl ← ΠSn−1Φl, l = 1, . . . , n.
8: Compute Jn := Jn(Φ1, . . . ,Φn)
9: if Jp ≤ Jp−1 then

10: α← min((1 + ω)α, αmax)
11: else
12: α← max(αmin, (1− ω)α)
13: end if
14: p← p+ 1
15: until p = pmax or supi,j,l |αΠSn

(Φl)I | ≤ ε

tion, we distributed each partition function Φl on its own processor. We relied on PETSc [2, 1] for the main
parallel infrastructure and distributed linear algebra operations, and used m uncoupled eigenvalues solvers
provided by SLEPc [15]. The most computationally intensive part of this algorithm is the evaluation of the
eigenpair (λk,l(Φl), Uk,l(Φl)), which does not require any inter-processor communication. In Algorithm 3.1,
the time spent in this step is virtually independent of the number of cells m. The I/O operations can also
be distributed in a trivial way. The most communication intensive part of the algorithm is the projection
step, which can be achieved using a fixed number of all-to-one operations on the partition functions Φl, so
the overall implementation of perfectly scalable.

Of course, we cannot guaranty that such a method will lead to the global minimizer of a non-convex
energy. In particular, the concavity of Jm implies that the global minimizers of (2.4) lie on the boundary
of the admissible simplex, which by definition is not a regular set. Roughly speaking, this means that in
the course of the minimization algorithm, the Φl evolve rapidly toward the closest vertex of Sn at which
point they cannot move anymore, so that the outcome of the minimization algorithm depends strongly on
the initial guess. Figure 3.1 illustrates this sensitivity. We used an orthogonal projection operator over
the unit simplex devised in [16]. In order to simulate the effect of a large number of cells on a reasonably
sized domain, we used periodic boundary conditions for the Φ and U fields, and 16 cells.1 The domain
size is the unit square discretized in 200 × 200 nodes, and the parameter C is 10,000. We solved the same
problem several times, using randomly generated initial fields. The first row represents a composite map of
the functions Φl obtained by plotting

∑
l lΦl, the second represents the sum of associated eigenvalues.

1This choice is not innocent. It is of course impossible to construct a periodic paving of R2 by regular hexagons with
periodicity cell the unit square. However, it is possible to do so using 4n2, n ∈ N slightly flattened regular hexagons. If
conjecture 1.2 holds, it is reasonable to expect that such a paving realizes the global minimizer of Jm in this setting.
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Fig. 3.1. Dependence on the initial guess, using an orthogonal projection step. The initial values of the fields Φ are
chosen randomly. The value of the objective function upon convergence is (left to right) 2,095.2, 2,108.5, 2,100.7, and 2,146.3

In order to partially alleviate this effect, we then implemented the simple projection operator defined by

[ΠSn−1Φl]I =
|[Φl]I |∑n
i=1 |[Φi]I |

.

Note that this operator is not an orthogonal projection operator and instead tend to keep the Φ in the
middle of the faces of the target simplex (see the comparison of the effect of both projection in Figure 3.2).
The effect of such an operator is double edged: it tends to prevent the Φ’s from becoming “stuck” at the
vertices of the unit simplices, but at the same time makes the actual minimizers virtually unreachable.

Fig. 3.2. Behavior of the projection operators. The black dots represent Φl and Φl − α∇Φl
λk,l as labeled. The red ones

are the orthogonal projection of Φl − α∇Φl
λk,l, the green ones its simple projection. Simple projection has a lesser tendency

to “send” the functions Φl towards the vertices of Sn−1.

We then combined both operators: in step 7 of Algorithm 3.1, we used the simple algorithm until we
reach convergence, then restart the computation using the orthogonal projection step. Figure 3.3 displays
the outcome of this approach. The parameters are that of Figure 3.1, and the initial guess for the Φl is
the same as in the leftmost experiment of the aforementioned figure. Upon convergence, we still obtain a
non-regular tiling, whose energy is lesser than that obtained using only orthogonal projection. As the size
of the search space is very large, convergence to a local minimizer is very likely. Our final algorithm uses
a implemented a multi-level approach akin to a continuation method to address that issue. We use the
simple projection algorithm and upon convergence of Algorithm 3.1 project the solution onto a finer grid,
and iterate this process. After several grid refinement, we switch to the orthogonal projection. Figure 3.4
displays the numerical results obtained using this approach for the problem solved in Figures 3.1 and 3.3. We
tested this approach using several initial conditions. In each case, we obtained a regular paving by hexagons,
as expected. All the experiments presented below were obtained using the multi-level algorithm.
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Fig. 3.3. The problem from Figure 3.1(left) solved using a combination of simple and orthogonal projection. The leftmost
figures represents the Φ and U fields upon convergence of the minimization algorithm using simple projection. Note how the
functions Φ are not piecewise constant with values in {0, 1}. The rightmost figure corresponds to the final result obtained
by using the orthogonal projection, starting from the configuration in th left. Compare the value of the objective function at
2,145.0 (left) and 2,073.8 (right) to that of the previous computations.

Fig. 3.4. The same problem is solved again using the simple projection on increasingly refined grids (4 leftmost figures)
then using the orthogonal projection on the final grid (right). The grid sizes are (from left to right) 25×25, 50×50, 100×100,
and 200× 200. The objective function upon convergence is (from left to right) 1,902.1, 2,033.8, 2,095.7, 2,124.6, and 2,048.8

3.2. Numerical experiments. We were able to run a series of large computations on parallel super-
computers at the Texas Advanced Computing Center. In Figure 3.2, the domain is again the unit square.
Periodicity boundary conditions are not used, as the number of cell (n = 384) is large enough that we expect
that the effect of boundary conditions vanishes in the center of the domain. The computations were run
on four layers of recursively refined grid of respective dimension (64 × 64), (127 × 127), (253 × 253), and
(505× 505). The parameter C is 105, the tolerance parameter ε = 106, the bounds on the admissible steps
are αmin = 1, αmax = 104. We used only the simple projection operator, and the final objective functions
on each grid are 1.602 106, 1.248 106, 1.176 106, and 1.189 106. We observe that the solution corresponds to
local patches of tiling by regular hexagons, as we would expect from a “good” local minimizer.

We obtained similar results while running the same computation of 512 processors, for 512 cells. The
fields Φ and U are represented using the usual convention and the final energies are 2.342 106, 2.243 106,
2.024 106, and 2.051 106. Again, the local geometry away from the edges of the domain is that of a network
of regular hexagons.

3.3. Extensions and conclusions. Our algorithm can easily be adapted to objective function involv-
ing higher order eigenvalues of linear combination of eigenvalues of different order. A classical numerical issue
in this case comes from the potential non-differentiability of multiple eigenvalues with respect to changes
of the function Φ. We did not try to address this problem, but obtained interesting results nevertheless.
Figure (3.7) represent the Φ fields obtained with n = 8 for k = 2 and k = 3, respectively, using periodic
boundary conditions. As explained in the introduction if (1.2) holds, the optimal partition for k = 2 is
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Fig. 3.5. Optimization of the sum of the first eigenvalue of the Dirichlet Laplacian on 384 cells with C = 105. First
row: cell shape on recursively refined grids (64× 64), (127× 127), (253× 253), and (505× 505). Second row: sum of the first
eigenvalues on the same grids.

Fig. 3.6. Optimization of the sum of the first eigenvalue of the Dirichlet Laplacian of 512 cells with C = 105. First
row: cell shape on recursively refined grids (64× 64), (127× 127), (253× 253), and (505× 505). Second row: sum of the first
eigenvalues on the same grids.

obtained by a partition made of pairs of regular hexagons. Again, modulo the flattening necessary to achieve
periodicity on a unit cell, this is the configuration that we observe. For k = 3 (Figure 3.7-right), we obtain
a periodic tiling by non-regular hexagons, which can be proven to be a sub-optimal solution, as a tiling
by regular hexagons would lead to a lower energy. Again, this is most certainly due to the fact that our
objective function admits a great deal of local minima, which are difficult to avoid in optimization problems
of this size. An additional difficulty when k ≥ 2 is that the k-th eigenvalue of an optimal cell is expected to
have multiplicity greater than 1 hence and may not be differentiable.

Noticing that the analysis and algorithm are not restricted to the two–dimensional case, we ported our
program to the 3D case, but were unable to obtain any meaningful results. We believe that the convergence
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Fig. 3.7. Optimal partitions of the sum of the second (left) and third (right) eigenvalues of the Dirichlet Laplacian for
n = 8 cells. The periodicity is highlighted by repeating the unit cell 9 times on a two dimensional lattice.

rate of our primitive algorithms is too slow to converge to a decent local minimizer in a reasonable time in 3D,
when the dimension of the space of admissible fields Φ becomes very large, and the eigenvalue computation
cannot be performed on a single processor in an acceptable time. Perhaps the current implementation needs
to be improved by associating groups of processors to each function Φ (so as to improve the performance of
the eigenvalue solver), and implement a more efficient minimization algorithm in order to reduce the number
of necessary function evaluations in the minimization loop.
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