Université Joseph Fourier – Grenoble I

L2 : Licence Sciences et Technologies

UE STA230 : midterm exam November 7th, 2013 with answers

Duration 2h. Autorized documents: statistics tables and one A4 sheet handwriten (two pages). Calculators are authorized.

Exercise 1. (4pts) A group of high-altitude natives has been observed. Among them, 64% were Tibetans, the others were Aymara (from Bolivia). The proportion of persons having a low hemoglobin concentration (i.e. below 16 gm/dl), was 75% among Tibetans, 25% among Aymaras. For a person chosen at random in the sample, let A and B be the two events:

- A: that person is Aymara,
- B: that person has a low hemoglobin concentration.
- 1. Give the values of $\mathbb{P}[A]$, $\mathbb{P}[B \mid A]$ and $\mathbb{P}[B \mid \overline{A}]$. 0.36, 0.25, 0.75
- 2. Compute $\mathbb{P}[B \text{ and } A]$, and $\mathbb{P}[B \text{ and } \overline{A}]$. [0.09, 0.48]
- 3. What proportion of the whole group had low hemoglobin concentration? 0.57
- 4. Knowing that Mr. T. had a high hemoglobin concentration, what are the chances that he came from Bolivia? 0.628

Exercise 2. (7pts) Actually, the hemoglobin concentration measurements of Mr. T. fluctuated independently from one day to another. It was estimated that the probability that he has a low hemoglobin concentration on a given day is 0.7.

- 1. Let X be the number of days Mr. T.'s hemoglobin concentration was low, out of 5 different days.
 - 1a) What probability distribution do you propose for X? Give its parameters. $\mathcal{B}(5, 0.7)$
 - 1b) Compute the probability that Mr. T's hemoglobin concentration is measured as low on at least 3 out of 5 consecutive days. 0.8369
- 2. Mr. T.'s hemoglobin concentration has been measured on 120 days. Let Y be the random variable equal to the number of low measurements.
 - 2a) What probability distribution do you propose for Y? Give its parameters. $\mathcal{B}(120, 0.7)$
 - 2b) The probability distribution of Y is approximated by a normal distribution. What theoretical result justifies this approximation?

- 2c) Give the parameters of the approximating normal distribution. $|\mathcal{N}(84, 25.2)|$
- 2d) Using the normal approximation, compute the probability that at least 80 measurements were low. 0.7872
- 2e) Using the normal approximation, find which number of days d is such that, with probability 0.90, Mr. T.'s measurements were low on at least d days. $\boxed{m \ge 78}$

Exercise 3. (9pts) The hemoglobin concentration in any given population follows a normal distribution. The results for means and standard deviations reported in the reference cited below are the following (unit: gm/dl).

- Tibetan men: $\mu = 15.6, \sigma = 1.5$
- Tibetan women: $\mu = 14.2, \sigma = 1.1$
- Aymara men: $\mu = 19.1, \sigma = 1.7$
- Aymara women: $\mu = 17.8, \sigma = 2.1$
- 1. What proportion of Tibetan men have a hemoglobin concentration lower than 16? 0.6051
- 2. What proportion of Aymara women have a hemoglobin concentration lower than 16? 0.1957
- 3. If a Tibetan man and an Aymara woman are taken at random, what are the chances the Tibetan man has a lower hemoglobin concentration than the Aymara woman? 0.8030
- 4. What value of hemoglobin concentration is such that 90% of Tibetan women are below? 15.61
- 5. What interval of hemoglobin concentration, centered on the expectation, contains 90% of Aymara men? [16.3; 21.9]
- 6. The values given above were actually estimated on large enough samples. For Tibetan men the sample size was n = 75: $\overline{X} = 15.6$, $\sqrt{S^2} = 1.5$. Give a 95% confidence interval for the expected hemoglobin concentration among Tibetan men. [15.26; 15.94]
- 7. All results in the reference below are given in terms of intervals $[\overline{X} \frac{\sqrt{S^2}}{\sqrt{n}}; \overline{X} + \frac{\sqrt{S^2}}{\sqrt{n}}]$. What is the confidence level of such an interval? $\boxed{0.6827}$
- 8. On a sub-sample of 14 Aymara women, a mean hemoglobin concentration of 18.7, with standard deviation 1.6 was observed. Assuming that the theoretical σ is unknown, give a 98% confidence interval for μ . [17.52; 19.88]
- 9. For that same sample, give a 98% confidence interval for σ . [1.13; 2.96]

Reference: C. M. Beall et al. Hemoglobin concentration of high altitude Tibetans and Bolivian Aymara, American Journal of Physical Anthropology, 106:385–400 (1998)