Modélisation par Processus Gaussiens

> Notations
Computer code f : RP — R
Inputs x = (a21,...,: P) e RP
Output y(x)
Observations (X, yz:),;zlm_,n

=> learning sample X, = [XT, x L

2 Model: Output seen as realization of stationary Gaussian process

V(%) = folx) + W(x)
with :
* fo the mean function or trend fo(x) = Z';:l Bifi(x) = F(x)3

* W(x)a stationary centred Gaussian process (E[W/(x)] = O ) with variance
o 2 and correlation function R:

Cov(W(x),W(x)) = c(x,x) = 62R(x-x)



= Joint distribution for the sample locations X, and a new location x*

Y (X )y e~ N | s KO
s £ S k() o2

with Fy = [f(x1), ..., f(x,)]" the vector of the mean function at sample locations

> g the covariance matrix at sample locations Xs
k(x*) the covariance vector between x and sample locations Xs

> Conditional distribution
Y (X)) oy, ~ N (%), (%)
H(x®) = E[Y (MY (X ) = Y11= f(x) + k() T (¥ — Fy)
avec{&“z(x*) =Var[Y (x*)|Y (X;) =Y 1= 02— k(x*)" 23 k(x*)
The conditional mean u(x*) serves as the predictor at location x *

The conditional variance 62(x*) serves as the prediction variance



= Maximum likelihood estimators for the hyperparameters

Correlation parameters, called hyperparameters, v» and R denoted as R,

Provided that ¢ is known, regression parameters obtained by generalized least
square estimator :

S —1 —1 7T p—1
B = (F.R;'F,)'FIRY,

MLE estimator of o2 is deduced

o2 = %(Ys ~F.3)"R; (Y, — F.3)

Estimation of hyperparameters consists in solving the minimization problem :

Y* = arg n}/}n o2 det(R¢)37



Surrogate model validation

> Validation of metamodel accurracy

s Study of residuals computed:
= on a test sample
= Or by cross validation

*Predictivity coefficient Q*:
- Q? estimated by cross validation on practical cases

> [)A’(xo') )—y @ ]2 YO = p(x®) tion
Q2 =1——= S observed data
(1) () AL .
,Z::‘ [Y n ZZZIZ Y J Y = E[Y(x")Y(X, _,) =Y, _GP metamodel prediction

by cross validation

Closer to one the Q% better the accuracy.



