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Part III

From variance-based to more general sensitivity indices: I will present
recent results on sensitivity analysis targeted to the analysis of models
with outputs in general metric spaces.

See, e.g., Da Veiga et al. (2021).
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We have seen in Part II that is possible to extend variance based GSA
for Y valued in Rp or in a separable Hilbert space H (see (Da Veiga
et al., 2021, Chapter 3, Section 3.3) and references therein).

In the following, one wants to go to more complex outputs, e.g.,
considering

M : Rd → Y

with Y not necessarily a Hilbert space.

Also, one wants to investigate sensitivity beyond variance.

The topic is in full expansion. We refer to (Da Veiga et al., 2021,
Chapter 6) for a recent list of references.
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Sensitivity indices based on the Cramér-von-Mises distance

Let Y =M(X1, . . . ,Xd ) ∈ Rp be the code output and F be its
cumulative distribution function defined as

F (t) = P (Y 6 t) = E
[
1{Y6t}

]
= E [Z (t)] , t = (t1, . . . , tp) ∈ Rp.

Let F u(t) be the conditional cumulative distribution function of Y
conditionally on Xu defined as

F u(t) = P (Y 6 t |Xu) = E
[
1{Y6t}|Xu

]
= E [Z (t)|Xu] .

We perform the Hoeffding decomposition of Z (t):

Z (t) = 1{Y6t} = E [Z (t)]︸ ︷︷ ︸
Mean effect

+ (E [Z (t)|Xu]− E [Z (t)]) + (E [Z (t)|X−u]− E [Z (t)])︸ ︷︷ ︸
First order effects

+ R(t ,u).︸ ︷︷ ︸
Remainder term: higher order effects
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Sensitivity indices based on the Cramér-von-Mises distance

We then compute the variance of both sides of the previous equation:

Var [Z (t)] = E
[(

F u(t)− F (t)
)2
]

+ E
[(

F−u(t)− F (t)
)2
]

+ Var [R(t ,u)]

using orthogonality in the Hoeffding decomposition.
Finally by integrating with respect to the distribution of Z (t) and by
normalizing we get:

Su
2,CVM :=

∫
Rp E

[
(F (t)− F u(t))2

]
dF (t)∫

Rp F (t)(1− F (t))dF (t)
,

involving the Cramér-von Mises distance between the distribution of
Z (t) and the one of Z (t)|Xu.
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Sensitivity indices based on the Cramér-von-Mises distance

Properties of the Cramér-von Mises indices:
1. the different contributions sum to 1;
2. invariance by any translation and by any nondegenerated scaling

of the components of Y .

Cramér-von Mises indices have no clear dual formulation, however
they can be estimated with a Pick-Freeze scheme.

Other estimation procedures such as U-statistics or rank-based
inference (only for scalar inputs and u a singleton) are also interesting
alternatives (see Gamboa et al. (2018)).
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Towards general metric space indices

Let us consider the more general case where Y =M(X1, . . . ,Xd )
valued in Y, a general metric space. Let m ∈ N∗ and
a = (ai)i=1,...,m ∈ Ym. We consider the family of test functions{

Ym × Y → R
(a, y) 7→ Ta(y).

We assume Ta(·) ∈ L2(P⊗m ⊗P) with P the probability distribution of Y .

The general metric space sensitivity index with respect to u, introduced
in Fort et al. (2021), is defined as

Su
2,GMS :=

∫
Ym EXu

[
(EY [Ta(Y )]− EY [Ta(Y )|Xu])2

]
dP⊗m(a)∫

Ym Var(Ta(Y ))dP⊗m(a)

=

∫
Ym Var [E (Ta(Y )|Xu)] dP⊗m(a)∫

Ym Var(Ta(Y ))dP⊗m(a)
·
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Towards general metric space indices

Particular examples:
1. for Y = R, m = 0 and Ta(y) = y , one recovers Sobol’ indices;
2. for Y = Rp, m = 1 and Ta(y) = 1{y6a}, one recovers the index

based on the Cramér-von-Mises distance;
3. for Y =M a manifold, m = 2 and

Ta(y) = 1y∈B̃(a1,a2)
= 1‖y−(a1+a2)/2‖6‖a1−a2‖/2,

where B̃(a1,a2) is the ball inM of diameter a1a2, one recovers
the indices introduced in Fraiman et al. (2020).

General metric space indices can be estimated with either a
pick-freeze scheme or U-statistics. For scalar inputs and first-order
indices, a rank-based inference procedure is also an alternative.
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Pick-freeze estimation procedure for Cramér-von Mises indices
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Pick-freeze estimation procedure for Cramér-von Mises indices

Principle:
I multiple Monte-Carlo estimation procedure (one to handle the

integration part, one to handle the pick-freeze part);
I cost to estimate all first-order indices: N(m + d + 1);
I non trivial proof of the CLT using Donsker theorem and the

functional delta method (see Fort et al., 2021).
Design of experiments:
I a classical pick-freeze N-sample, that is two N-samples of Y :

(y (k), yu,(k)), 1 6 k 6 N;
I m other N-samples of Y independent of (Y (k),Y u,(k))16k6N ,

namely w (k)
i , 1 6 i 6 m, 1 6 k 6 N.
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Pick-freeze estimation procedure for Cramér-von Mises indices

The estimator of the numerator of Su
2,GMS is then given by

1
Nm

∑
16i1,...,im6N

{[
1
N

N∑
k=1

T
w (i1)

1 ,··· ,w (im)
m

(y (k))T
w (i1)

1 ,··· ,w (im)
m

(yu,(k))

]

−
[

1
2N

N∑
k=1

(
T

w (i1)
1 ,··· ,w (im)

m
(y (k)) + T

w (i1)
1 ,··· ,w (im)

m
(yu,(k))

)]2
}

while the one of the denominator is

1
Nm

∑
16i1,...,im6N

{
1

2N

N∑
k=1

[(
T

w (i1)
1 ,··· ,w (im)

m
(y (k))

)2
+
(

T
w (i1)

1 ,··· ,w (im)
m

(yu,(k))
)2
]

−
[

1
2N

N∑
k=1

(
T

w (i1)
1 ,··· ,w (im)

m
(y (k)) + T

w (i1)
1 ,··· ,w (im)

m
(yu,(k))

)]2
}
.

14 / 38



Indices “à la Borgonovo’

Sensitivity indices based on the Cramér-von-Mises distance

Towards general metric space indices

Pick-freeze estimation procedure for Cramér-von Mises indices

Indices “à la Borgonovo’

Kernel-based sensitivity analysis
Integral Probability Metrics
Reproducing Kernel Hilbert Space
Maximum Mean Discrepancy distance
Pick-freeze estimation scheme
MMD decomposition

Application to GSA for stochastic codes
With general metric space indices
Kernel based GSA for hypoelliptic SDE

Conclusion, perspective

References

15 / 38



Indices “à la Borgonovo’

In Borgonovo (2007), the following index is introduced:

δi =
1
2

EXi (Si(Xi)) with Si(Xi) =
∫ ∣∣pY (y)− pY |Xi

(y)
∣∣dy .

Note that Si(Xi) is the total variation distance between PY and PY |Xi
.

The definition can be generalized as: Si(Xi) =
∫

R f
(

pY (y)
pY |Xi

(y)

)
pY |Xi

(y)dy

for f any convex function with f (1) = 0. E.g., for f (t) = −ln(t) or
f (t) = t ln(t) one recovers the Kullback-Leibler divergence.
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Kernel-based sensitivity analysis

We focus on sensitivity indices based on Maximum Mean Discrepancy
introduced in Barr and Rabitz (2022); Da Veiga (2021).
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Kernel-based sensitivity analysis Integral Probability Metrics

For P and Q two probability measures defined on Z, we define an
Integral Probability Metric between P and Q as:

γF (P,Q) = sup
f∈F

∣∣∣∣∫
X

f dP−
∫
X

f dQ
∣∣∣∣

with F a class of real-valued bounded measurable functions on Z.

Different examples for F and associated distance:
I bounded continuous functions→ Dudley metric;
I bounded variation functions→ Kolmogorov metric;
I Lipschitz bounded functions→Wasserstein distance;
I characteristic functions on Borel sets→ total variation distance.
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Kernel-based sensitivity analysis Reproducing Kernel Hilbert Space

Let Z be an arbitrary set and H a Hilbert space of real-valued functions
f : Z → R on Z with inner product < ·, · >H. For every z ∈ Z, we
define the evaluation functional Lz : H → R as f 7→ Lz(f ) = f (z).

A Hilbert space H is a reproducing kernel Hilbert space (RKHS) if the
evaluation functionals are continuous.
A RKHS H is associated to a function k : Z × Z → R such that
I for all z ∈ Z, k(z, ·) ∈ H;
I for all f ∈ H and for all z ∈ Z, < f , k(z, ·) >H= f (z).

The kernel mean embedding µQ ∈ H of a probability distribution Q
on Z is given by

µQ = Eζ∼QkZ(ζ, ·) =

∫
Z

kZ(ζ, ·)dQ(ζ).
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Kernel-based sensitivity analysis Maximum Mean Discrepancy distance

LetM+
1 (Z) the set of probability measures on Z.

A kernel is characteristic if the kernel embedding µ : M+
1 (Z)→ H is

injective.
Choosing F (in the definition of γF ) as the space of functions in the
unit ball of a characteristic RKHS leads to a MMD distance.

Due to the definition of kernel embedding we get

MMD2(P,Q;H) = ‖µP − µQ‖2H.

How can we use MMD for GSA?

Let H be a RKHS on Y.
We define

SH,unnorm
j = EXj MMD2(PY ,PY |Xj

;H).

21 / 38



Kernel-based sensitivity analysis Pick-freeze estimation scheme

Let ζ1, ζ ′1 iid ∼ PY , independent of ζ2, ζ ′2 iid ∼ PY |Xj
.

Moreover, due to the reproducing property and kernel embedding it is
possible to prove that:

SH,unnorm
j = EXj Eζ2,ζ

′
2
kY(ζ2, ζ

′
2)− Eζ1,ζ

′
1
kY(ζ1, ζ

′
1).

Examples :

For Y ⊂ R and kY(y , y ′) = yy ′ (not a characteristic kernel), one
recovers first-order Sobol’ index Sj .

For Y a compact set, one has from Mercer’s theorem that
kY(y , y ′) =

∑+∞
r=1 Φr (y)Φr (y ′) with {Φr , r ≥ 1} orthogonal functions in

L2(Y). Then

SH,unnorm
j =

+∞∑
r=1

Var[E(Φr (Y )|Xj)].
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Kernel-based sensitivity analysis Pick-freeze estimation scheme

Coming back to the formulation

SH,unnorm
j = EXj Eζ2,ζ

′
2
kY(ζ2, ζ

′
2)− Eζ1,ζ

′
1
kY(ζ1, ζ

′
1),

one can propose a pick-freeze scheme to estimate SH,unnorm
j :

ŜH,unnorm
j =

1
N

N∑
i=1

(
kY(y i , y j,i)− kY(y i , y ′i)

)
with y i =M(x1,i), y j,i =M(x2,i

1 , . . . , x2,i
j−1, x

1,i
j , x2,i

j+1, . . . , x
2,i
d ) as

previously and y ′i =M(x2,i).
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Kernel-based sensitivity analysis MMD decomposition

We define the normalizing constant MMD2
tot;H as

MMD2
tot;H =

∑
A⊆{1,...,d}

MMD2
A;H

with MMDA;H defined as

MMD2
A;H =

∑
B⊆A

(−1)|A|−|B|EXB MMD2(PY ,PY |B;H).

This normalizing constant will lead to an ANOVA-like decomposition.
Then we define

SHj =
SH,unnorm

j

MMD2
tot;H
·

It is possible to define MMD indices of any order and total MMD
indices.
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Application to GSA for stochastic codes With general metric space indices
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Application to GSA for stochastic codes With general metric space indices

We assume that for any x = (x1, . . . , xd ) ∈ X = X1 × . . .Xd ,M (x) is a
probability distribution on R, denoted by µx.

Let’s assume that for any x, the probability measure µx belongs to
Y =W2 (R) the space of all probability distributions on R with finite
second-order moment w.r.t. the 2-Wasserstein distance W2. We
consider the r.v. µX with values in Y. We denote by P its probability
distribution.

Let µ̃ and ˜̃µ be two elements inW2(R). The general metric space
indices in this framework Su

2,W2
can be defined as in (Fort et al., 2021):

∫
W2(R)×W2(R)

Var
[
E
(

1W2(µ̃,µX)≤W2(µ̃, ˜̃µ)
|Xu

)]
dP⊗2(µ̃, ˜̃µ)∫

W2(R)×W2(R)
Var(1W2(µ̃,µX)≤W2(µ̃, ˜̃µ)

)dP⊗2(µ̃, ˜̃µ)
·
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Application to GSA for stochastic codes With general metric space indices

In practice one can only obtain an empirical approximation of the
measure µx computed from n evaluationsM(x,d (j)), j = 1, . . . ,n.
Note that in general, the d (j) are not observed.

Finally, the general design of experiments is the following:

x(1), d (1,1), . . . , d (1,n) −→M(x(1), d (1,1)), . . . ,M(x(1), d (1,n))

. . .

x(N), d (N,1), . . . , d (N,n) −→M(x(N), d (N,1)), . . . ,M(x(N), d (N,n))

For any k = 1, . . . ,N, we define the approximations of µx(j) as:

µ̂x(k) =
1
n

n∑
j=1

δM(x(k),d (k,j)) .

Then the indices Su
2,W2

can be estimated either with a pick-freeze
scheme, either with U-statistics or with a rank-based approach (for u a
singleton and for scalar inputs).
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Application to GSA for stochastic codes With general metric space indices

Pick-freeze estimation procedure

1. Generate two samples x(k),d (k ,j) and x′(k),d ′(k ,j), k = 1, . . . ,N,
j = 1, . . . ,n.

2. Generate a pick-freeze sample of size N:(
x(k),xu,(k)) =

(
x(k),x(k)

u : x′(k)−u

)
, k = 1, . . . ,N.

3. For each input, compute the corresponding output n times:
M(x(k),d (k ,j)) , M(xu,(k),d ′(k ,j)) , k = 1, . . . ,N , j = 1, . . . ,n .

4. Approximate the measures by empirical measures:
µ(k) ≈ µ̂ (k) = 1

n

∑n
j=1 δM(x(k),d (k,j)),

µu,(k) ≈ µ̂ u,(k) = 1
n

∑n
j=1 δM(xu,(k),d ′(k,j)).

5. We also need two additional samples of the output, indendent
from the pick-freeze scheme:

M(x̃(k), d̃ (k ,j)) , M(˜̃x
(k)
,

˜̃d
(k ,j)

) , k = 1, . . . ,N , j = 1, . . . ,n

leading to ̂̃µ (k)
, ̂̃̃µ (k), k = 1, . . . ,N.
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Application to GSA for stochastic codes With general metric space indices

Pick-freeze estimation procedure
The cost in terms of number of evaluations ofM is 4Nn.
In order to compute explicitly our estimator, it remains to compute
terms of the form:

W2(µ̂(`), µ̂(k)).

The quantity W2(ν1, ν2) is easy to compute if ν1 and ν2 are two discrete
measures on R supported on a same number of points. Namely, for

ν1 =
1
n

n∑
k=1

δak , ν2 =
1
n

n∑
k=1

δbk ,

the Wasserstein distance between ν1 and ν2 simply writes

W 2
2 (ν1, ν2) =

1
n

n∑
k=1

(a(k) − b(k))
2,

where z(k) is the k -th order statistics of z.
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Application to GSA for stochastic codes With general metric space indices

Illustration on a toy model Let us define the stochastic simulator (see
Da Veiga (2021); Moutoussamy et al. (2015)) as

Y = (X1 + 2X2 + U1) sin (3X3 − 4X4 + G) + U2 + 5X5 B +
∑5

i=1 i Xi

where the intrisic noise is modeled by U1 ∼ U([0,1]), U2 ∼ U([1,2]),
G ∼ N (0,1) and B ∼ Bernoulli(1/2), and the uncertain parameters Xi
are uniformly distributed on [0,1].

With Sébastien’s code we compute, for each input Xi , 50 independent
realizations of the pick-freeze estimator of Si

2,W2
with N = 200 and

n = 100.
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Application to GSA for stochastic codes Kernel based GSA for hypoelliptic SDE

We are interested in models driven by parametrized stochastic
differential equations (parametrized SDE) defined by:

dZt = b(Zt , x)dt + σ(Zt , x)dWt , Z0 = z (1)

on Rs. We assume that the uncertain parameter is the realization of a
random vector X ∈ Rd , independent from the Brownian motion driving
the SDE.
Assume there exists a unique stationary solution to (1) absolutely
continuous with respect to Lebesgue. The density ps(·, x) of the
stationary solution is obtained by solving Fokker-Planck equation

L∗ps(x , ξ) = 0 ∀ x ∈ Rd∫
Rd

ps(x , ξ)dx = 1

ps(x , ξ) ≥ 0 ∀ x ∈ Rd , lim
|x |→+∞

ps(x , ξ) = 0

with L∗ the adjoint of the infinitesimal generator associated to (1).
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Application to GSA for stochastic codes Kernel based GSA for hypoelliptic SDE

We propose to compute first-order and total MMD indices, with
Y =M+

1 (Rs).

One chooses a kernel kM+
1 (Rs) defined by

kM+
1 (Rs)(y , y

′) = σ2 exp
(
−λMMD2(y , y ′;G)

)
, y , y ′ ∈M+

1 (Rs),

with σ2, λ > 0 and RKHS G of functions Rs → R associated to kernel
kRs defined by

kRs (z, z ′) = exp

(
−1
2 τ2 |z − z ′|2

)
, z, z ′ ∈ Rs, (2)

with τ2 > 0.

34 / 38



Conclusion, perspective
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Conclusion, perspective

There remain challenges such as:
I the kernel choice;
I to speed up the computation with apropriate metamodels (e.g.,

stochastic Galerkin scheme for the last example, ongoing work);
I . . .

Research on this topic is very active, and in relation with recent
developments in machine learning.
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