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Part Il

From variance-based to more general sensitivity indices: | will present
recent results on sensitivity analysis targeted to the analysis of models
with outputs in general metric spaces.

See, e.g., Da Veiga et al. (2021).
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We have seen in Part Il that is possible to extend variance based GSA
for Y valued in RP or in a separable Hilbert space 7/ (see (Da Veiga
et al., 2021, Chapter 3, Section 3.3) and references therein).

In the following, one wants to go to more complex outputs, e.g.,

considering
R —

with ) not necessarily a Hilbert space.
Also, one wants to investigate sensitivity beyond variance.

The topic is in full expansion. We refer to (Da Veiga et al., 2021,
Chapter 6) for a recent list of references.
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Sensitivity indices based on the Cramér-von-Mises distance

Let Y = M(Xq,...,Xy) € RP be the code output and F be its
cumulative distribution function defined as

F(ty=P(Y<t)=E[Ly.n] =E[Z(1)], t=(t,....tp) €RP.

Let FY(t) be the conditional cumulative distribution function of Y
conditionally on X, defined as

FU(t) =P (Y < t{Xu) =E[1y | Xu] =E[Z(1)]X] -
We perform the Hoeffding decomposition of Z(1):
Z(1) = Liy<ny = E[Z(1)]
N——

Mean effect

+EZ(OPX] - EIZ0]) + (E[Z(1)X o] - E[Z(D])

First order effects
+ R(t,u).
——

Remainder term: higher order effects
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Sensitivity indices based on the Cramér-von-Mises distance

We then compute the variance of both sides of the previous equation:

Var[Z(1)] =E | (FU(t) = F(1)®] + E [ (F~*(t) - F(1))?]
+ Var [R(t, u)]
using orthogonality in the Hoeffding decomposition.

Finally by integrating with respect to the distribution of Z() and by
normalizing we get:

. JeE[(FO - U] o
Seow = L FO( - FO)RD

involving the Cramér-von Mises distance between the distribution of
Z(t) and the one of Z(1)|X,.
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Sensitivity indices based on the Cramér-von-Mises distance

Properties of the Cramér-von Mises indices:
1. the different contributions sumto 1;

2. invariance by any translation and by any nondegenerated scaling
of the components of Y.

Cramér-von Mises indices have no clear dual formulation, however
they can be estimated with a Pick-Freeze scheme.

Other estimation procedures such as U-statistics or rank-based
inference (only for scalar inputs and u a singleton) are also interesting
alternatives (see Gamboa et al. (2018)).
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Towards general metric space indices
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Towards general metric space indices

Let us consider the more general case where Y = M(Xq,..., Xy)
valued in )/, a general metric space. Let m € N* and
a=(aj)i=1,..m € Y™. We consider the family of test functions

{ Ym"xy = R
(ay) — Tay).
We assume T,(-) € L?(P®™ ® P) with P the probability distribution of Y.

The general metric space sensitivity index with respect to u, introduced
in Fort et al. (2021), is defined as

A [(Ev[Ta(Y)] — Ey[Ta( Y)IXu])z] dpP®™(a)
2,GMS = [y Var(Ta(Y))dPEm(a)

_ fom Var[E(Ta(Y)1 X)) dPE™(8)
Jom Var(Ta(Y))dPm(2)
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Towards general metric space indices

Particular examples:
1. for YV =R, m=0and T4(y) = y, one recovers Sobol’ indices;

2. for Y =RP, m=1and Ty(y) = 1{y<a), One recovers the index
based on the Cramér-von-Mises distance;

3. for V = M a manifold, m = 2 and
Ta(y) = 1ye§(a1,a2) = 1Hy—(a1+a2)/2||<Ha1—agH/Z’

where B(ay, az) is the ball in M of diameter araz, one recovers
the indices introduced in Fraiman et al. (2020).

General metric space indices can be estimated with either a
pick-freeze scheme or U-statistics. For scalar inputs and first-order
indices, a rank-based inference procedure is also an alternative.
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Pick-freeze estimation procedure for Cramér-von Mises indices
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Pick-freeze estimation procedure for Cramér-von Mises indices

Principle:
» multiple Monte-Carlo estimation procedure (one to handle the
integration part, one to handle the pick-freeze part);

» cost to estimate all first-order indices: N(m+ d + 1);

» non trivial proof of the CLT using Donsker theorem and the
functional delta method (see Fort et al., 2021).

Design of experiments:
> a classical pick-freeze N-sample, that is two N-samples of Y
(v, ), 1 < k <N;
» m other N-samples of Y independent of (V). Y 09); ken,
namelyw() 1<i<m1<k<N.
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Pick-freeze estimation procedure for Cramér-von Mises indices

The estimator of the numerator of S s is then given by
N
1 3 lZT N ()
Nm N W’1 "'7Wr(y:m) y W1(I1),~~,W£;m) .y

1<y, imSN
1 & »
B |:2IV Z (T (’1) . (/m) }/ k)) + TW1(i1)}m’ng)(yu.(k)))] }

14/38



Indices “a la Borgonovo’

Sensitivity indices based on the Cramér-von-Mises distance
Towards general metric space indices

Pick-freeze estimation procedure for Cramér-von Mises indices
Indices “a la Borgonovo’

Kernel-based sensitivity analysis
Integral Probability Metrics
Reproducing Kernel Hilbert Space
Maximum Mean Discrepancy distance
Pick-freeze estimation scheme
MMD decomposition

Application to GSA for stochastic codes
With general metric space indices
Kernel based GSA for hypoelliptic SDE

Conclusion, perspective
References

15/38



Indices “a la Borgonovo’
In Borgonovo (2007), the foIIowing index is introduced:

b1 = SEx (SX0) with Si(X) = [ |ov(y) — Py ()] d.

Note that S;(X;) is the total variation distance between P and Py, .

The definition can be generalized as: S;(X;) = [, f <p€‘yx(}(/y > Py x,(y)dy

for f any convex function with f(1) = 0. E 9., for f(t) = —In(t) or
f(t) = tIn(t) one recovers the Kullback-Leibler divergence.

Srix ()

fr(y
0.5
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Kernel-based sensitivity analysis

We focus on sensitivity indices based on Maximum Mean Discrepancy
introduced in Barr and Rabitz (2022); Da Veiga (2021).
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Kernel-based sensitivity analysis Integral Probability Metrics

For P and Q two probability measures defined on Z, we define an
Integral Probability Metric between P and Q as:

/fdP /fdQ’

7(P,Q) = sup
feF

with F a class of real-valued bounded measurable functions on Z.
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Kernel-based sensitivity analysis Integral Probability Metrics

For P and Q two probability measures defined on Z, we define an
Integral Probability Metric between P and Q as:

/fdP /fdQ’

with F a class of real-valued bounded measurable functions on Z.

7(P,Q) = sup
feF

Different examples for F and associated distance:
» bounded continuous functions — Dudley metric;
» bounded variation functions — Kolmogorov metric;
» Lipschitz bounded functions — Wasserstein distance;
» characteristic functions on Borel sets — total variation distance.
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Kernel-based sensitivity analysis Reproducing Kernel Hilbert Space

Let Z be an arbitrary set and ‘H a Hilbert space of real-valued functions
f : Z — Ron Z with inner product < -,- >. Forevery z € Z, we
define the evaluation functional L, : H — R as f — L(f) = f(2).

A Hilbert space H is a reproducing kernel Hilbert space (RKHS) if the
evaluation functionals are continuous.

A RKHS % is associated to a function kK : Z x Z — R such that
» forallze Z, k(z,-) € H;
» forall fe Handforallz e Z, < f, k(z,-) >x= f(2).

The kernel mean embedding jiq € H of a probability distribution Q
on Z is given by

pa = Ecuakz(¢,-) / kz(¢,-)dQ(Q).
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Kernel-based sensitivity analysis Maximum Mean Discrepancy distance

Let M (Z) the set of probability measures on Z.

A kernel is characteristic if the kernel embedding j : M{(Z) — H is
injective.

Choosing F (in the definition of vr) as the space of functions in the
unit ball of a characteristic RKHS leads to a MMD distance.

Due to the definition of kernel embedding we get
MMD?(P, Q; H) = ||1zp — pall3;

How can we use MMD for GSA?

Let H be a RKHS on ).
We define
S}H,unnorm = EijMDZ(Py, PY|X/-; H)
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Kernel-based sensitivity analysis Pick-freeze estimation scheme

Let ¢4, ¢} iid ~ Py, independent of (5, ¢ iid ~ Py/x.
Moreover, due to the reproducing property and kernel embedding it is
possible to prove that:

Sj?—[,unnorm = EX/'ECzaCéky(CZ’ Qé) - EC1 e ky (G C‘II )-

Examples :

For V c Rand ky(y,y’) = yy’ (not a characteristic kernel), one
recovers first-order Sobol’ index S;.

For )V a compact set, one has from Mercer’s theorem that
ky(y,y') = 3279 o, (y)r(y') with {&,, r > 1} orthogonal functions in
L2(Y). Then

+oo
Sjﬁ,unnorm = Z Var[E(®-(Y)|X))]-
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Kernel-based sensitivity analysis Pick-freeze estimation scheme

Coming back to the formulation
H?
S/ = ExEe, ook (Cay (2) — Eqy e kv (15 67,

one can propose a pick-freeze scheme to estimate Sj?{’“””mm ;

N
Sj?—[,unnorm _ Z ( y// ky(y/,}///)>
. i i i i 2.i 2, 1,0 2,0 2,
with y' = M(x'), yH = M(x; 7---aX/fl1vXj I7X/'+I1 e Xy I) as

previously and y'/ = M (x?).
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Kernel-based sensitivity analysis MMD decomposition

We define the normalizing constant MMthot;H as

MMDZ., = > MMD,,
AC{1,....d}

with MMD 4.4, defined as

MMDZ,, = > (-1) = IBIE,, MMD?(Py, Py5; H).
BCA

This normalizing constant will lead to an ANOVA-like decomposition.

Then we define
SH,unnorm
J

H_
’ MMD{,

It is possible to define MMD indices of any order and total MMD
indices.
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Application to GSA for stochastic codes With general metric space indices

We assume that for any x = (xq,...,xy) € X = &4 x ... Xy, M(x)isa
probability distribution on R, denoted by /.

Let’s assume that for any x, the probability measure ;.x belongs to
YV = W, (R) the space of all probability distributions on R with finite
second-order moment w.r.t. the 2-Wasserstein distance W,. We
consider the r.v. 11y with values in )). We denote by P its probability
distribution.

Let /i and /i be two elements in W,(R). The general metric space
indices in this framework Sj |, can be defined as in (Fort et al., 2021):

f”z R)x W Var [E <1W2(l7«7/lx)§ W2(ﬂ,ﬁ)|XU>} dP®2(/~1’7 ﬁ) ‘

fng(mxwm Var(Ly, )< wa(i i) 4P <2 (B 1)
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Application to GSA for stochastic codes With general metric space indices

In practice one can only obtain an empirical approximation of the
measure /x computed from n evaluations M (x, o)), j=1,...,n.
Note that in general, the d") are not observed.

Finally, the general design of experiments is the following:

AR I (U BN DT O I (R N VTR I CRUN

x(N)_ (N 1)

) gooe

LA s g (x(N), g MDY, M(x V), gV

Forany k =1,..., N, we define the approximations of ;., as:

n
N 1
Hxt = & 25 (x(), (k)Y +
j:

Then the indices S |, can be estimated either with a pick-freeze
scheme, either with U-statistics or with a rank-based approach (for u a
singleton and for scalar inputs).
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Application to GSA for stochastic codes With general metric space indices

Pick-freeze estimation procedure

1.

Generate two samples x©), o(k/) and x'® o'/ k =1,... N,

j=1,...,n
Generate a pick-freeze sample of size N:
(9, x5 00) = (x99, x(0 x)) k=1, N,

u

. For each input, compute the corresponding output n times:

(x5, gDy xe0 g!F Y k=1, N, j=1,...,n
Approximate the measures by empirical measures:
//(k) // (k) =1 Z X0, d(k:)Ys
u(k) o k) = 1 Z, 1 S a0, k)
We also need two additional samples of the output, indendent

from the pick-freeze scheme:
B ~ -~ MGo))
&0, g0y, mE™,d j),k:1,...,N,j:1,...,n

leadingto 70, F0, k= 1,..., N.
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Application to GSA for stochastic codes With general metric space indices

Pick-freeze estimation procedure
The cost in terms of number of evaluations of M is 4Nn.
In order to compute explicitly our estimator, it remains to compute

terms of the form:
Wo(79), k).

The quantity Ws(vq, 1) is easy to compute if 4 and v, are two discrete
measures on R supported on a same number of points. Namely, for

n

V= EDS by
% 25

k=1

the Wasserstein distance between v4 and v» simply writes

n

]
WE (11, 12) = - —> (aw) — buw)?,

k=1

where z is the k-th order statistics of z.
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Application to GSA for stochastic codes With general metric space indices

lllustration on a toy model Let us define the stochastic simulator (see
Da Veiga (2021); Moutoussamy et al. (2015)) as

Y = (Xi +2Xo + Uy )sin (8Xs — Xy + G) + Us +5X5 B+ 32 i X,

where the intrisic noise is modeled by U; ~ ([0, 1]), U> ~ U([1,2]),
G ~ N(0,1) and B ~ Bernoulli(1/2), and the uncertain parameters X;
are uniformly distributed on [0, 1].

With Sebastien’s code we compute, for each input X, 50 independent
realizations of the pick-freeze estimator of S; |, with N =200 and
n=100.

—

Sl
n}ﬂ
|
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Application to GSA for stochastic codes Kernel based GSA for hypoelliptic SDE
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Application to GSA for stochastic codes Kernel based GSA for hypoelliptic SDE

We are interested in models driven by
(parametrized SDE) defined by:

adz; = b(Zt, X)dt + O'(Zt,X)th, Zo=2 (1)

on RS. We assume that the uncertain parameter is the realization of a
random vector X ¢ RY, independent from the Brownian motion driving
the SDE.

Assume there exists a unique stationary solution to (1) absolutely
continuous with respect to Lebesgue. The density of the
stationary solution is obtained by solving Fokker-Planck equation

L¥ps(x,6) =0V x e RY

[ petx. ) =1

Rd

ps(x,§) >0¥x eRY, lim ps(x,6) =0
|X|—=+o0

with £* the adjoint of the infinitesimal generator associated to (1).
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Application to GSA for stochastic codes Kernel based GSA for hypoelliptic SDE

We propose to compute first-order and total MMD indices, with
Y = M{(R®).

One chooses a kernel K, + s defined by
Kniz ey (Y, ¥') = 0% exp (—A MMD?(y, y'; g)), .y € M{(R®),

with o2, A > 0 and RKHS ¢ of functions RS — R associated to kernel
krs defined by

kRs(Z7z’) = exp (2_12‘2 — Z”2>, Z,z’ c RS7 (2)
T

with 72 > 0.

34/38



Conclusion, perspective

Sensitivity indices based on the Cramér-von-Mises distance
Towards general metric space indices

Pick-freeze estimation procedure for Cramér-von Mises indices
Indices “a la Borgonovo’

Kernel-based sensitivity analysis
Integral Probability Metrics
Reproducing Kernel Hilbert Space
Maximum Mean Discrepancy distance
Pick-freeze estimation scheme
MMD decomposition

Application to GSA for stochastic codes
With general metric space indices
Kernel based GSA for hypoelliptic SDE

Conclusion, perspective
References

35/38



Conclusion, perspective

There remain challenges such as:
» the kernel choice;

> to speed up the computation with apropriate metamodels (e.g.,
stochastic Galerkin scheme for the last example, ongoing work)

> ...

Research on this topic is very active, and in relation with recent
developments in machine learning.

)
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Thanks for your attention!

And a little bit of advertisement

Basics and Trends in
Sensitivity Analysis
Theory and Practice in -+
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