Global sensitivity analysis and dimension reduction

Clémentine PRIEUR Grenoble Alpes University

Summer school on GSA & Poincaré inequalities 6-8 July 2022, Toulouse

Part II

Sensitivity analysis and dimension reduction:

a tour from sensitivity analysis to gradient based (non)linear dimension reduction via the so-called active subspace methodology.

Joint work with O. Zahm (Inria Grenoble), D. Bigoni & Y. Marzouk (MIT, Boston), P. Constantine (Univ. Colorado Boulder).

Notation

$$Y = \mathcal{M}(X_1, \ldots, X_d)$$

- X ~ μ: vector of input parameters with known probability distribution μ (not necessarily product measure)
- ▶ Y: output of interest, generally scalar $Y \in \mathbb{R}$
- M: numerical model from it is also possible to evaluate the gradient

$$\nabla \mathcal{M}(\mathsf{x}) = \begin{pmatrix} \partial_1 \mathcal{M}(\mathsf{x}) \\ \vdots \\ \partial_d \mathcal{M}(\mathsf{x}) \end{pmatrix}$$

Variance based global sensitivity analysis: determine the relative influence of the inputs X_1, \ldots, X_d on the output Y.

Gradient based GSA: how to best exploit the gradient $\nabla \mathcal{M}(\mathbf{x})$?

Previously...

Assume $\mu(d\mathbf{x}) = \prod_{i=1}^{d} \mu_i(d\mathbf{x}_i)$ is a product measure. Then, for $i \in \{1, \dots, d\}$, the total Sobol' indices

$$S_{i}^{ ext{tot}} \coloneqq 1 - rac{ ext{Var}[\mathbb{E}(\mathcal{M}(\mathbf{X})|X_{-i})]}{ ext{Var}[\mathcal{M}(\mathbf{X})]}$$

can be bounded by

$$\operatorname{Var}[\mathcal{M}(\mathsf{X})] S_i^{\mathsf{tot}} \leq C(\mu_i) \underbrace{\int (\partial_i \mathcal{M}(\mathsf{x}))^2 \mathrm{d}\mu(\mathsf{x})}_{=\nu_i}$$

where:

- C(μ_i) is the Poincaré constant of the marginal μ_i which is computable via an eigenvalue problem,
- ▶ ν_i is the *i*-th Derivative Based Sensitivity Measure (DGSM) which is often cheaper to compute compared to S_i^{tot} , provided $\partial_i \mathcal{M}$ is available.

1. Global sensitivity analysis from an approximation point of view

2. Gradient-based linear dimension reduction with active subspace

3. Extension to nonlinear dimension reduction

1. Global sensitivity analysis from an approximation point of view

2. Gradient-based linear dimension reduction with active subspace

3. Extension to nonlinear dimension reduction

We seek for a set of canonical coordinates along which the model is (almost) constant $\mathcal{M}(\mathbf{x}) \approx f(\mathbf{x}_u)$

Hart and Gremaud [2018]

Function approximation perspective

Let \mathbb{L}^2_{μ} be the space of square-integrable functions u endowed with the norm

$$\|u\|^2 = \int u(\mathbf{x})^2 \mu(d\mathbf{x})$$
.

Expectations and conditional expectations can be seen as \mathbb{L}^2_μ projections:

Function approximation perspective

Let \mathbb{L}^2_{μ} be the space of square-integrable functions u endowed with the norm

$$\|u\|^2 = \int u(\mathbf{x})^2 \mu(d\mathbf{x})$$
.

Expectations and conditional expectations can be seen as \mathbb{L}^2_μ projections:

the constant c ∈ ℝ which best approximates u(X) in L²_µ is c = E[u(X)]:

$$\min_{c\in\mathbb{R}}\|u-c\|^2=\|u-\mathbb{E}[u(\mathbf{X})]\|^2=:\operatorname{Var}[u(\mathbf{X})];$$

Function approximation perspective

Let \mathbb{L}^2_{μ} be the space of square-integrable functions u endowed with the norm

$$\|u\|^2 = \int u(\mathbf{x})^2 \mu(d\mathbf{x})$$
.

Expectations and conditional expectations can be seen as \mathbb{L}^2_μ projections:

the constant c ∈ ℝ which best approximates u(X) in L²_µ is c = E[u(X)]:

$$\min_{c\in\mathbb{R}}\|u-c\|^2=\|u-\mathbb{E}[u(\mathsf{X})]\|^2=:\operatorname{Var}[u(\mathsf{X})];$$

It the measurable function f :→ f(x_u) = f(x_{u1},...,x_{ur}) which best approximates u(X) in L²_µ is f(x_u) = E[u(X)|X_u = x_u]:

 $\min_{\substack{f: \mathbf{X} \mapsto f(\mathbf{X}_{\mathbf{u}}), f \text{ measurable}}} \|u - f\|^2 = \|u - \mathbb{E}[u(\mathbf{X})|\mathbf{X}_{\mathbf{u}}]\|^2.$

The total variance formula

$$\min_{\substack{f:\mathbf{x}\mapsto f(\mathbf{x}_{u}), f \text{ meas.}}} \|u - f\|^{2} = \|u - \mathbb{E}[u(\mathbf{X})|\mathbf{X}_{u}]\|^{2}$$
$$= \|\left(u - \mathbb{E}[u(\mathbf{X})]\right) - \left(\mathbb{E}[u(\mathbf{X})] - \mathbb{E}[u(\mathbf{X})|\mathbf{X}_{u}]\right)\|^{2}$$
$$= \underbrace{\|u - \mathbb{E}[u(\mathbf{X})]\|^{2}}_{\operatorname{Var}[u(\mathbf{X})]} - \underbrace{\|\mathbb{E}[u(\mathbf{X})] - \mathbb{E}[u(\mathbf{X})|\mathbf{X}_{u}]\|^{2}}_{\operatorname{Var}[\mathbb{E}(u(\mathbf{X})|\mathbf{X}_{u})]} (\star)$$

$$\{f: x \mapsto const.\}$$

$$\{f: x \mapsto f(x_{\tau})\}$$

$$\mathbb{E}[u(X)]$$

$$\mathbb{E}[u(X)|X_{\tau}]$$

The closed Sobol' indices for ${\mathcal M}$ writes

$$S_{\mathbf{u}}^{\text{clo}} \coloneqq \frac{\operatorname{Var}[\mathbb{E}(\mathcal{M}(\mathbf{X})|\mathbf{X}_{\mathbf{u}})]}{\operatorname{Var}[\mathcal{M}(\mathbf{X})]} \stackrel{(*)}{=} 1 - \frac{\min_{f:\mathbf{x}\mapsto f(\mathbf{x}_{\mathbf{u}}), f \text{ meas.}}}{\operatorname{Var}[\mathcal{M}(\mathbf{X})]}$$
$$\boxed{\begin{array}{c} S_{\mathbf{u}}^{\text{clo}} \approx 1 \quad \Leftrightarrow \quad \mathcal{M}(\mathbf{X}) \approx f(\mathbf{X}_{\mathbf{u}})\\ \Leftrightarrow \quad \mathbf{X}_{\mathbf{u}} \text{ "explains" well } Y = \mathcal{M}(\mathbf{X}) \end{array}}$$

Define the total Sobol' index for $\mathcal M$ associated to subset $\mathbf u \subseteq \{1,\ldots,d\}$ as

$$S_{u}^{tot} = \frac{\mathbb{E}[\operatorname{Var}(\mathcal{M}(X)|X_{-u})]}{\operatorname{Var}(\mathcal{M}[X)]}$$
.

We have

$$S_{\mathbf{u}}^{\text{tot}} \stackrel{(\star)}{=} \frac{\min_{f: \mathbf{x} \mapsto f(\mathbf{x}_{-\mathbf{u}}), f \text{ meas.}} \|\mathcal{M} - f\|^2}{\operatorname{Var}[\mathcal{M}(\mathbf{X})]}$$

$$\begin{array}{rcl} S_{\mathbf{u}}^{\,\mathrm{tot}} \approx 0 & \Leftrightarrow & \mathcal{M}(\mathbf{X}) \approx f(\mathbf{X}_{-\mathbf{u}}) \\ & \Leftrightarrow & \mathbf{X}_{\mathbf{u}} \text{ is useless to "explain" } Y = \mathcal{M}(\mathbf{X}) \end{array}$$

Define the total Sobol' index for $\mathcal M$ associated to subset $\mathbf u \subseteq \{1,\ldots,d\}$ as

$$S_{u}^{tot} = \frac{\mathbb{E}[\operatorname{Var}(\mathcal{M}(X)|X_{-u})]}{\operatorname{Var}(\mathcal{M}[X)]}$$
.

We have

$$S_{\mathbf{u}}^{\text{tot}} \stackrel{(\star)}{=} \frac{\min_{\substack{f: \mathbf{x} \mapsto f(\mathbf{x}_{-\mathbf{u}}), f \text{ meas.}}} \|\mathcal{M} - f\|^2}{\operatorname{Var}[\mathcal{M}(\mathbf{X})]}$$

$$\begin{array}{rcl} S_{\mathbf{u}}^{\,\mathrm{tot}} \approx 0 & \Leftrightarrow & \mathcal{M}(\mathbf{X}) \approx f(\mathbf{X}_{-\mathbf{u}}) \\ & \Leftrightarrow & \mathbf{X}_{\mathbf{u}} \text{ is useless to "explain" } Y = \mathcal{M}(\mathbf{X}) \end{array}$$

Note that if $\mu(d\mathbf{x}) = \prod_{i=1}^{d} \mu_i(d\mathbf{x}_i)$ then

$$\mathcal{S}_{\mathbf{u}}^{\,\mathrm{tot}} = \sum_{\mathbf{v} \subseteq \{1, \dots, d\}, \ \mathbf{u} \cap \mathbf{v} \neq \emptyset} \mathcal{S}_{\mathbf{v}} \; .$$

In that framework, if $S_{\rm u}^{\rm tot} \approx 0$, we get:

$$\mathcal{M}(\mathbf{X}_{\mathbf{u}}:\mathbf{X}_{-\mathbf{u}})\approx\mathcal{M}(\mathbf{x}_{\mathbf{u}}^{0}:\mathbf{X}_{-\mathbf{u}}).$$

1. Global sensitivity analysis from an approximation point of view

2. Gradient-based linear dimension reduction with active subspace

3. Extension to nonlinear dimension reduction

Gradient based linear dimension reduction

$$\mathcal{M}: \left\{ \begin{array}{ccc} \mathcal{X} = \prod_{i=1}^{d} \mathcal{X}_{i} \subseteq \mathbb{R}^{d} & \rightarrow & \mathcal{Y} \subseteq \mathbb{R}^{p} \\ \mathbf{x} & \mapsto & y = \mathcal{M}(x_{1}, \dots, x_{d}) \end{array} \right.$$

We seek for a decomposition of the form

 $\mathcal{M}(x_1,\ldots,x_d) \approx f \circ g(\mathbf{x}) = f(g_1(x_1,\ldots,x_d),\ldots,g_r(x_1,\ldots,x_d))$ with $r \leq d$.

Constantine and Diaz [2017], Zahm et al. [2020]

Framework:

$$\mathbf{x} \in \mathbb{R}^d \mapsto \mathcal{M}(x_1, \ldots, x_d) \in \mathcal{Y}$$

with $\mathcal{Y} = \mathbb{R}^{p}$ endowed with a Hilbertian norm $\| \cdot \|_{\mathcal{Y}}$.

Let \mathbb{L}^2_{μ} be the space of square-integrable functions $u : \mathbb{R}^d \to \mathcal{Y}$. We endow it with the norm

$$\|u\|^{2} = \int \|u(\mathbf{x})\|_{\mathcal{Y}}^{2}\mu(d\mathbf{x}) = \mathbb{E}\left[\|u(\mathbf{X})\|_{\mathcal{Y}}^{2}\right].$$

One aims at approximating \mathcal{M} by a ridge function (a function which is constant along a subspace). More specifically, one seeks for $r \leq d$ and $A \in \mathbb{R}^{r \times d}$ such that:

$$\mathcal{M}(\mathbf{x}) \approx f(\mathbf{A}\mathbf{x})$$
 with $f : \mathbb{R}^r \to \mathcal{Y}$,

or equivalently for $r \leq d$ and a rank-r projector $P_r \in \mathbb{R}^{d \times d}$ such that:

$$\mathcal{M}(\mathbf{x}) \approx h(P_r \mathbf{x})$$
 with $h : \mathbb{R}^d \to \mathcal{Y}$.

We assume $X \sim \mu = \mathcal{N}(m, \Sigma)$.

Controlled approximation problem Given $\varepsilon \ge 0$, find h and a rank-r projector P_r such that

$$\mathbb{E}(\|\mathcal{M}(\mathsf{X}) - h(P_{\mathsf{r}}\mathsf{X})\|_{\mathcal{Y}}^2) \leq \varepsilon.$$

Procedure:

1. derive an upper bound for the error

$$\|\mathcal{M}-h\circ P_r\|\leq \mathcal{R}(h,P_r)$$

2. fix r and solve

 $\min_{h,P_r} \mathcal{R}(h,P_r)$

3. increase r until

 $\min_{h,P_r} \mathcal{R}(h,P_r) \leq \varepsilon$

Note that P_r is not restricted to be a projector onto the canonical coordinates.

Derivation of the upper bound

For any projector P_r ,

$$\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M}|\sigma(P_r))\| = \min_{h} \|\mathcal{M} - h \circ P_r\|.$$

From Poincaré type inequalities, we can deduce that for $\mathcal{M} : \mathbb{R}^d \to \mathcal{Y}$ smooth vector-valued and for any projector P_r ,

$$\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M}|\sigma(P_r))\| \leq \sqrt{\operatorname{trace}(H(I_d - P_r)\Sigma(I_d - P_r)^T)}$$

with matrix $\pmb{H} \in \mathbb{R}^{d imes d}$ defined by

$${m H}=\int (
abla {\cal M})^* (
abla {\cal M}) {
m d} \mu$$

where

$$\begin{cases} \nabla \mathcal{M}(x) : \mathbb{R}^d \to \mathbb{R}^p \text{ Jacobian of } \mathcal{M} \text{ at } x \\ \nabla \mathcal{M}(x)^* \text{ is the adjoint of } \nabla \mathcal{M}(x) \end{cases}$$

What is the matrix H ?

$$H = \int (\nabla \mathcal{M})^* (\nabla \mathcal{M}) \mathrm{d} \mu \quad \in \mathbb{R}^{d imes d}$$

► Vector-valued case: $\mathcal{Y} = \mathbb{R}^{p}$ with $\|\cdot\|_{\mathcal{Y}}$ such that $\|v\|_{\mathcal{Y}}^{2} = v^{T} R_{\mathcal{Y}} v$ for some SPD matrix $R_{\mathcal{Y}} \in \mathbb{R}^{p \times p}$. Then

$$\boldsymbol{H} = \int (\nabla \boldsymbol{\mathcal{M}})^T \boldsymbol{R}_{\boldsymbol{\mathcal{Y}}} \, (\nabla \boldsymbol{\mathcal{M}}) \, \mathrm{d} \boldsymbol{\mu}$$

with

$$\nabla \mathcal{M} = \begin{pmatrix} \frac{\partial \mathcal{M}_1}{\partial x_1} & \cdots & \frac{\partial \mathcal{M}_1}{\partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathcal{M}_p}{\partial x_1} & \cdots & \frac{\partial \mathcal{M}_p}{\partial x_d} \end{pmatrix}$$

Scalar-valued case: $\mathcal{Y} = \mathbb{R}$ with $\|\cdot\|_{\mathcal{Y}} = |\cdot|$, then

$$\boldsymbol{H} = \int (\nabla \mathcal{M}) (\nabla \mathcal{M})^T \, \mathrm{d} \boldsymbol{\mu}$$

with

$$\nabla \mathcal{M} = \begin{pmatrix} \frac{\partial \mathcal{M}}{\partial x_1} \\ \vdots \\ \frac{\partial \mathcal{M}}{\partial x_d} \end{pmatrix}$$

→→→ Active-Subspace method Constantine and Diaz [2017]

Minimizing the upper bound

Let (v_i, λ_i) be the *i*-th generalized eigenpair of (H, Σ^{-1}) :

$$H\mathbf{v}_i = \lambda_i \Sigma^{-1} \mathbf{v}_i \,, \, \mathbf{v}_i^T \Sigma^{-1} \mathbf{v}_j = \delta_{i,j}$$

One has $\lambda_1 \geq \cdot \geq \lambda_i \geq \cdot \geq \lambda_d$ and

$$\min_{P_r} \sqrt{\operatorname{trace}(H(I_d - P_r)\Sigma(I_d - P_r)^T)} = \sqrt{\sum_{i=r+1}^d \lambda_i}$$

A solution is the Σ^{-1} -orthogonal proj. P_r onto span $\{v_1, \ldots, v_r\}$: $P_r = \left(\sum_{i=1}^r v_i v_i^T\right) \Sigma^{-1}$.

► A fast decay in λ_i ensures $\sqrt{\sum_{i=r+1}^d \lambda_i} \le \varepsilon$ for $r = r(\varepsilon) \ll d$,

H provides a test that reveals the low-effective dimension.

Basic examples with p = 1

• Affine function $\mathcal{M}(\mathbf{x}) = \alpha^T \mathbf{x} + \beta$. Then $\nabla \mathcal{M}(\mathbf{x}) = \alpha$ and $H = \alpha \alpha^T$.

Basic examples with p = 1

• Affine function $\mathcal{M}(\mathbf{x}) = \alpha^T \mathbf{x} + \beta$. Then $\nabla \mathcal{M}(\mathbf{x}) = \alpha$ and $H = \alpha \alpha^T$.

► Ridge function $\mathcal{M}(\mathbf{x}) = f(\alpha^T \mathbf{x})$ for some $\alpha \in \mathbb{R}^d$. We have $\nabla \mathcal{M}(\mathbf{x}) = \alpha f'(\alpha^T \mathbf{x})$ and $H = \alpha^T \left(\int f'(\alpha^T \mathbf{x})^2 d\mu(\mathbf{x}) \right) \alpha$.

Basic examples with p = 1

• Affine function $\mathcal{M}(\mathbf{x}) = \alpha^T \mathbf{x} + \beta$. Then $\nabla \mathcal{M}(\mathbf{x}) = \alpha$ and $H = \alpha \alpha^T$.

► Ridge function $\mathcal{M}(\mathbf{x}) = f(\alpha^T \mathbf{x})$ for some $\alpha \in \mathbb{R}^d$. We have $\nabla \mathcal{M}(\mathbf{x}) = \alpha f'(\alpha^T \mathbf{x})$ and $H = \alpha^T \left(\int f'(\alpha^T \mathbf{x})^2 d\mu(\mathbf{x}) \right) \alpha$.

► Generalized ridge function $\mathcal{M}(\mathbf{x}) = f(V_r^T \mathbf{x}), V_r \in \mathbb{R}^{d \times r}$. Then $H = V_r \left(\int \nabla f(V_r^T \mathbf{x}) \nabla f(V_r^T \mathbf{x})^T d\mu(\mathbf{x}) \right) V_r^T$. Let's come back to the upper bound, namely,

$$\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M}|\sigma(P_r))\| \leq \sqrt{\operatorname{trace}(\mathcal{H}(I_d - P_r)\Sigma(I_d - P_r)^{\mathcal{T}})}.$$

Choosing $\mathcal{Y} = \mathbb{R}^p$ and P_r as the projector that extracts the coordinates of X indexed by **u**, we get:

$$S_{\mathbf{u}}^{\text{tot}} = \frac{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M}|\sigma(I_d - P_r))\|^2}{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M})\|^2}$$

thus

$$S_{\mathbf{u}}^{\text{tot}} \leq \frac{\text{trace}\left(\Sigma P_{r}^{T} H P_{r}\right)}{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M})\|^{2}}$$

$$\underbrace{=}_{\text{for independent inputs}} \frac{\sum_{i \in \mathbf{u}} \text{Var}(X_{i}) H_{i,i}}{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M})\|^{2}}$$

See, e.g., Sobol' & Kucherenko, 2009 and Lamboni *et al.*, 2013 for similar results in the case p = 1 (scalar output) and **u** a singleton. Sobol' indices for vectorial outputs have been introduced in Lamboni et al. [2011] and further studied in Gamboa et al. [2013].

Also, choosing $\mathcal{Y} = \mathbb{R}^p$ and P_r as the projector that extracts the coordinates of X indexed by $-\mathbf{u}$, we get:

$$S_{\mathsf{u}}^{\mathsf{clo}} = 1 - rac{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M} | \sigma(P_r))\|_{\mathcal{H}}^2}{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M})\|_{\mathcal{H}}^2}$$

thus

$$\begin{split} \mathcal{S}_{\mathbf{u}}^{\mathsf{clo}} & \geq & 1 - \frac{\mathsf{trace}\left(\Sigma P_r^{\mathsf{T}} \mathcal{H} P_r\right)}{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M})\|^2} \\ & \underbrace{=}_{\mathsf{for independent inputs}} & 1 - \frac{\sum_{i \in -\mathbf{u}} \operatorname{Var}(X_i) \mathcal{H}_{i,i}}{\|\mathcal{M} - \mathbb{E}_{\mu}(\mathcal{M})\|^2} \, . \end{split}$$

٠

A numerical example

Diffusion problem on $\Omega = [0, 1]^2$: $\begin{cases}
\nabla \cdot \kappa \nabla u &= 0 & \text{in } \Omega \\
u &= x + y & \text{on } \partial \Omega
\end{cases}$

Random diffusion field κ , log-normal distribution.

After finite element discretization:

(a) mesh, 3252 elements

 $x = \log(\kappa) \in \mathbb{R}^{3252} \sim \mu = \mathcal{N}(0, \Sigma)$

(b) log. diffusion field

(c) solution

1. Scenario 1 $\mathcal{M} : x \mapsto u \in \mathcal{Y} \subset H^1(\Omega)$, p = 1691 (number of nodes in the mesh for FEM);

2. Scenario 2 \mathcal{M} : $x \mapsto u_{|\Omega_s} \in \mathcal{Y} \subset H^1(\Omega_s)$, p = 168;

3. Scenario 3 \mathcal{M} : $x \mapsto (u_{|s_1}, u_{|s_2}) \in \mathcal{Y} = \mathbb{R}^2$ (canonical norm).

Modes v_1, v_2, \ldots

$$\operatorname{Im}(P_r) = \operatorname{span}\{v_1, v_2, \ldots, v_r\}$$

Approximation of the conditional expectation assuming H is known

We can show that

$$\mathbb{E}\Big(\|\mathcal{M} - \hat{F}_r\|^2\Big) \leq (1 + M^{-1}) \operatorname{trace}(\Sigma(I_d - P_r^{\mathsf{T}})H(I_d - P_r))$$

Approximation of H to get the projector

$$H \approx \widehat{H} = \frac{1}{\kappa} \sum_{k=1}^{\kappa} (\nabla \mathcal{M}(\mathbf{X}^{(k)}))^* (\nabla \mathcal{M}(\mathbf{X}^{(k)})), \quad \mathbf{X}^{(k)} \stackrel{iid}{\sim} \mu$$

$$\sqrt{\operatorname{trace}(\Sigma(I_d - \hat{P}_r^T)\widehat{H}(I_d - \hat{P}_r))} = \operatorname{function}(r)$$
 (dashed curves)
$$\sqrt{\operatorname{trace}(\Sigma(I_d - \hat{P}_r^T)H(I_d - \hat{P}_r))} = \operatorname{function}(r)$$
 (solid curves)

Notice that $\operatorname{rank}(\widehat{H}) \leq K \max_{1 \leq k \leq K} \operatorname{rank}(\nabla \mathcal{M}(\mathbf{X}^{(k)})) \leq K \dim(V)$ (see also Zahm et al. [2022]) Beyond Gaussian uncertainty

Let
$$d\mu(x) \propto \exp\left(-V(x) - \Psi(x)\right) dx$$
. Assume

- 1. $supp(\mu)$ convex,
- 2. (Bakry-Émery theorem) V a convex potential with

 $\nabla^2 V(x) \succeq \Gamma$, with Γ SPD matrix,

3. (Holley–Stroock perturbation lemma) Ψ bounded with $\exp(\sup \Psi - \inf \Psi) \leq \kappa$

Then μ satisfies the subspace Poincaré inequality (Zahm et al. [2022]): $\|\mathcal{M} - \mathbb{E}[\mathcal{M}(\mathbf{X})|P_r^T\mathbf{X}]\|^2 \leq \kappa \operatorname{trace}[\Sigma(I_d - P_r^T)H(I_d - P_r))]$ for any smooth function \mathcal{M} and any projector P

for any smooth function \mathcal{M} and any projector P_r .

Beyond Gaussian uncertainty

Let
$$d\mu(x) \propto \exp\left(-V(x) - \Psi(x)\right) dx$$
. Assume

- 1. $supp(\mu)$ convex,
- 2. (Bakry-Émery theorem) V a convex potential with

 $\nabla^2 V(x) \succeq \Gamma$, with Γ SPD matrix,

3. (Holley–Stroock perturbation lemma) Ψ bounded with $\exp(\sup \Psi - \inf \Psi) \leq \kappa$

Then μ satisfies the subspace Poincaré inequality (Zahm et al. [2022]):

 $\|\mathcal{M} - \mathbb{E}[\mathcal{M}(\mathbf{X})|\mathbf{P_r}^T\mathbf{X}]\|^2 \le \kappa \operatorname{trace}[\Sigma(\mathbf{I_d} - \mathbf{P_r}^T)H(\mathbf{I_d} - \mathbf{P_r}))]$

for any smooth function ${\mathcal M}$ and any projector ${\mathcal P}_r.$ Examples are:

- Gaussian mixtures,
- uniform measures on compact & convex sets
- ▶ any measure such that $d\mu(x) \ge \alpha > 0$ on compact & convex sets.

1. Global sensitivity analysis from an approximation point of view

2. Gradient-based linear dimension reduction with active subspace

3. Extension to nonlinear dimension reduction

Extension to nonlinear dimension reduction Bigoni et al. [2022]

$$\mathcal{M}: \left\{ \begin{array}{ccc} \mathcal{X} \subset \mathbb{R}^d & \to & \mathbb{R} \\ \mathbf{x} & \mapsto & y = \mathcal{M}(x_1, \dots, x_d) \end{array} \right.$$

$$\mathcal{M}(x_1,\ldots,x_d)\approx f\circ g(\mathbf{x})=f\left(g_1(x_1,\ldots,x_d),\ldots,g_r(x_1,\ldots,x_d)\right),$$

with the feature map g is not necessarily linear.

We propose, for any $r \leq d$, a two-step procedure.

Step 1, construction of the feature map g: solve min J(g₁,...,gr) with J a gradient-based cost function.

Step 2, construction of the profile fucntion f:

solve
$$\min_{f \in \mathcal{F}_r} \mathbb{E}\left[\left(\mathcal{M}(\mathsf{X}) - f \circ g(\mathsf{X})\right)^2\right]$$
.

Choice of the cost function J

Note that, if $\mathcal{M}(x_1,\ldots,x_d) = f \circ g(\mathbf{x})$, then

$$\nabla \mathcal{M}(\mathsf{x}) = \underbrace{\nabla g(\mathsf{x})^T}_{\in \mathbb{R}^{d \times r}} \underbrace{\nabla f(g(\mathsf{x}))}_{\in \mathbb{R}^r} \Rightarrow \nabla \mathcal{M}(\mathsf{x}) \in \mathsf{range}(\nabla g(\mathsf{x})^T).$$

A natural choice for J is then

$$J(g) := \mathbb{E}\left[\left\|\nabla \mathcal{M}(\mathsf{X}) - \Pi_{\mathsf{range}}(\nabla g(\mathsf{X})^{\mathcal{T}}) \nabla \mathcal{M}(\mathsf{X})\right\|^{2}\right].$$

Choice of the cost function J

Note that, if $\mathcal{M}(x_1, \ldots, x_d) = f \circ g(\mathbf{x})$, then

$$\nabla \mathcal{M}(\mathsf{x}) = \underbrace{\nabla g(\mathsf{x})^T}_{\in \mathbb{R}^{d \times r}} \underbrace{\nabla f(g(\mathsf{x}))}_{\in \mathbb{R}^r} \Rightarrow \nabla \mathcal{M}(\mathsf{x}) \in \mathsf{range}(\nabla g(x)^T).$$

A natural choice for J is then

$$J(g) := \mathbb{E}\left[\left\|\nabla \mathcal{M}(\mathsf{X}) - \Pi_{\mathsf{range}}(\nabla g(\mathsf{X})^{\mathsf{T}}) \nabla \mathcal{M}(\mathsf{X})\right\|^{2}\right].$$

We have proven $\mathcal{M} = f \circ g \Rightarrow J(g) = 0$. Question a) Is the reciprocal true?

Question a): is the reciprocal \uparrow true? yes!

Proposition:

Assume $\mathcal{M} \in \mathcal{C}^1(\mathcal{X}; \mathbb{R})$ and $\mathcal{G}_r \subset \mathcal{C}^1(\mathcal{X}; \mathbb{R}^r)$. Let $g : \mathcal{X} \to \mathbb{R}^r$ be a smooth function such that the level-sets

$$g^{-1}({\mathbf{z}}) = {\mathbf{x} \in \mathcal{X} : g(\mathbf{x}) = \mathbf{z}},$$

are **pathwise-connected** for any $z \in \mathbb{R}^r$. Then

$$J(g) = 0 \Rightarrow \exists f \text{ such that } \mathcal{M} = f \circ g$$

Are g's level sets pathwise-connected?

Examples of feature maps $g : \mathcal{X} \to \mathbb{R}$ with \mathcal{X} convex and with smoothly pathwise connected level-sets:

Affine feature map Any function $g(\mathbf{x}) = A\mathbf{x} + b$ with $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$;

Feature map following from a C^1 -diffeomorphism Any function $g(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x}))$ where $\phi_i(\mathbf{x})$ is the *i*-th component of $\phi(\mathbf{x})$, with $\phi : \mathcal{X} \to \mathcal{X}$ a C^1 -diffeomorphism;

Polynomial feature map Any polynomial function on $\mathcal{X} = \mathbb{R}^d$ such that for all $\mathbf{z} \in g(\mathcal{X})$, the zeros of the polynomial $\mathbf{x} \mapsto g(\mathbf{x}) - \mathbf{z}$ are pathwise-connected.

Examples of feature maps $g : \mathcal{X} \to \mathbb{R}$ with \mathcal{X} convex and with smoothly pathwise connected level-sets:

Affine feature map Any function $g(\mathbf{x}) = A\mathbf{x} + b$ with $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$;

Feature map following from a C^1 -diffeomorphism Any function $g(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x}))$ where $\phi_i(\mathbf{x})$ is the *i*-th component of $\phi(\mathbf{x})$, with $\phi : \mathcal{X} \to \mathcal{X}$ a C^1 -diffeomorphism;

Polynomial feature map Any polynomial function on $\mathcal{X} = \mathbb{R}^d$ such that for all $\mathbf{z} \in g(\mathcal{X})$, the zeros of the polynomial $\mathbf{x} \mapsto g(\mathbf{x}) - \mathbf{z}$ are pathwise-connected.Computing the number of connected components (i.e., the zeroth Betti number) of an algebraic set like $\{\mathbf{x} : g(\mathbf{x}) - \mathbf{z}\}$ is a difficult question, commonly encountered in algebraic geometry.

Question b): does $J(g) \approx 0$ implies $\mathcal{M} \approx f \circ g$? yes!

Denote by $\mathbb{C}(Z)$ the **Poincaré constant** of a random vector Z, that is, the smallest constant such that

$$\operatorname{Var}(h(Z)) \leq \mathbb{C}(Z) \operatorname{\mathbb{E}}\left[\left\|
abla h(Z)
ight\|^2
ight]$$

holds for any smooth function $h : \operatorname{supp}(Z) \to \mathbb{R}$.

Proposition:

Assume $\mathcal{G}_r \subset \mathcal{C}^1(\mathsf{X}; \mathbb{R}^r)$ and $\operatorname{rank}\left(\nabla g(\mathsf{x})^T\right) = r \ \forall g \in \mathcal{G}_r$, $\forall \mathsf{x} \in \mathcal{X}$. Assume

$$\mathbb{C}(\mathsf{X}|\mathcal{G}_r) := \sup_{g \in \mathcal{G}_r} \sup_{\mathsf{z} \in g(\mathcal{X})} \mathbb{C}(\mathsf{X}|g(\mathsf{X}) = \mathsf{z}) < \infty.$$

Then for any $g \in \mathcal{G}_r$, there exists a profile $f : \mathbb{R}^r \to \mathbb{R}$ such that

$$\mathbb{E}\left[\left(\mathcal{M}(\mathsf{X})-f\circ g(\mathsf{X})\right)^2\right]\leq \mathbb{C}(\mathsf{X}|\mathcal{G}_r)\,J(g).$$

Example: if $\mathcal{G}_r = \{\mathbf{x} \mapsto U^T \mathbf{x} : U \in \mathbb{R}^{d \times r} \text{ orth. columns}\}$ and if $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, I_d)$, then

$$\mathbb{C}(\mathbf{X}|\mathcal{G}_r) = 1$$

Although assuming $\mathbb{C}(X|\mathcal{G}_r) < \infty$ is usual, e.g., in the analysis of Markov semigroups or in molecular dynamics, proving it remains an open challenge in more general settings.

Question c): how to minimize $g \mapsto J(g)$? We seek for g solving

$$\min_{\boldsymbol{g} = (\boldsymbol{g}_1, \dots, \boldsymbol{g}_r) \in \mathcal{G}_r} J(\boldsymbol{g}) = \mathbb{E} \left[\left\| \nabla \mathcal{M}(\boldsymbol{X}) - \Pi_{\mathsf{range}}(\nabla \boldsymbol{g}(\boldsymbol{X})^T) \nabla \mathcal{M}(\boldsymbol{X}) \right\|^2 \right]$$

with $\mathcal{G}_r = \mathcal{G}^r = \operatorname{span}\{\Phi_1, \ldots, \Phi_K\}^r$.

Question c): how to minimize $g \mapsto J(g)$? We seek for g solving

$$\min_{\boldsymbol{g}=(\boldsymbol{g}_1,\ldots,\boldsymbol{g}_r)\in\mathcal{G}_r}J(\boldsymbol{g})=\mathbb{E}\left[\left\|\nabla\mathcal{M}(\boldsymbol{\mathsf{X}})-\boldsymbol{\Pi}_{\mathsf{range}}(\nabla\boldsymbol{g}(\boldsymbol{\mathsf{X}})^{\mathsf{T}})\nabla\mathcal{M}(\boldsymbol{\mathsf{X}})\right\|^2\right]$$

with
$$\mathcal{G}_r = \mathcal{G}^r = \operatorname{span} \{ \Phi_1, \dots, \Phi_K \}^r$$
.

It is equivalent to seek for g solving

$$\max_{\boldsymbol{G} \in \mathbb{R}^{\#\mathcal{G} \times r}} \mathcal{R}(\boldsymbol{G}) = \mathbb{E}\left[\operatorname{trace}(\boldsymbol{G}^{\mathsf{T}} H(\boldsymbol{X})\boldsymbol{G})(\boldsymbol{G}^{\mathsf{T}} \Sigma(\boldsymbol{X})\boldsymbol{G})^{-1}\right] \text{ where }$$

$$\begin{aligned} & \mathcal{H}(\mathbf{x}) = \nabla \Phi(\mathbf{x}) (\nabla \mathcal{M}(\mathbf{x}) \nabla \mathcal{M}(\mathbf{x})^T) \nabla \Phi(\mathbf{x})^T, \\ & \Sigma(\mathbf{x}) = \nabla \Phi(\mathbf{x}) \nabla \Phi(\mathbf{x})^T, \text{ with } \Phi(\mathbf{x}) = (\Phi_1(\mathbf{x}), \dots, \Phi_K(\mathbf{x})). \end{aligned}$$

Maximization is solved with a quasi-Newton algorithm.

For linear feature maps, $g(\mathbf{x}) = A\mathbf{x}$, our procedure coincides with active subspace method.

Adaptive construction of g from $\{\mathbf{X}^{(i)}, \mathcal{M}(\mathbf{X}^{(i)}), \nabla \mathcal{M}(\mathbf{X}^{(i)})\}_{i=1}^{N}$

Empirical cost

We first replace $\mathcal{R}(G)$ by its empirical counterpart:

$$\hat{\mathcal{R}}^{N}(G) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{trace}(\mathbf{G}^{T} H(\mathbf{X}^{(i)}) \mathbf{G}) (\mathbf{G}^{T} \Sigma(\mathbf{X}^{(i)}) \mathbf{G})^{-1}.$$

For any $1 \le r \le d$, we adapt the complexity of $\mathcal{G}_r = \mathcal{G}^r$ to the sample size N.

Matching Pursuit

We use a state-of-the-art Migliorati [2015, 2019] reduced-set matching pursuit algorithm on downward-closed polynomial spaces to build g.

Cross Validation

is used to know when to stop the iterations (before it overfits).

Downward closed polynomial spaces

$$\mathcal{G} = \mathbb{P}_{\Lambda}[\mathbb{R}^d] = \operatorname{span}\{x_1^{\nu_1} \dots x_d^{\nu_d}, \nu \in \Lambda\}$$

where $\Lambda \subset \mathbb{N}^d$ is a downward closed set, that is:

$$\nu \in \Lambda \text{ and } \mu \leq \nu \quad \Rightarrow \quad \mu \in \Lambda$$

Downward closed polynomial spaces

$$\mathcal{G} = \mathbb{P}_{\Lambda}[\mathbb{R}^d] = \operatorname{span}\{x_1^{\nu_1} \dots x_d^{\nu_d}, \nu \in \Lambda\}$$

where $\Lambda \subset \mathbb{N}^d$ is a downward closed set, that is:

$$\nu \in \Lambda \text{ and } \mu \leq \nu \quad \Rightarrow \quad \mu \in \Lambda$$

Matching Pursuit

$$\Lambda_{k+1} = \Lambda_k \cup \{\nu_{k+1}\}$$
$$\nu_{k+1} \in \operatorname*{argmax}_{\nu \in \mathsf{ReducedMargin}(\Lambda_k)} |\partial_{\nu} \hat{\mathcal{R}}^N(G_k^*)|$$

where G_k^* is the minimizer of $\hat{\mathcal{R}}^N(\cdot)$ over Λ_k .

Downward closed polynomial spaces

$$\mathcal{G} = \mathbb{P}_{\Lambda}[\mathbb{R}^d] = \operatorname{span}\{x_1^{\nu_1} \dots x_d^{\nu_d}, \nu \in \Lambda\}$$

where $\Lambda \subset \mathbb{N}^d$ is a downward closed set, that is:

$$\nu \in \Lambda \text{ and } \mu \leq \nu \quad \Rightarrow \quad \mu \in \Lambda$$

Matching Pursuit

$$\Lambda_{k+1} = \Lambda_k \cup \{\nu_{k+1}\}$$
$$\nu_{k+1} \in \operatorname*{argmax}_{\nu \in \mathsf{ReducedMargin}(\Lambda_k)} |\partial_{\nu} \hat{\mathcal{R}}^N(G_k^*)|$$

where G_k^* is the minimizer of $\hat{\mathcal{R}}^N(\cdot)$ over Λ_k .

Cross Validation

To know when to stop the iterations (before it overfits).

Once g is computed, how to construct f?

$$\min_{\boldsymbol{f}\in\mathcal{F}_{\boldsymbol{f}}} \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{M}(\boldsymbol{X}^{(i)}) - \boldsymbol{f} \circ \boldsymbol{g}(\boldsymbol{X}^{(i)}) \right)^{2} \underbrace{+ \left\| \nabla \mathcal{M}(\boldsymbol{X}^{(i)}) - \nabla \boldsymbol{f} \circ \boldsymbol{g}(\boldsymbol{X}^{(i)}) \right\|^{2}}_{\text{recycle the gradients}}$$

As for \mathcal{G} , we adapt the complexity of $\mathcal{F}_r = \mathcal{F}^r$ using reduced-set matching pursuit algorithm on downward-closed polynomial spaces.

Once g is computed, how to construct f?

$$\min_{\boldsymbol{f}\in\mathcal{F}_{\boldsymbol{f}}} \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{M}(\boldsymbol{X}^{(i)}) - \boldsymbol{f} \circ \boldsymbol{g}(\boldsymbol{X}^{(i)}) \right)^{2} \underbrace{+ \left\| \nabla \mathcal{M}(\boldsymbol{X}^{(i)}) - \nabla \boldsymbol{f} \circ \boldsymbol{g}(\boldsymbol{X}^{(i)}) \right\|^{2}}_{\text{recycle the gradients}}$$

As for \mathcal{G} , we adapt the complexity of $\mathcal{F}_r = \mathcal{F}^r$ using reduced-set matching pursuit algorithm on downward-closed polynomial spaces.

Benchmark algorithm (without dimension reduction):

$$\min_{\boldsymbol{v}\in\mathcal{V}} \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{M}(\boldsymbol{X}^{(i)}) - \boldsymbol{v}(\boldsymbol{X}^{(i)}) \right)^2 \underbrace{+ \left\| \nabla \mathcal{M}(\boldsymbol{X}^{(i)}) - \nabla \boldsymbol{v}(\boldsymbol{X}^{(i)}) \right\|^2}_{\text{recycle the gradients}}$$

Illustration: isotropic function

Illustration: Borehole function

Continuous lines: mean squared error $\mathbb{E}[(\mathcal{M}(X) - f \circ g(X))^2]$, Dashed lines: cost function J(g). The width of the shaded region corresponds to the standard deviation over 20 experiments.

Illustration: resonance frequency of a bridge

Parametrized eigenvalue problem

$$\mathcal{M}(\mathbf{x}) = \min_{v \in \mathbb{R}^{\mathcal{N}}} \frac{v^{T} K(\mathbf{x}) v}{v^{T} M v}$$

- ► K(x): stiffness matrix
- M: mass matrix
- $v \in \mathbb{R}^{\mathcal{N}}$: Finite Element solution ($\mathcal{N} = 960$)
- ▶ $\mathbf{x} \in \mathbb{R}^d$: Young modulus field (d = 32 KL modes)
- ▶ *N* = 100 (20 trials)

For this example, it is easy to compute model gradient $\nabla \mathcal{M}(\mathbf{x}) = (\partial_{x_1} \mathcal{M}(\mathbf{x}), \cdots, \partial_{x_d} \mathcal{M}(\mathbf{x}))$:

$$\partial_{x_i}\mathcal{M}(\mathbf{x}) = \frac{v(\mathbf{x})^T(\partial_{x_i}K(\mathbf{x}))v(\mathbf{x})}{v(\mathbf{x})^TMv(\mathbf{x})}, \text{ with } v(\mathbf{x}) = \underset{v \in \mathbb{R}^{\mathcal{N}}}{\operatorname{argmin}} \frac{v^TK(\mathbf{x})v}{v^TMv}.$$

Resonance frequency of a bridge. Four realizations of the Young modulus field X (color of the elements) and the associated resonance mode v(X) (displacement of the mesh).

Results:

	r = 1	r = 2	<i>r</i> = 3	<i>r</i> = 4	r = 6	r = 8	r = 16	r = 32
$Mean \times 10^{12}$	1.6	1.5	1.1	1.2	1.3	1.5	1.6	1.4
$Std \times 10^{12}$	0.80	0.69	0.22	0.24	0.28	0.83	0.39	0.43
#Λ _K	148 (±64)	129 (±45)	91 (±21)	80 (±23)	64 (±16)	57 (±9)	$51(\pm 1)$	32(±0)
#Γ <u>L</u>	5(±1)	8(±1)	$11(\pm 1)$	15 (±3)	24 (±7)	44 (±24)	133 (±102)	$102(\pm 70)$

Mean and standard deviation of mean squared error $\mathbb{E}[(\mathcal{M}(X) - f \circ g(X))^2]$ over 20 experiments, where g and f are constructed adaptively with N = 100 samples. Mean squared error is computed on a (fixed) validation set of size 1000. The last two lines give mean(\pm std) of the cardinality of $\#\Lambda_K$ and $\#\Gamma_L$, which represent the complexity of g and f, respectively.

Comparison with nonlinear (NL) kernel supervised PCA and NL kernel dimension reduction.

$$\mathbf{Y} = egin{pmatrix} \mathcal{M}(\mathbf{X}) \
abla \mathcal{M}(\mathbf{X}) \end{pmatrix} \in \mathbb{R}^{1+d}.$$

Kernel supervised PCA Barshan et al. [2011] aims to maximize the dependence between $G^T \Phi(\mathbf{X})$ and \mathbf{Y} measured with the Hilbert-Schmidt norm of the cross-covariance operator restricted to an arbitrary reproducing kernel Hilbert space (RKHS).

Kernel dimension reduction Fukumizu et al. [2009] aims to minimize the dependence between \mathbf{Y} and $\mathbf{Y}|G^{T}\Phi(\mathbf{X})$ measured with the Hilbert-Schmidt norm of the conditional covariance operator restricted to some RKHS.

In our experiments, we used squared exponential kernels for both $\kappa_{\rm X}$ and $\kappa_{\rm Y}.$

Isotropic function. Comparison of KS-PCA and NL-KDR with our method (GNLDR) for m = 1. Blue points: 1000 samples of $(g(X), \mathcal{M}(X))$. Red lines: function $g(x) \mapsto f \circ g(x)$ with either N = 50 (top row) or N = 500 (bottom row). Here, f is a univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.

Borehole function. Comparison of KS-PCA and NL-KDR with our method (GNLDR) for m = 1. Blue points: 1000 samples of $(g(X), \mathcal{M}(X))$. Red lines: function $g(x) \mapsto f \circ g(x)$ with either N = 30 (top row) or N = 300 (bottom row). Here, f is a univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.

Conclusion

- During this lecture, we presented a trip around global sensitivity analysis (via total Sobol' indices) and (non)linear dimension reduction.
- We proposed a two-step algorithm to build the approximation M(x) ≈ f ∘ g(x) adaptively with respect to the input/output sample. This algorithm takes into account gradient information.

Conclusion

- During this lecture, we presented a trip around global sensitivity analysis (via total Sobol' indices) and (non)linear dimension reduction.
- We proposed a two-step algorithm to build the approximation M(x) ≈ f ∘ g(x) adaptively with respect to the input/output sample. This algorithm takes into account gradient information.

Perspectives

- It would be interesting to propose an optimal (or at least a clever) sampling procedure.
- ► Although assuming C(X|G_r) < ∞ is usual, proving it remains an open challenge. A solution to investigate would be to construct g in a way that ensures P_{X|G_r} to be the push-forward measure of the standard normal distribution through a Lipschitz map.

Some references I

- Elnaz Barshan, Ali Ghodsi, Zohreh Azimifar, and Mansoor Zolghadri Jahromi. Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds. *Pattern Recognition*, 44(7):1357–1371, 2011.
- Daniele Bigoni, Youssef Marzouk, Clémentine Prieur, and Olivier Zahm. Nonlinear dimension reduction for surrogate modeling using gradient information. *Information* and Inference: A Journal of the IMA, 2022. doi: 10.1093/imaiai/iaac006. URL https://doi.org/10.1093/imaiai/iaac006.
- Paul G Constantine and Paul Diaz. Global sensitivity metrics from active subspaces. *Reliability Engineering & System Safety*, 162:1–13, 2017.
- Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Kernel dimension reduction in regression. *The Annals of Statistics*, 37(4):1871–1905, 2009.
- Fabrice Gamboa, Alexandre Janon, Thierry Klein, and Agnès Lagnoux. Sensitivity indices for multivariate outputs. *Comptes Rendus. Mathématique*, 351(7-8): 307–310, April 2013. URL https://hal.inria.fr/hal-00800847.
- J.L. Hart and P.A. Gremaud. An approximation theoretic perspective of sobol' indices with dependent variables. *International Journal for Uncertainty Quantification*, 8 (6), 2018.
- M. Lamboni, H. Monod, and D. Makowski. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. *Reliability Engineering and System Safety*, 96(4):450–459, 2011.

Some references II

- Giovanni Migliorati. Adaptive polynomial approximation by means of random discrete least squares. In *Numerical Mathematics and Advanced Applications-ENUMATH* 2013, pages 547–554. Springer, 2015.
- Giovanni Migliorati. Adaptive approximation by optimal weighted least-squares methods. *SIAM Journal on Numerical Analysis*, 57(5):2217–2245, 2019.
- M. Sobol' and S. Kucherenko. Derivative based global sensitivity measures and the link with global sensitivity indices. *Mathematics and Computers in Simulation*, 79: 3009–3017, 2009.
- Olivier Zahm, Paul G Constantine, Clémentine Prieur, and Youssef M Marzouk. Gradient-based dimension reduction of multivariate vector-valued functions. *SIAM Journal on Scientific Computing*, 42(1):A534–A558, 2020.
- Olivier Zahm, Tiangang Cui, Kody Law, Alessio Spantini, and Youssef Marzouk. Certified dimension reduction in nonlinear bayesian inverse problems. *Mathematics of Computation*, 2022. doi: https://doi.org/10.1090/mcom/3737.

Thanks for your attention!