Global sensitivity analysis and dimension
reduction

Clémentine PRIEUR
Grenoble Alpes University

Summer school on GSA & Poincaré inequalities
6-8 July 2022, Toulouse

! UNIVERSITE -
F&' Grenoble &',z""“,z"a""‘“
i Alpes

Groupement de Recherche

MASCOI:

1/ 51



Part 1l

Sensitivity analysis and dimension reduction:
a tour from sensitivity analysis to gradient based (non)linear
dimension reduction via the so-called active subspace methodology.

Joint work with O. Zahm (Inria Grenoble), D. Bigoni & Y.
Marzouk (MIT, Boston), P. Constantine (Univ. Colorado Boulder).
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Notation

> X ~ 1: vector of input parameters with known probability
distribution s (not necessarily product measure)

> Y output of interest, generally scalar ¥ € R

> : numerical model from it is also possible to evaluate the
gradient
L M(x)
VM(x) = :
9 M(x)

Variance based global sensitivity analysis: determine the relative
influence of the inputs Xi,..., Xy on the output Y.

Gradient based GSA: how to best exploit the gradient V.\1(x)?
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Previously...
Assume pu(dx) = [19; pi(dx;) is a product measure. Then, for
i€{l1,...,d}, the total Sobol" indices

_ Var[E(M(X)[X )]
Var[ /M (X)]

Set=1

can be bounded by

Var VOIS < C) [ (0160 dp(x)

=V

where:
» C(u;) is the Poincaré constant of the marginal p; which is
computable via an eigenvalue problem,
» vj is the i-th Derivative Based Sensitivity Measure (DGSM)
which is often cheaper to compute compared to Sf°t, provided
0;/M is available.
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1. Global sensitivity analysis from an approximation point of view

2. Gradient-based linear dimension reduction with active subspace

3. Extension to nonlinear dimension reduction
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1. Global sensitivity analysis from an approximation point of view
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We seek for a set of canonical coordinates along which the model
is (almost) constant M (x) = f(x,)

1

Hart and Gremaud [2018]
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Function approximation perspective

Let ]LfL be the space of square-integrable functions u endowed with
the norm

JulP = [ ulxPpu(e).

Expectations and conditional expectations can be seen as }Li
projections:
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Function approximation perspective

Let ]LfL be the space of square-integrable functions u endowed with
the norm

JulP = [ ulxPpu(e).

Expectations and conditional expectations can be seen as }Li
projections:

» the constant ¢ € R which best approximates u(X) in Li is
¢ = E[u(X)]:

min lu— > = [lu — BLu(OO] |2 = Var[u(X)]

8/ 51



Function approximation perspective

Let ]LfL be the space of square-integrable functions u endowed with

the norm
JulP = [ ulxPpu(e).
Expectations and conditional expectations can be seen as }Li

projections:

» the constant ¢ € R which best approximates u(X) in Li is
¢ = E[u(X)]:

min [|u — c|? = [|u — E[u(X)]||* = Var[u(X)];
ceR
» the measurable function f :— f(x,) = f(x,,,...,x, ) which
best approximates u(X) in Li is f(xy) = E[u(X)|X, = x,]:

min lu— £ = [lu = E[u() X1

f:x—f(xy), f measurable
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The total variance formula

g AP = = B P
= | (u = ELu(X)]) = (E[a(X)] - E[u(X)X.]) |
= |lu = ELu(X)]I - JE[(X)] = E()IX] 2 ()

Var[u(X)] Var[E(u(X)|Xy)]

{f: x> const.}

{f i flo)}
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Link with Sobol’ indices

The closed Sobol" indices for /M writes

min M —f]?
S co ._ VELI“[E(/\/l(X”Xu)] (;) 1_ fix—f(xy), f meas. H H
o Var[ /M (X)] Var[ /M (X)]

Sce~l & M(X) =~ f(X,)
< X, “explains” well Y = M(X)
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Define the total Sobol’ index for associated to subset

uC{l,...,d} as
E[Var(MX)X )]

tot __
S, = Var( D0
We have | 2
g tot () le!—)f(XT;rjf meas. H - f”
o Var[ /M (X)]

St~ 0 & (X) = f(X_y)
< X, is useless to “explain” Y =
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Define the total Sobol’ index for associated to subset
uC{l,...,d} as

E[Var(MX)X )]

tot __
S, = Var( D0
We have | 2
g tot () le!—)f(XT;rjf meas. H - f”
o Var[ /M (X)]

SPr0 & (X) = f(X_y)
& X, is useless to "explain” Y = M(X)

Note that if u(dx) = [1%; pi(dx;) then

set= Y s,
vC{l,....d}, unv#£0D

In that framework, if 5,*" =~ 0, we get:

(X, X ) = MO X ).

u
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2. Gradient-based linear dimension reduction with active subspace
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Gradient based linear dimension reduction

mX=TILXGCRY 5 YCRP
X = yz,/\/l(xl,...,xd)

We seek for a decomposition of the form

Constantine and Diaz [2017], Zahm et al. [2020]
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Framework:
x e Ry — (X1, yxq) €V

with )V = R” endowed with a Hilbertian norm || - ||y

Let ]Lft be the space of square-integrable functions v : RY — V.
We endow it with the norm

Jul = [ 1uG) 15 2u(dx) = B [|u(x))2]

One aims at approximating by a ridge function (a function
which is constant along a subspace). More specifically, one seeks
for r < d and A € R"™*“ such that:

(x) = f(Ax) with f : R" — V|

or equivalently for r < d and a rank-r projector P, € R“*“ such
that:
(x) ~ h(P, x) with h: RY — ).
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We assume X ~ ;1 = N(m, ).

Controlled approximation problem Given ¢ > 0, find h and a rank-r
projector P, such that

E([M(X) = h(PX)]%) < e.

Procedure:

1. derive an upper bound for the error

|M = ho P <R(h,P,)

2. fix r and solve

min R(h, Pr)

3. increase r until
min R(h, P;) <¢

7Pr

Note that P, is not restricted to be a projector onto the canonical
coordinates.
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Derivation of the upper bound

For any projector P,,
M = Eu (Mo (P))]| = min M —ho Prl.

From Poincaré type inequalities, we can deduce that for
: RY — ) smooth vector-valued and for any projector P;,

M — B, )| < \/trace (la = P)X(lg — Pr)T)

with matrix H € R9%9 defined by

H= [0y (T )dp

V M(x) : RY — RP Jacobian of M at x
VM(x)* is the adjoint of V.M (x)

where
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What is the matrix H ?

H= [(TMy(Tide e R

> Vector-valued case: )V = RP with || - || such that
||V||§ = v Ryv for some SPD matrix Ry, € RP*P. Then

H = /(VM)TRy (VM) dp

with
oM, oMy
8X1 .. 8Xd
oM, M,
9x1 e By
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» Scalar-valued case: V = R with || - ||y = |- |, then
H= /(VA/l)(VM)Tdu

with
oM
Ox1
VM = :

oM
Bxd

~+~> Active-Subspace method Constantine and Diaz [2017]
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Minimizing the upper bound
Let (v;, \;) be the i-th generalized eigenpair of (H, X~ 1):

HV,' = )\,-Z_lv,-, v,-TZ_lvj = 5,'7]'.

Onehas A1 >-> X\, >-> Ay and

m|n \/trace (g —P)Z(la—P)T) =] D A
i=r+1
A solution is the X ~!-orthogonal proj. P, onto span{vi,..., v, }:

P = (S vivT) Tt
> A fast decay in \; ensures /> .\ < e for r = r(e) < d,

» H provides a test that reveals the low-effective dimension.
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Basic examples with p =1

> Affine function M(x) = a”x + B. Then VM (x) = o and

H=aa.
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Basic examples with p =1

» Affine function M(x) = a”x + 8. Then VM (x) = a and
H=aa'.

> Ridge function M(x) = f(aTx) for some a € RY. We have
VM(x) =af (a"™x) and H=aT (f f’(aTx)zd,u(x)> a.
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Basic examples with p =1

» Affine function M(x) = a”x + 8. Then VM (x) = a and

H=aa.

> Ridge function M(x) = f(aTx) for some a € RY. We have
VM(x) =af (a"™x) and H=aT (f f’(aTx)zd,u(x)> a.

> Generalized ridge function M(x) = f(V, x), V, € RI*".
Then H =V, (J VA(VTx)VF(V,Tx)Tdu(x)) /T
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Let's come back to the upper bound, namely,

M — B, ) < \/trace (lg = P)X(lg — P)T).

Choosing )V = IR” and P, as the projector that extracts the
coordinates of X indexed by u, we get:

tot_” _Eu( |‘7(Id_Pr))||2
WS T MBI

trace (ZP,THP,>
M = B, (M2

ZiEU Var(Xi)Hl'J

~— _ 2’
for independent inputs ” E“( )H

See, e.g., Sobol' & Kucherenko, 2009 and Lamboni et al., 2013 for
similar results in the case p = 1 (scalar output) and u a singleton.
Sobol’ indices for vectorial outputs have been introduced in

Lamboni et al. [2011] and further studied in Gamboa et al. [2013].

thus

tot
S u

IA
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Also, choosing VV = R” and P, as the projector that extracts the

coordinates of X indexed by —u, we get:

clo _ _|| —E,u( |U(Pr))H$-t
R Y N 0]

thus

trace (ZPrT HP,)
M = Eu(M)]2

clo
56

v

1—

= 1

>icu Var(Xi)H;

M= El (M2

~—~
for independent inputs
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A numerical example

Diffusion problem on Q = [0, 1]*: { VorVu =0 in 2

u =x+y ondQ
» Random diffusion field x, log-normal distribution.

> After finite element discretization:

x = log(k) € R ~ 1 = N(0,X)

x81

xSy

|

(a) mesh, 3252 elements (b) log. diffusion field (c) solution

1. Scenario 1 M :x—u€ Y C HYQ), p = 1691 (number of nodes
in the mesh for FEM);
2. Scenario 2 M : x = uyq, €V C HY(Qy), p = 168;

3. Scenario 3 M : x + (ujs, ujs,) € V = R? (canonical norm).
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Modes vy, va, . ..

sopour -3

1 oLeuadg

¢ OLIRTIDG

€ OLIRTIDG

'aVr}

span{vy, v, ..

Im(P,) =
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Approximation of the conditional expectation assuming H is known
M

~ 1 i
Eu(Mlo(P) = Frixm o Z.\/I(P,x +(ly— P)ZW)y, zW T,
k=1

M x = g, Mix = (U, uys,)
| M — F.|| = function(r)
We can show that

IE(||.\/( - ﬁ,||2> < (14 MY trace(Z(ly — PTYH(lg — Pr))
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Approximation of H to get the projector
K

~ 1 i
H~ H= (VMO (VA (xFy),  x9Ey,
k=1
0 ol 1
] 1 welil 1
TR ’ ‘ CHLUY
Mixw—u M x = g, Mix = (U, uys,)
\/trace(}:(ld — ﬁf)ﬁ(ld — P)) = function(r) (dashed curves)
\/trace(Z(ld — PTYH(Ily — P,)) = function(r) (solid curves)

Notice that rank(/l—\l) < K maxi<ik<k rank(V.\/l(X(k>)) < Kdim(V)
(see also Zahm et al. [2022])
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Beyond Gaussian uncertainty
Let du(x) o exp ( - V(x) - W(x))dx. Assume
1. supp(u) convex,
2. (Bakry—Emery theorem) V a convex potential with
V2V(x) =T, with [ SPD matrix,
3. (Holley—Stroock perturbation lemma) W bounded with
exp(supV —inf¥) < x

Then p satisfies the subspace Poincaré inequality (Zahm et al. [2022]):

| M = E[MX)|P,TX]|? < rtrace[E(ly — P, T)H(lg — P,))]

for any smooth function and any projector P,.
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Beyond Gaussian uncertainty
Let du(x) o exp ( - V(x) - W(x))dx. Assume
1. supp(u) convex,
2. (Bakry—Emery theorem) V a convex potential with
V2V(x) =T, with I SPD matrix,
3. (Holley—Stroock perturbation lemma) W bounded with
exp(supV —inf¥) < x
Then p satisfies the subspace Poincaré inequality (Zahm et al. [2022]):
M = E[M(X)|P,TX]||” < rtrace[S(ly — P, T)H(ly — P)))]
for any smooth function and any projector P,.
Examples are:
» Gaussian mixtures,
» uniform measures on compact & convex sets

» any measure such that du(x) > « > 0 on compact & convex sets.

27/ 51



3. Extension to nonlinear dimension reduction
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Extension to nonlinear dimension reduction Bigoni et al. [2022]
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with the feature map g is not necessarily linear.

We propose, for any r < d, a two-step procedure.

» Step 1, construction of the feature map g:
solve mign J(g1,...,8r) with J a gradient-based cost function.
g€Yr

» Step 2, construction of the profile fucntion f:

solve min £ [(\/l(X) —fo g(X))Z} :

feFr
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Choice of the cost function J

Note that, if M(xq..... xq) = f o g(x), then

VM(x) = Vg(x)T VF(g(x)) = VM(x) € range(Vg(x) 7).

cRIxr cRrr

A natural choice for J is then

J(g) =K [HV’\/((X) - nrange(Vg(X)T)v'\/l(X)Hz} :
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Choice of the cost function J

Note that, if M(xq..... xq) = f o g(x), then

VM(x) = Vg(x)T VF(g(x)) = VM(x) € range(Vg(x) 7).

cRIxr cRrr

A natural choice for J is then

J(g) =K [HV’VI(X) - nrange(Vg(X)T)v'\/l(X)Hz} :

We have proven M = f o g = J(g) = 0. Question a) Is the
reciprocal true?
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Question a): is the reciprocal 1 true? yes!

Proposition:
Assume M € CH(X;R) and G, C CH(X;R").
Let g : X — R" be a smooth function such that the level-sets

({z2)) = {xe v ig(x) =12},

are pathwise-connected for any z € R". Then

J(g) =0= 3f such that M =fog
Are g's level sets pathwise-connected?
yes!  no
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Examples of feature maps g : &X' — R with /X' convex and with
smoothly pathwise connected level-sets:

Affine feature map Any function g(x) = Ax + b with A € R™*d
and b € R™;

Feature map following from a C!-diffeomorphism Any function
g(x) = (d1(x), ..., Pdm(x)) where ¢;(x) is the i-th component of
#(x), with ¢ : X' — X a Cl-diffeomorphism;

Polynomial feature map Any polynomial function on X' — R such
that for all z € g(.\'), the zeros of the polynomial x — g(x) —z are
pathwise-connected.
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Examples of feature maps g : &X' — R with /X' convex and with
smoothly pathwise connected level-sets:

Affine feature map Any function g(x) = Ax + b with A € R™*d
and b € R™;

Feature map following from a C!-diffeomorphism Any function
g(x) = (d1(x), ..., Pdm(x)) where ¢;(x) is the i-th component of
#(x), with ¢ : X' — X a Cl-diffeomorphism;

Polynomial feature map Any polynomial function on X' = R such
that for all z € g(.\'), the zeros of the polynomial x — g(x) —z are
pathwise-connected.Computing the number of connected
components (i.e., the zeroth Betti number) of an algebraic set like
{x: g(x) — z} is a difficult question, commonly encountered in
algebraic geometry.
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Question b): does J(g) ~ 0 implies M ~ f o g7 yes!

Denote by C(Z) the Poincaré constant of a random vector Z,
that is, the smallest constant such that

Var(h(2)) < C(2) E [||Vh(2)|?]

holds for any smooth function h : supp(Z) — R.

Proposition:
Assume G, C C1(X;R") and rank (Vg(x)T) =rVgeg,
Vx e X. Assume

C(X|G,) :== sup sup C(X|g(X) =2z) < oc.
8€Grzeg(X)

Then for any g € G,, there exists a profile f : R" — R such that

E [(M(X) = fog(X))®] <C(XI/) J(g).
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Example: if G, = {x — UTx: U € R?*" orth. columns} and if
X ~ N(0, 1), then
C(X|Gr) =1

Although assuming C(X|G,) < oo is usual, e.g., in the analysis of
Markov semigroups or in molecular dynamics, proving it remains an
open challenge in more general settings.
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Question ¢): how to minimize g — J(g)? We seek for g solving

i 2
i I(8) = B [[VMO0) =~ Mg 9n) VMO

with G, = G" = span{®y,..., P}’
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Question ¢): how to minimize g — J(g)? We seek for g solving

i 2
i I(8) = B [[VMO0) =~ Mg 9n) VMO

with G, = G" = span{®y,..., P}’

It is equivalent to seek for g solving

max R(G)=E [trace(GTH(X)G)(GTE(X)G) ™| where

H(x) = VO(x) (VM(x)VM(x) ") Vo(x) T,
Y (x) = VO(x)VO(x) T, with d(x) = (d1(x),..., Pk (x)).

Maximization is solved with a quasi-Newton algorithm.

For linear feature maps, g(x) = Ax, our procedure coincides with
active subspace method.
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Adaptive construction of g from {X), M(X"), VM (XD)}N

Empirical cost

We first replace R(G) by its empirical counterpart:

A

1 T i T i -1
RN(G):N;trace(G HXNG)(GTE(x )6y,

For any 1 < r < d, we adapt the complexity of G, = G" to the
sample size N.

Matching Pursuit

We use a state-of-the-art Migliorati [2015, 2019] reduced-set
matching pursuit algorithm on downward-closed polynomial spaces
to build g.

Cross Validation
is used to know when to stop the iterations (before it overfits).
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More precisely, to adapt the complexity of G with respect to the sample
size I, one uses the following tools:
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More precisely, to adapt the complexity of G with respect to the sample
size N, one uses the following tools:

Downward closed polynomial spaces
G =PA[RY] = span{x{* ... x}%, v € A}

where A € N9 is a downward closed set, that is:

veNand pu<v = peAnN
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More precisely, to adapt the complexity of G with respect to the sample
size N, one uses the following tools:

Downward closed polynomial spaces
G =PA[RY] = span{x{* ... x}%, v € A}

where A € N9 is a downward closed set, that is:

veNand pu<v = peAnN

Matching Pursuit
N1 = N U{vkya}

Vi1 € argmax |9, RY(G})|
vEReducedMargin(Ax)

where G is the minimizer of RV(-) over Ay.
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More precisely, to adapt the complexity of G with respect to the sample
size N, one uses the following tools:

Downward closed polynomial spaces
G =PA[RY] = span{x{* ... x}%, v € A}

where A € N9 is a downward closed set, that is:
veNand pu<v = peAnN

Matching Pursuit
N1 = N U{vkya}

Vi1 € argmax |9, RY(G})|
vEReducedMargin(Ax)

where G is the minimizer of RV(-) over Ay.

Cross Validation
To know when to stop the iterations (before it overfits).
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Once g is computed, how to construct 7

2

1Y . , _ |
min > (MXD)=Fog(X D)) 24| V(X)) = Vo g(x)]
- recycle the gradients

As for G, we adapt the complexity of F, = F" using reduced-set

matching pursuit algorithm on downward-closed polynomial spaces.

39/ 51



Once g is computed, how to construct 7

1 N i Ny} 2 i N2
min ,Z: (M) =Fog(X)) +[[VM(X) = Vo g(x)]

recycle the gradients

As for G, we adapt the complexity of F, = F" using reduced-set

matching pursuit algorithm on downward-closed polynomial spaces.

Benchmark algorithm (without dimension reduction):

it ,1& (MXD) = v(XD))* |V M(XD) = V(X))
i=1

recycle the gradients
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J(g)

Illustration: isotropic function

M(x) = cos (\/x2 + ...+ x3)

1074
107°

1076

M:N(Oa Id)
x € R®
N =100

f==}

OMP iterations for g

Ef[lu(X) — f o g(X)|*]

10°

1072

107°

1074

Il Il 1 v ]
50 100 150 200 250
OMP iterations for f
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Illustration: Borehole function
xx=r, ~N(0.1,3-107%)

xox=r  ~logN(7.71,1.0112)
x3=Tpm ~U(63070,115600)
(x) = 21 T (Ho—Hy) xs = Hyvo ~U(990,1110)

(/i) (e —+ ) ) xs =T ~U(63.1,116)

x6=Hy  ~U(700,820)

xx=L  ~U(1120,1680)

x3 = Ko  ~U(9855,12045)
SEER ==

Continuous lines: mean squared error E[(/M(X) — f o g(X))?], Dashed lines: cost
function J(g). The width of the shaded region corresponds to the standard deviation

over 20 experiments.
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Illustration: resonance frequency of a bridge

Parametrized eigenvalue problem

K(x): stiffness matrix
M: mass matrix

v € RV Finite Element solution (N = 960)

x € R?: Young modulus field (d = 32 KL modes)
» N =100 (20 trials)

For this example, it is easy to compute model gradient
VM(x) = (O M(%), -+, Oxg M(x)):

V()T (@ K () v(x)

vIK(x)v
v(x)T Mv(x) verN VI My

Oy, M(x) = , with v(x) = argmin
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Resonance frequency of a bridge. Four realizations of the Young modulus
field X (color of the elements) and the associated resonance mode v(X)
(displacement of the mesh).
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Results:

r=1 r=2 r=3 r==4 r==6 r=28 r=16 r=232
Mean x 1012 1.6 1.5 1.1 1.2 1.3 1.5 1.6 1.4
Std x 1072 0.80 0.69 0.22 0.24 0.28 0.83 0.39 0.43
#N,c | 148 (£64) | 120 (£45) | 01 (£21) | 80(£23) | 64 (E£16) | 57(£9) | 51(E£1) | 32(X0)
#T | 5 (£1) 8 (£1) T1(E1) | 15(E3) | 24(E7) | 44 (E£24) |[133(£102)| 102 (£70)

Mean and standard deviation of mean squared error E[(

(X) — f o g(X))?] over 20

experiments, where g and f are constructed adaptively with N = 100 samples. Mean

squared error is computed on a (fixed) validation set of size 1000. The last two lines

give mean(=£ std) of the cardinality of #Ax and #[ |, which represent the complexity

of g and f, respectively.
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Comparison with nonlinear (NL) kernel supervised PCA and NL
kernel dimension reduction.

Y = (V Q%) € R,

Kernel supervised PCA Barshan et al. [2011] aims to maximize the
dependence between G ®(X) and Y measured with the
Hilbert-Schmidt norm of the cross-covariance operator restricted to
an arbitrary reproducing kernel Hilbert space (RKHS).

Kernel dimension reduction Fukumizu et al. [2009] aims to
minimize the dependence between Y and Y|G' ®(X) measured
with the Hilbert-Schmidt norm of the conditional covariance
operator restricted to some RKHS.

In our experiments, we used squared exponential kernels for both
Kx and Ky.
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u(X)

Isotropic function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X), M (X)). Red lines: function
g(x) — f o g(x) with either N = 50 (top row) or N = 500 (bottom row). Here, f is a

univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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9(X)

Borehole function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)

for m = 1. Blue points: 1000 samples of (g(X),

(X)). Red lines: function

g(x) — f o g(x) with either N = 30 (top row) or N = 300 (bottom row). Here, f is a

univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Conclusion

» During this lecture, we presented a trip around global
sensitivity analysis (via total Sobol' indices) and (non)linear
dimension reduction.

» We proposed a two-step algorithm to build the approximation

(x) = f o g(x) adaptively with respect to the input/output

sample. This algorithm takes into account gradient
information.
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Conclusion

» During this lecture, we presented a trip around global
sensitivity analysis (via total Sobol' indices) and (non)linear
dimension reduction.

» We proposed a two-step algorithm to build the approximation

(x) = f o g(x) adaptively with respect to the input/output
sample. This algorithm takes into account gradient
information.

Perspectives

» It would be interesting to propose an optimal (or at least a
clever) sampling procedure.

» Although assuming C(X|G,) < oo is usual, proving it remains
an open challenge. A solution to investigate would be to
construct g in a way that ensures Py g, to be the
push-forward measure of the standard normal distribution
through a Lipschitz map.
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Thanks for your attention!
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