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Part II

Sensitivity analysis and dimension reduction:
a tour from sensitivity analysis to gradient based (non)linear
dimension reduction via the so-called active subspace methodology.

Joint work with O. Zahm (Inria Grenoble), D. Bigoni & Y.
Marzouk (MIT, Boston), P. Constantine (Univ. Colorado Boulder).
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Notation

Y =M(X1, . . . ,Xd)

I X ∼ µ: vector of input parameters with known probability
distribution µ (not necessarily product measure)

I Y : output of interest, generally scalar Y ∈ R
I M: numerical model from it is also possible to evaluate the

gradient

∇M(x) =

∂1M(x)
...

∂dM(x)


Variance based global sensitivity analysis: determine the relative
influence of the inputs X1, . . . ,Xd on the output Y .

Gradient based GSA: how to best exploit the gradient ∇M(x)?
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Previously...
Assume µ(dx) =

∏d
i=1 µi(dxi) is a product measure. Then, for

i ∈ {1, . . . , d}, the total Sobol’ indices

Stot
i := 1− Var[E(M(X)|X−i)]

Var[M(X)]

can be bounded by

Var[M(X)] Stot
i ≤ C(µi)

∫
(∂iM(x))2dµ(x)︸ ︷︷ ︸

=νi

where:
I C(µi) is the Poincaré constant of the marginal µi which is

computable via an eigenvalue problem,
I νi is the i-th Derivative Based Sensitivity Measure (DGSM)

which is often cheaper to compute compared to Stot
i , provided

∂iM is available.
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1. Global sensitivity analysis from an approximation point of view

2. Gradient-based linear dimension reduction with active subspace

3. Extension to nonlinear dimension reduction
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We seek for a set of canonical coordinates along which the model
is (almost) constantM(x) ≈ f (xu)

Hart and Gremaud [2018]
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Function approximation perspective
Let L2

µ be the space of square-integrable functions u endowed with
the norm

‖u‖2 =
∫

u(x)2µ(dx) .

Expectations and conditional expectations can be seen as L2
µ

projections:

I the constant c ∈ R which best approximates u(X) in L2
µ is

c = E[u(X)]:

min
c∈R
‖u − c‖2 = ‖u − E[u(X)]‖2 =: Var[u(X)];

I the measurable function f : 7→ f (xu) = f (xu1 , . . . , xur ) which
best approximates u(X) in L2

µ is f (xu) = E[u(X)|Xu = xu]:

min
f :x 7→f (xu) , f measurable

‖u − f ‖2 = ‖u − E[u(X)|Xu]‖2.
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The total variance formula

min
f :x 7→f (xu) , f meas.

‖u − f ‖2 = ‖u − E[u(X)|Xu]‖2

= ‖
(

u − E[u(X)]
)
−
(
E[u(X)]− E[u(X)|Xu]

)
‖2

= ‖u − E[u(X)]‖2︸ ︷︷ ︸
Var[u(X)]

−‖E[u(X)]− E[u(X)|Xu]‖2︸ ︷︷ ︸
Var[E(u(X)|Xu)]

(?)
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Link with Sobol’ indices

The closed Sobol’ indices forM writes

Suclo := Var[E(M(X)|Xu)]
Var[M(X)]

(?)= 1−
min

f :x 7→f (xu) , f meas.
‖M− f ‖2

Var[M(X)]

Suclo ≈ 1 ⇔ M(X) ≈ f (Xu)
⇔ Xu “explains” well Y =M(X)
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Define the total Sobol’ index forM associated to subset
u ⊆ {1, . . . , d} as

Sutot = E[Var(M(X)|X−u)]
Var(M[X)] ·

We have

Sutot
(?)=

min
f :x 7→f (x−u) , f meas.

‖M− f ‖2

Var[M(X)]

Sutot ≈ 0 ⇔ M(X) ≈ f (X−u)
⇔ Xu is useless to “explain” Y =M(X)

Note that if µ(dx) =
∏d

i=1 µi(dxi) then

Sutot =
∑

v⊆{1,...,d} , u∩v 6=∅
Sv .

In that framework, if Sutot ≈ 0, we get:

M(Xu : X−u) ≈M(x0u : X−u) .
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Gradient based linear dimension reduction

M :
{
X =

∏d
i=1Xi ⊆ Rd → Y ⊆ Rp

x 7→ y =M(x1, . . . , xd)
We seek for a decomposition of the form

M(x1, . . . , xd) ≈ f ◦ g(x) = f (g1(x1, . . . , xd), . . . , gr (x1, . . . , xd))
with r ≤ d .

Constantine and Diaz [2017], Zahm et al. [2020]
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Framework:
x ∈ Rd 7→ M(x1, . . ., xd) ∈ Y

with Y = Rp endowed with a Hilbertian norm ‖ · ‖Y .

Let L2
µ be the space of square-integrable functions u : Rd → Y.

We endow it with the norm

‖u‖2 =
∫
‖u(x)‖Y2µ(dx) = E

[
‖u(X)‖Y2

]
.

One aims at approximatingM by a ridge function (a function
which is constant along a subspace). More specifically, one seeks
for r ≤ d and A ∈ Rr×d such that:

M(x) ≈ f (A x) with f : Rr → Y ,

or equivalently for r ≤ d and a rank-r projector Pr ∈ Rd×d such
that:

M(x) ≈ h(Pr x) with h : Rd → Y .
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We assume X ∼ µ = N (m,Σ).

Controlled approximation problem Given ε ≥ 0, find h and a rank-r
projector Pr such that

E
(
‖M(X)− h(PrX)‖Y2

)
≤ ε.

Procedure:
1. derive an upper bound for the error

‖M− h ◦ Pr‖ ≤ R(h,Pr )

2. fix r and solve
min
h,Pr
R(h,Pr )

3. increase r until
min
h,Pr
R(h,Pr ) ≤ ε

Note that Pr is not restricted to be a projector onto the canonical
coordinates.
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Derivation of the upper bound

For any projector Pr ,

‖M− Eµ(M|σ(Pr ))‖ = min
h
‖M− h ◦ Pr‖.

From Poincaré type inequalities, we can deduce that for
M : Rd → Y smooth vector-valued and for any projector Pr ,

‖M− Eµ(M|σ(Pr ))‖ ≤
√
trace

(
H(Id − Pr )Σ(Id − Pr )T

)
with matrix H ∈ Rd×d defined by

H =
∫

(∇M)∗(∇M)dµ

where {
∇M(x) : Rd → Rp Jacobian ofM at x
∇M(x)∗ is the adjoint of ∇M(x)
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What is the matrix H ?

H =
∫

(∇M)∗(∇M)dµ ∈ Rd×d

I Vector-valued case: Y = Rp with ‖ · ‖Y such that
‖v‖2Y = vTRYv for some SPD matrix RY ∈ Rp×p. Then

H =
∫

(∇M)TRY (∇M) dµ

with

∇M =


∂M1
∂x1 . . . ∂M1

∂xd... . . . ...
∂Mp
∂x1 . . .

∂Mp
∂xd


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I Scalar-valued case: Y = R with ‖ · ‖Y = | · |, then

H =
∫

(∇M)(∇M)T dµ

with

∇M =


∂M
∂x1...
∂M
∂xd


  Active-Subspace method Constantine and Diaz [2017]
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Minimizing the upper bound
Let (vi , λi) be the i-th generalized eigenpair of (H,Σ−1):

Hvi = λiΣ−1vi , vi TΣ−1vj = δi ,j .

One has λ1 ≥ · ≥ λi ≥ · ≥ λd and

min
Pr

√
trace

(
H(Id − Pr )Σ(Id − Pr )T

)
=

√√√√ d∑
i=r+1

λi

A solution is the Σ−1-orthogonal proj. Pr onto span{v1, . . . , vr}:
Pr =

(∑r
i=1 vivT

i

)
Σ−1.

I A fast decay in λi ensures
√∑d

i=r+1 λi ≤ ε for r = r(ε)� d ,
I H provides a test that reveals the low-effective dimension.

19/ 51



Basic examples with p = 1

I Affine functionM(x) = αTx + β. Then ∇M(x) = α and
H = ααT .

I Ridge functionM(x) = f (αTx) for some α ∈ Rd . We have
∇M(x) = αf ′(αTx) and H = αT

(∫
f ′(αTx)2dµ(x)

)
α.

I Generalized ridge functionM(x) = f (V T
r x), Vr ∈ Rd×r .

Then H = Vr
(∫
∇f (V T

r x)∇f (V T
r x)Tdµ(x)

)
V T
r .
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Let’s come back to the upper bound, namely,

‖M− Eµ(M|σ(Pr ))‖ ≤
√
trace

(
H(Id − Pr )Σ(Id − Pr )T

)
.

Choosing Y = Rp and Pr as the projector that extracts the
coordinates of X indexed by u, we get:

Stot
u = ‖M− Eµ(M|σ(Id − Pr ))‖2

‖M− Eµ(M)‖2

thus

Stot
u ≤

trace
(

ΣPT
r HPr

)
‖M− Eµ(M)‖2

=︸︷︷︸
for independent inputs

∑
i∈u Var(Xi)Hi ,i
‖M− Eµ(M)‖2 ·

See, e.g., Sobol’ & Kucherenko, 2009 and Lamboni et al., 2013 for
similar results in the case p = 1 (scalar output) and u a singleton.
Sobol’ indices for vectorial outputs have been introduced in
Lamboni et al. [2011] and further studied in Gamboa et al. [2013].
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Also, choosing Y = Rp and Pr as the projector that extracts the
coordinates of X indexed by −u, we get:

Sclo
u = 1− ‖M− Eµ(M|σ(Pr ))‖2H

‖M− Eµ(M)‖2H
thus

Sclo
u ≥ 1−

trace
(

ΣPT
r HPr

)
‖M− Eµ(M)‖2

=︸︷︷︸
for independent inputs

1−
∑

i∈−u Var(Xi)Hi ,i
‖M− Eµ(M)‖2 ·
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A numerical example
Diffusion problem on Ω = [0, 1]2:

{
∇ · κ∇u = 0 in Ω

u = x + y on ∂Ω
I Random diffusion field κ, log-normal distribution.
I After finite element discretization:

x = log(κ) ∈ R3252 ∼ µ = N (0,Σ)

(a) mesh, 3252 elements (b) log. diffusion field (c) solution

1. Scenario 1M : x 7→ u ∈ Y ⊂ H1(Ω), p = 1691 (number of nodes
in the mesh for FEM);

2. Scenario 2M : x 7→ u|Ωs ∈ Y ⊂ H1(Ωs), p = 168;

3. Scenario 3M : x 7→ (u|s1 , u|s2) ∈ Y = R2 (canonical norm).
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Modes v1, v2, . . .
mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

K
-L

m
o
d
es

S
ce
n
ar
io

1
S
ce
n
ar
io

2
S
ce
n
a
ri
o
3

Im(Pr ) = span{v1, v2, . . . , vr}
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Approximation of the conditional expectation assuming H is known

Eµ(M|σ(Pr )) ≈ F̂r : x 7→
1
M

M∑
k=1

M(Prx + (Id − Pr )Z(k)), Z(k) iid∼ µ
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bound(K-L proj.)
bound(optimal proj.)
true error, M = 1

true error, M = 5

true error, M = 20

M : x 7→ u
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M : x 7→ u|Ωs
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10−3

10−2

10−1

100

M : x 7→ (u|s1 , u|s2)
‖M− F̂r‖ = function(r)

We can show that

E
(
‖M− F̂r‖2

)
≤ (1 + M−1) trace(Σ(Id − PT

r )H(Id − Pr ))
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Approximation of H to get the projector

H ≈ Ĥ =
1
K

K∑
k=1

(∇M(X(k)))∗(∇M(X(k))), X(k) iid∼ µ
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M : x 7→ u
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M : x 7→ u|Ωs
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M : x 7→ (u|s1 , u|s2)

√
trace(Σ(Id − P̂T

r )Ĥ(Id − P̂r )) = function(r) (dashed curves)√
trace(Σ(Id − P̂T

r )H(Id − P̂r )) = function(r) (solid curves)

Notice that rank(Ĥ) ≤ K max1≤k≤K rank
(
∇M(X(k))

)
≤ K dim(V )

(see also Zahm et al. [2022])
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Beyond Gaussian uncertainty

Let dµ(x) ∝ exp
(
− V (x)−Ψ(x)

)
dx . Assume

1. supp(µ) convex,
2. (Bakry–Émery theorem) V a convex potential with

∇2V (x) � Γ, with Γ SPD matrix,

3. (Holley–Stroock perturbation lemma) Ψ bounded with

exp(sup Ψ− inf Ψ) ≤ κ

Then µ satisfies the subspace Poincaré inequality (Zahm et al. [2022]):

‖M− E[M(X)|Pr
TX]‖2 ≤ κ trace[Σ(Id − Pr

T )H(Id − Pr ))]

for any smooth functionM and any projector Pr .

Examples are:
I Gaussian mixtures,
I uniform measures on compact & convex sets
I any measure such that dµ(x) ≥ α > 0 on compact & convex sets.
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Extension to nonlinear dimension reduction Bigoni et al. [2022]
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M :
{
X ⊂ Rd → R

x 7→ y =M(x1, . . . , xd)

M(x1, . . . , xd) ≈ f ◦ g(x) = f (g1(x1, . . . , xd), . . . , gr (x1, . . . , xd)) ,

with the feature map g is not necessarily linear.

We propose, for any r ≤ d , a two-step procedure.

I Step 1, construction of the feature map g :
solve min

g∈Gr
J(g1, . . . , gr ) with J a gradient-based cost function.

I Step 2, construction of the profile fucntion f :

solve min
f ∈Fr

E
[(
M(X)− f ◦ g(X)

)2]
.
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Choice of the cost function J

Note that, ifM(x1, . . . , xd) = f ◦ g(x), then

∇M(x) = ∇g(x)T︸ ︷︷ ︸
∈Rd×r

∇f (g(x))︸ ︷︷ ︸
∈Rr

⇒ ∇M(x) ∈ range(∇g(x)T ).

A natural choice for J is then

J(g) := E
[∥∥∇M(X)− Πrange(∇g(X)T )∇M(X)

∥∥2] .

We have provenM = f ◦ g ⇒ J(g) = 0. Question a) Is the
reciprocal true?
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Question a): is the reciprocal ⇑ true? yes!

Proposition:
AssumeM∈ C1(X ;R) and Gr ⊂ C1(X ;Rr ).
Let g : X → Rr be a smooth function such that the level-sets

g−1({z}) = {x ∈ X : g(x) = z},

are pathwise-connected for any z ∈ Rr . Then

J(g) = 0⇒ ∃ f such thatM = f ◦ g

Are g ’s level sets pathwise-connected?
yes! no
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Examples of feature maps g : X → R with X convex and with
smoothly pathwise connected level-sets:

Affine feature map Any function g(x) = Ax + b with A ∈ Rm×d

and b ∈ Rm;

Feature map following from a C1-diffeomorphism Any function
g(x) = (φ1(x), . . . , φm(x)) where φi(x) is the i-th component of
φ(x), with φ : X → X a C1-diffeomorphism;

Polynomial feature map Any polynomial function on X = Rd such
that for all z ∈ g(X ), the zeros of the polynomial x 7→ g(x)− z are
pathwise-connected.

Computing the number of connected
components (i.e., the zeroth Betti number) of an algebraic set like
{x : g(x)− z} is a difficult question, commonly encountered in
algebraic geometry.
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Question b): does J(g) ≈ 0 impliesM≈ f ◦ g? yes!

Denote by C(Z ) the Poincaré constant of a random vector Z ,
that is, the smallest constant such that

Var(h(Z )) ≤ C(Z )E
[∥∥∇h(Z )

∥∥2]
holds for any smooth function h : supp(Z )→ R.

Proposition:
Assume Gr ⊂ C1(X;Rr ) and rank

(
∇g(x)T

)
= r ∀ g ∈ Gr ,

∀ x ∈ X . Assume

C(X|Gr ) := sup
g∈Gr

sup
z∈g(X )

C(X|g(X) = z) <∞.

Then for any g ∈ Gr , there exists a profile f : Rr → R such that

E
[(
M(X)− f ◦ g(X)

)2] ≤ C(X|Gr ) J(g).
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Example: if Gr = {x 7→ UTx : U ∈ Rd×r orth. columns} and if
X ∼ N (0, Id), then

C(X|Gr ) = 1

Although assuming C(X|Gr ) <∞ is usual, e.g., in the analysis of
Markov semigroups or in molecular dynamics, proving it remains an
open challenge in more general settings.
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Question c): how to minimize g 7→ J(g)? We seek for g solving

min
g=(g1,...,gr )∈Gr

J(g) = E
[∥∥∇M(X)− Πrange(∇g(X)T )∇M(X)

∥∥2]
with Gr = Gr = span{Φ1, . . . ,ΦK}r .

It is equivalent to seek for g solving

max
G∈R#G×r

R(G) = E
[
trace(GTH(X)G)(GTΣ(X)G)−1

]
where

H(x) = ∇Φ(x)
(
∇M(x)∇M(x)T

)
∇Φ(x)T ,

Σ(x) = ∇Φ(x)∇Φ(x)T , with Φ(x) = (Φ1(x), . . . ,ΦK (x)).

Maximization is solved with a quasi-Newton algorithm.

For linear feature maps, g(x) = A x, our procedure coincides with
active subspace method.
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Adaptive construction of g from {X(i),M(X(i)),∇M(X(i))}Ni=1

Empirical cost
We first replace R(G) by its empirical counterpart:

R̂N(G) = 1
N

N∑
i=1

trace(GTH(X(i))G)(GTΣ(X(i))G)−1.

For any 1 ≤ r ≤ d , we adapt the complexity of Gr = Gr to the
sample size N.

Matching Pursuit
We use a state-of-the-art Migliorati [2015, 2019] reduced-set
matching pursuit algorithm on downward-closed polynomial spaces
to build g .

Cross Validation
is used to know when to stop the iterations (before it overfits).
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More precisely, to adapt the complexity of G with respect to the sample
size N, one uses the following tools:

Downward closed polynomial spaces
G = PΛ[Rd ] = span{xν11 . . . xνdd , ν ∈ Λ}

where Λ ⊂ Nd is a downward closed set, that is:

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ

Matching Pursuit
Λk+1 = Λk ∪ {νk+1}

νk+1 ∈ argmax
ν∈ReducedMargin(Λk)

|∂νR̂N(G∗k )|

where G∗k is the minimizer of R̂N(·) over Λk .

Cross Validation
To know when to stop the iterations (before it overfits).
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Once g is computed, how to construct f ?

min
f ∈Fr

1
N

N∑
i=1

(
M(X(i))−f ◦g(X(i))

)2+
∥∥∇M(X(i))−∇f ◦ g(X(i))

∥∥2︸ ︷︷ ︸
recycle the gradients

As for G, we adapt the complexity of Fr = F r using reduced-set
matching pursuit algorithm on downward-closed polynomial spaces.

Benchmark algorithm (without dimension reduction):

min
v∈V

1
N

N∑
i=1

(
M(X(i))− v(X(i))

)2 +
∥∥∇M(X(i))−∇v(X(i))

∥∥2︸ ︷︷ ︸
recycle the gradients
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Illustration: isotropic function

M(x) = cos
(√

x2
1 + . . .+ x2

d
)

µ = N (0, Id)
x ∈ R20

N = 100
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Illustration: Borehole function

M(x) = 2πTM(HM−H`)
ln(r/rω)

(
1+ 2LTM

ln(r/rω )rω2Kω
+ TM

T`

) ,


x1 = rω ∼ N (0.1, 3 · 10−4)
x2 = r ∼ logN (7.71, 1.0112)
x3 = TM ∼ U(63 070, 115 600)
x4 = HM ∼ U(990, 1110)
x5 = T` ∼ U(63.1, 116)
x6 = H` ∼ U(700, 820)
x7 = L ∼ U(1120, 1 680)
x8 = Kω ∼ U(9 855, 12 045)
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Continuous lines: mean squared error E[(M(X)− f ◦ g(X))2], Dashed lines: cost
function J(g). The width of the shaded region corresponds to the standard deviation
over 20 experiments.
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Illustration: resonance frequency of a bridge

Parametrized eigenvalue problem

M(x) = min
v∈RN

vTK (x)v
vTMv

I K (x): stiffness matrix
I M: mass matrix
I v ∈ RN : Finite Element solution (N = 960)
I x ∈ Rd : Young modulus field (d = 32 KL modes)
I N = 100 (20 trials)

For this example, it is easy to compute model gradient
∇M(x) = (∂x1M(x), · · · , ∂xdM(x)):

∂xiM(x) =
v(x)T

(
∂xiK (x)

)
v(x)

v(x)TMv(x) , with v(x) = argmin
v∈RN

vTK (x)v
vTMv ·
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Resonance frequency of a bridge. Four realizations of the Young modulus
field X (color of the elements) and the associated resonance mode v(X)
(displacement of the mesh).
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Results:
r = 1 r = 2 r = 3 r = 4 r = 6 r = 8 r = 16 r = 32

Mean×1012 1.6 1.5 1.1 1.2 1.3 1.5 1.6 1.4
Std×1012 0.80 0.69 0.22 0.24 0.28 0.83 0.39 0.43

#ΛK 148 (±64) 129 (±45) 91 (±21) 80 (±23) 64 (±16) 57 (±9) 51 (±1) 32 (±0)
#ΓL 5 (±1) 8 (±1) 11 (±1) 15 (±3) 24 (±7) 44 (±24) 133 (±102) 102 (±70)

Mean and standard deviation of mean squared error E[(M(X)− f ◦ g(X))2] over 20
experiments, where g and f are constructed adaptively with N = 100 samples. Mean
squared error is computed on a (fixed) validation set of size 1000. The last two lines
give mean(± std) of the cardinality of #ΛK and #ΓL, which represent the complexity
of g and f , respectively.
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Comparison with nonlinear (NL) kernel supervised PCA and NL
kernel dimension reduction.

Y =
(
M(X)
∇M(X)

)
∈ R1+d .

Kernel supervised PCA Barshan et al. [2011] aims to maximize the
dependence between GTΦ(X) and Y measured with the
Hilbert-Schmidt norm of the cross-covariance operator restricted to
an arbitrary reproducing kernel Hilbert space (RKHS).

Kernel dimension reduction Fukumizu et al. [2009] aims to
minimize the dependence between Y and Y|GTΦ(X) measured
with the Hilbert-Schmidt norm of the conditional covariance
operator restricted to some RKHS.

In our experiments, we used squared exponential kernels for both
κX and κY.
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Isotropic function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X),M(X)). Red lines: function
g(x) 7→ f ◦ g(x) with either N = 50 (top row) or N = 500 (bottom row). Here, f is a
univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Borehole function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X),M(X)). Red lines: function
g(x) 7→ f ◦ g(x) with either N = 30 (top row) or N = 300 (bottom row). Here, f is a
univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Conclusion
I During this lecture, we presented a trip around global

sensitivity analysis (via total Sobol’ indices) and (non)linear
dimension reduction.

I We proposed a two-step algorithm to build the approximation
M(x) ≈ f ◦ g(x) adaptively with respect to the input/output
sample. This algorithm takes into account gradient
information.

Perspectives
I It would be interesting to propose an optimal (or at least a

clever) sampling procedure.
I Although assuming C(X|Gr ) <∞ is usual, proving it remains

an open challenge. A solution to investigate would be to
construct g in a way that ensures PX|Gr to be the
push-forward measure of the standard normal distribution
through a Lipschitz map.
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Thanks for your attention!
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