Global sensitivity analysis and dimension reduction

Clémentine PRIEUR
Grenoble Alpes University

Summer school on GSA \& Poincaré inequalities 6-8 July 2022, Toulouse

Part I

Variance-based sensitivity analysis: I will present the general framework of variance-based sensitivity analysis, from the definition of sensitivity indices to the presentation of different inference strategies.

See, e.g., Saltelli et al. [2000], Faivre et al. [2013], Da Veiga et al. [2021].

One wishes to quantify the sensitivity of the output Y to the inputs X_{1}, \ldots, X_{d}.
The model \mathcal{M} is most of the time complex, expensive to evaluate. Each input factor can be a scalar, a vector, or even a function. The output (or Qol Quantity of Interest) can also be scalar, vectorial or functional.

Application to a biogeochemical model: ecosystem model (MODECOGeL) of the Ligurian Sea

Joint work with IGE Lab (Grenoble, FRANCE)

MODECOGeL is a one-dimensional coupled hydrodynamicalbiological model.

- hydrodynamic model: 1-D vertical simplification of primitive equations for the ocean, 5 state variables;
- ecosystem model: marine biogeochemistry, 12 biological state variables.

Inputs/Outputs:

$\triangleright 74$ scalar input parameters;
\triangleright spatio-temporal outputs.

Main issue: calibration of the model.

Sensitivity Analysis is a preliminary step to this calibration task.

Agro-climatic model for the water status management of vineyard Joint work with INRA and iTK (Montpellier, FRANCE)
Project objective: control of grape/wine quality. SA as decision support.

```
INPUTS
```

- Vine-plot
$\Rightarrow 22$ scalar parameters: soil texture, rooting depth, vegetation size, row orientation,
- Weather data during the growing season
$\Rightarrow 4$ correlated (daily) functional inputs

Water budget

Daily output

Background :

$$
\mathcal{M}:\left\{\begin{array}{rll}
\mathbb{R}^{d} & \rightarrow \mathbb{R} \\
\mathbf{x} & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right.
$$

Goal : find how model outputs vary with inputs changes.

Different strategies

Qualitative analysis : non-linear behaviors? possible interactions? ex. : screening
 Quantitative analysis : factorial hierarchisation, statistical tests H_{0} "negligible input"
 ex. : sensitivity Sobol' indices

Sensitivity analysis may help identifying inappropriate models.

Background :

$$
\mathcal{M}:\left\{\begin{array}{rll}
\mathbb{R}^{d} & \rightarrow \mathbb{R} \\
\mathbf{x} & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right.
$$

Goal : find how model outputs vary with inputs changes.
Different strategies:
Qualitative analysis : non-linear behaviors? possible interactions? ex. : screening
Quantitative analysis : factorial hierarchisation, statistical tests H_{0}
"negligible input"
ex. : sensitivity Sobol' indices

Background :

$$
\mathcal{M}:\left\{\begin{array}{rll}
\mathbb{R}^{d} & \rightarrow & \mathbb{R} \\
\mathbf{x} & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right.
$$

Goal : find how model outputs vary with inputs changes.
Different strategies:

- Qualitative analysis : non-linear behaviors? possible interactions? ex. : screening .
- Quantitative analysis : factorial hierarchisation, statistical tests H_{0} "negligible input"
ex. : sensitivity Sobol' indices
Sensitivity analysis may help identifying inappropriate models.

Various approaches for quantitative sensitivity :
Local approaches:
$\mathcal{M}(\mathbf{x}) \approx \mathcal{M}\left(\mathbf{x}^{0}\right)+\sum_{i=1}^{d}\left(\frac{\partial \mathcal{M}}{\partial x_{i}}\right)_{x^{0}}\left(x_{i}-x_{i}^{0}\right)$ (Taylor approximation).
First order sensitivity index for input $i:\left(\frac{\partial \mathcal{M}}{\partial x_{i}}\right)_{x^{0}}$.
Pros : Low computational cost even for large d
Cons : local approaches, not well-suited for highly nonlinear models

Global uncertainty quantification framework :

Uncertain input parameters are modeled by a probability distribution μ on \mathcal{X}, from experts' knowledge or from observations.

E.g., if the inputs are independent, this probability distribution is characterized by its marginals: $\mu(\mathbf{d x})=\prod_{i=1}^{d} \mu_{i}\left(d x_{i}\right)$.

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference Given data Sobol' index inference Spectral Sobol' index inference

Application to MODECOGeL

References

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference Given data Sobol' index inference Spectral Sobol' index inference

Application to MODECOGeL

References

General setup : (Hoeffding, 1948; Sobol', 1993)
$Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right),\left(X_{1}, \ldots, X_{d}\right) \sim \mu$. In the following, we assume :
i) the X_{i} are independent: $\mu(d \mathrm{x})=\prod_{i=1}^{d} \mu_{i}\left(d x_{i}\right)$;
ii) $\forall i=1, \ldots, d, X_{i} \sim \mathcal{U}([0,1])$.

Assumption ii) is not necessary but lightens the presentation.
The case of correlated inputs raises several issues and will be discussed later.

General setup : (Hoeffding, 1948; Sobol', 1993)
$Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right),\left(X_{1}, \ldots, X_{d}\right) \sim \mu$. In the following, we assume :
i) the X_{i} are independent: $\mu(d \mathrm{x})=\prod_{i=1}^{d} \mu_{i}\left(d x_{i}\right)$;
ii) $\forall i=1, \ldots, d, X_{i} \sim \mathcal{U}([0,1])$.

Assumption ii) is not necessary but lightens the presentation.
The case of correlated inputs raises several issues and will be discussed later.

General setup : (Hoeffding, 1948; Sobol', 1993)
$Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right),\left(X_{1}, \ldots, X_{d}\right) \sim \mu$. In the following, we assume :
i) the X_{i} are independent: $\mu(d \mathrm{x})=\prod_{i=1}^{d} \mu_{i}\left(d x_{i}\right)$;
ii) $\forall i=1, \ldots, d, X_{i} \sim \mathcal{U}([0,1])$.

Assumption ii) is not necessary but lightens the presentation.
The case of correlated inputs raises several issues and will be discussed later.

Towards Sobol sensitivity indices

Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose x_{i} ?
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y
when fixing the i th input: variable X_{i} has a strong impact.

Towards Sobol sensitivity indices

Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Towards Sobol sensitivity indices

Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Towards Sobol sensitivity indices

Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Theorem (Total variance)
$\operatorname{Var}(Y)=\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]+\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]$.
linear correlation coefficient.

Towards Sobol sensitivity indices

Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.
Theorem (Total variance)
$\operatorname{Var}(Y)=\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]+\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]$.
Definition (First order Sobol' Index)
$i=1, \ldots, d$

$$
0 \leq S_{i}=\frac{V\left[E\left(Y \mid X_{i}\right)\right]}{\operatorname{Var}(Y)} \leq 1
$$

Towards Sobol sensitivity indices
Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.
Theorem (Total variance)
$\operatorname{Var}(Y)=\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]+\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]$.
Definition (First order Sobol’ Index)
$i=1, \ldots, d$

$$
0 \leq S_{i}=\frac{V\left[E\left(Y \mid X_{i}\right)\right]}{\operatorname{Var}(Y)} \leq 1
$$

ex. : linear output $Y=\sum_{i=1}^{d} \beta_{i} X_{i}$, we get $S_{i}=\frac{\beta_{i}^{2} \operatorname{Var}\left(X_{i}\right)}{\operatorname{Var}(Y)}=\rho_{i}^{2}$, with ρ_{i} linear correlation coefficient.

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$$
\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}
$$

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$$
\begin{aligned}
& \mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45} \\
& \mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}
\end{aligned}
$$

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$$
\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}
$$

$$
\mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}
$$

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}^{2}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{31}{180}
$$

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$$
\begin{aligned}
& \mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45} \\
& \mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}
\end{aligned}
$$

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}^{2}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{31}{180}
$$

$$
S_{1}=\frac{16}{31} \approx 0,516, S_{2}=\frac{15}{31} \approx 0,484
$$

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$$
\begin{aligned}
& \mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45} \\
& \mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}
\end{aligned}
$$

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}^{2}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{31}{180}
$$

$$
S_{1}=\frac{16}{31} \approx 0,516, S_{2}=\frac{15}{31} \approx 0,484
$$

$S_{1}+S_{2}=1$, additive model

More generally,
Theorem (Hoeffding decomposition)
$\mathcal{M}:[0,1]^{d} \rightarrow \mathbb{R}, \int_{[0,1]^{d}} \mathcal{M}^{2}(x) d x<\infty$
\mathcal{M} has an unique decomposition
$\mathcal{M}_{0}+\sum_{i=1}^{d} \mathcal{M}_{i}\left(x_{i}\right)+\sum_{1 \leq i<j \leq d} \mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)+\ldots+\mathcal{M}_{1, \ldots, d}\left(x_{1}, \ldots, x_{d}\right)$
under the constraint

- M_{0} constant,
- $\forall 1 \leq s \leq d, \forall 1 \leq i_{1}<\ldots<i_{s} \leq d, \forall 1 \leq p \leq s$

$$
\int_{0}^{1} \mathcal{M}_{i_{1}, \ldots, i_{s}}\left(x_{i_{1}}, \ldots, x_{i_{s}}\right) d x_{i_{p}}=0
$$

Consequences: $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$

Consequences: $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$
- $i \neq j$

$$
\mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)=\int_{[0,1]^{d-2}} \mathcal{M}(x) \Pi_{p \neq i, j} d x_{p}-\mathcal{M}_{0}-\mathcal{M}_{i}\left(x_{i}\right)-\mathcal{M}_{j}\left(x_{j}\right)
$$

Consequences : $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$
- $i \neq j$

$$
\mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)=\int_{[0,1]^{d-2}} \mathcal{M}(x) \Pi_{p \neq i, j} d x_{p}-\mathcal{M}_{0}-\mathcal{M}_{i}\left(x_{i}\right)-\mathcal{M}_{j}\left(x_{j}\right)
$$

\Rightarrow computation of multiple integrals.

Consequences: $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$
- $i \neq j$
$\mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)=\int_{[0,1]^{d-2}} \mathcal{M}(x) \Pi_{p \neq i, j} d x_{p}-\mathcal{M}_{0}-\mathcal{M}_{i}\left(x_{i}\right)-\mathcal{M}_{j}\left(x_{j}\right)$
\Rightarrow computation of multiple integrals.

Variance decomposition : X_{1}, \ldots, X_{d} i.i.d. $\sim \mathcal{U}([0,1])$
$Y=\mathcal{M}(X)=\mathcal{M}_{0}+\sum_{i=1}^{d} \mathcal{M}_{i}\left(X_{i}\right)+\ldots+\mathcal{M}_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)$

- $\mathcal{M}_{0}=\mathbb{E}(Y)$,
- $\mathcal{M}_{i}\left(X_{i}\right)=\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}(Y)$,
- $i \neq j \mathcal{M}_{i, j}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(Y \mid X_{i}, X_{j}\right)-\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}\left(Y \mid X_{j}\right)+\mathbb{E}(Y)$,

Variance decomposition : X_{1}, \ldots, X_{d} i.i.d. $\sim \mathcal{U}([0,1])$
$Y=\mathcal{M}(X)=\mathcal{M}_{0}+\sum_{i=1}^{d} \mathcal{M}_{i}\left(X_{i}\right)+\ldots+\mathcal{M}_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)$

- $\mathcal{M}_{0}=\mathbb{E}(Y)$,
- $\mathcal{M}_{i}\left(X_{i}\right)=\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}(Y)$,
- $i \neq j \mathcal{M}_{i, j}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(Y \mid X_{i}, X_{j}\right)-\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}\left(Y \mid X_{j}\right)+\mathbb{E}(Y)$,
- ...
$\operatorname{Var}(Y)=\sum_{i=1}^{d} \operatorname{Var}\left(\mathcal{M}_{i}\left(X_{i}\right)\right)+\ldots+\operatorname{Var}\left(\mathcal{M}_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)\right)$

Definition (Sobol' indices)
$\forall i=1, \ldots, d S_{i}=\frac{\operatorname{Var}\left(\mathcal{M}_{i}\left(X_{i}\right)\right)}{\operatorname{Var}(Y)}=\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]}{\operatorname{Var}(Y)}$
$\forall i \neq j S_{i, j}=\frac{\operatorname{Var}\left(\mathcal{M}_{i, j}\left(X_{i}, X_{j}\right)\right)}{\operatorname{Var}(Y)}=$
$\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}, X_{j}\right)\right]-\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]-\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{j}\right)\right]}{\operatorname{Var}(Y)}$

$$
1=\sum_{i=1}^{d} s_{i}+\sum_{i \neq j} s_{i, j}+\ldots+s_{1, \ldots, d}
$$

Sobol' indices:

Definition (Total indices)

$$
i=1, \ldots, d \quad S_{i}^{\text {tot }}=\sum_{\mathbf{v} \subseteq\{1, \ldots, d\}, i \in \mathbf{v}} S_{\mathbf{v}}
$$

$X_{-i}=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{d}\right)$
Using orthogonality of the decomposition combined with the total variance theorem, we prove

$$
S_{i}^{\text {tot }}=\frac{\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{-i}\right)\right]}{\operatorname{Var}(Y)}=1-\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{-i}\right)\right]}{\operatorname{Var}(Y)} .
$$

Indices with factor:

Indices with groupe of factors:

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference Given data Sobol' index inference Spectral Sobol' index inference

Fact : Analytical expressions of Sobol' indices, with integrals in high dimensional spaces, are rarely available.
 these techniques.
ov : naramatric and non-parametric regressions, Gaussian metamodel

Fact : Analytical expressions of Sobol' indices, with integrals in high dimensional spaces, are rarely available.

We present different approaches for inference:

1. Pick-freeze estimators (hypothesis \mathbb{L}^{2} with the model);
2. Given data estimators (under mild regularity assumptions on the model);
3. Spectral estimators (additional hypotheses of regularity).

Fact : Analytical expressions of Sobol' indices, with integrals in high dimensional spaces, are rarely available.

We present different approaches for inference:

1. Pick-freeze estimators (hypothesis \mathbb{L}^{2} with the model);
2. Given data estimators (under mild regularity assumptions on the model);
3. Spectral estimators (additional hypotheses of regularity).

If the model is too costly to assess, we fit a metamodel before applying these techniques.
ex.: parametric and non-parametric regressions, Gaussian metamodel...

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference
Given data Sobol' index inference Spectral Sobol' index inference

Application to MODECOGeL

References

Monte-Carlo type Approaches : (Sobol' 93, Saltelli 02, Mauntz, ...) Idea : X_{-i}^{\prime} indep. copy of $X_{-i}, Y=\mathcal{M}\left(X_{i}, X_{-i}\right), Y^{i}=\mathcal{M}\left(X_{i}, X_{-i}^{\prime}\right)$ We have $S_{i}=\frac{\operatorname{Cov}\left(Y, Y^{i}\right)}{\operatorname{Var}(Y)}$, the idea is based on empirical formulas.
Two independent samples A and B (Monte-Carlo, LHS)

From A and of B, we create d sampling matrices $C_{i}, i=1, \ldots, d$:

$$
C_{i}=\left(\begin{array}{ccccc}
x_{1,1}^{A} & \ldots & x_{i, 1}^{B} & \ldots & x_{d, 1}^{A} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{1, n}^{A} & \ldots & x_{i, n}^{B} & \ldots & x_{d, n}^{A}
\end{array}\right)
$$

We compute $(1+d) \times n$ the model \mathcal{M} :

$$
y^{B}=\left(\begin{array}{c}
y_{1}^{B} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}^{B}
\end{array}\right) \quad \text { and } \quad \forall 1 \leq i \leq d \quad y^{C_{i}}=\left(\begin{array}{c}
y_{1}^{C_{i}} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}^{C_{i}}
\end{array}\right)
$$

sobolEff() (Janon et al., 2014 \& 2016)

- $\hat{V}_{i}=\frac{1}{n} \sum_{k=1}^{n} y_{k}^{B} y_{k}^{C_{i}}-\left(\frac{1}{n} \sum_{k=1}^{n} \frac{y_{k}^{B}+y_{k}^{C_{i}}}{2}\right)^{2}$ numerator of the first-order index
- $\hat{V}=\frac{1}{n} \sum_{k=1}^{n} \frac{\left(y_{k}^{B}\right)^{2}+\left(y_{k}^{C_{i}}\right)^{2}}{2}-\left(\frac{1}{n} \sum_{k=1}^{n} \frac{y_{k}^{B}+y_{k}^{C_{i}}}{2}\right)^{2}$ denominator

This type of estimators is known as pick-freeze estimators.

Remarks:

Pick-freeze estimators can be defined for any subset $u \subseteq\{1, \ldots, d\}$. In practice, we can replace MC or LHS samplings by QMC (hyp. of regular variations).

What about the statistical properties of pick-freeze estimators?

- Is it consistent? yes, proof by using the Strong Law of Large Numbers.
- If yes, at which rate of convergence? yes, CLT (cv in \sqrt{n}).
- Is it asymptotically efficient? yes.
- Is it possible to measure its performance for a fixed n ? yes, Berry-Esseen and/or concentration inequalities.
see, Janon et al. $(2014,2016)$ or Gamboa et al. (2014)
As an example, let us state in the next slide a central limit theorem. From such a CLT, one can also deduce asymptotic confidence intervals or hypothesis testing, e.g., on the nullity of Sobol' index associated to u $\subseteq\{1, \ldots, d\}$.

$$
\begin{gathered}
S_{\mathrm{u}}^{\mathrm{clo}}=\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{\mathrm{u}}\right)\right]}{\operatorname{Var}[Y]} \\
\widehat{S_{\mathrm{u}}^{\mathrm{clo}}}=\frac{\frac{1}{n} \sum_{k=1}^{n} Y_{k}^{B} Y_{k}^{C_{\mathrm{u}}}-\left(\frac{1}{n} \sum_{k=1}^{n} \frac{Y_{k}^{B}+Y_{k}^{C_{\mathrm{u}}}}{2}\right)^{2}}{\frac{1}{n} \sum_{k=1}^{n} \frac{\left(Y_{k}^{B}\right)^{2}+\left(Y_{k}^{C_{\mathrm{u}}}\right)^{2}}{2}-\left(\frac{1}{n} \sum_{k=1}^{n} \frac{Y_{k}^{B}+Y_{k}^{C_{\mathrm{u}}}}{2}\right)^{2}} .
\end{gathered}
$$

Theorem (Janon et al., 2014)

1. One has $\widehat{S_{\mathrm{u}}^{\text {clo }}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} S_{\mathrm{u}}^{\text {clo }}$.
2. If $\mathbb{E}\left(Y^{4}\right)<\infty$, then $\sqrt{n}\left(\widehat{S}_{\mathrm{u}}^{\text {clo }}-S_{\mathrm{u}}^{\text {clo }}\right) \underset{n \rightarrow \infty}{\mathcal{D}} \mathcal{N}\left(0, \sigma_{\mathrm{u}}^{2}\right)$
with $\sigma_{\mathrm{u}}^{2}=\frac{\operatorname{Var}\left[(Y-\mathbb{E}(Y))\left(Y_{\mathrm{u}}-\mathbb{E}(Y)\right)-\frac{S_{\mathrm{l}}^{\text {clo }}}{2}\left((Y-\mathbb{E}(Y))^{2}+\left(Y_{\mathrm{u}}-\mathbb{E}(Y)\right)^{2}\right]\right]}{(\operatorname{Var}[Y])^{2}}$.

Using Bennett's concentration inequality, one gets for fixed sample size n :

Proposition (Janon et al., 2016; Gamboa et al., 2014) Let u be a subset of $\{1, \ldots, d\}$. Let $b>0$ and $t>0$. Let $Y \in[-b, b]$. Then,

$$
\mathbb{P}\left(\widehat{S_{\mathrm{u}}^{\mathrm{clo}}} \geqslant S_{\mathrm{u}}^{\mathrm{clo}}+t\right) \leqslant \exp \left(-\frac{n \operatorname{Var}[Y]^{2}}{128}\left(1-\frac{1}{n}\right)^{2}\left(\frac{t}{1+t}\right)^{2}\right) .
$$

Assume further that $\frac{9}{8 n} \leq t \leq 1$, then

$$
\mathbb{P}\left(\widehat{S_{\mathrm{u}}^{\mathrm{clo}}} \leqslant S_{\mathrm{u}}^{\text {clo }}-t\right) \leqslant \exp \left(-\frac{n \operatorname{Var}[Y]^{2}}{128}\left(t-\frac{9}{8 n}\right)^{2}\right) .
$$

The Sobol' g-function: $f(x)=\prod_{i=1}^{d} f_{i}\left(x_{i}\right)$ with $f_{i}\left(x_{i}\right)=\frac{\left|4 x_{i}-2\right|+a_{i}}{1+a_{i}}$,

- $d=8$,
- $a_{1}=0, a_{2}=1, a_{3}=4.5, a_{4}=9, a_{i}=99$ for $5 \leq i \leq 8$,
- $n=5000, b=100, I C(0.95)$.

sobolEff

sobol2007

Replicated latin hypercubes: (Tissot et al.)

Definition (Replicated Latin Hypercube Sampling)
 $k=1, \ldots, n$

$\mathbf{x}_{k}=\left(\frac{\pi_{1}(k)-U_{1, \pi_{1}(k)}}{n}, \ldots, \frac{\pi_{d}(k)-U_{d, \pi_{d}(k)}}{n}\right)$
$\tilde{\mathbf{x}}_{k}=\left(\frac{\tilde{\pi}_{1}(k)-U_{1, \tilde{\pi}_{1}(k)}}{n}, \ldots, \frac{\tilde{\pi}_{d}(k)-U_{d, \tilde{\pi}_{d}(k)}}{n}\right)$

We have two matrices B and \widetilde{B} at our disposal

$$
B=\left(\begin{array}{ccc}
x_{1,1} & \ldots & x_{d, 1} \\
\vdots & & \vdots \\
x_{1, n} & \ldots & x_{d, n}
\end{array}\right) \quad \widetilde{B}=\left(\begin{array}{ccc}
\tilde{x}_{1,1} & \ldots & \tilde{x}_{d, 1} \\
\vdots & & \vdots \\
\tilde{x}_{1, n} & \ldots & \tilde{x}_{d, n}
\end{array}\right)
$$

We evaluate model \mathcal{M} at 2 n points (corresponding to the n lines of B, resp. $\widetilde{B})$. Then for $i_{0} \in\{1, \ldots, d\}$, we estimate $S_{i_{0}}$ by permuting the lines of \widetilde{B} as explained below.

Permutation of lines:

$$
\left\{\begin{array}{lll}
\widetilde{B}=\left(\tilde{x}_{i, k}\right)_{1 \leq i \leq d, 1 \leq k \leq n} & \mapsto & \widetilde{B}_{i_{0}}=\left(\tilde{x}_{i, k}^{i_{0}}\right)_{1 \leq i \leq d, 1 \leq k \leq n} \\
\left(L_{k}, 1 \leq k \leq n\right) & \mapsto & \left(L_{\tilde{\pi}_{i_{0}}^{-1} \circ \pi_{i_{0}}(k)}, 1 \leq k \leq n\right)
\end{array}\right.
$$

Then, $\tilde{x}_{i_{0}, k}^{i_{0}}=\tilde{x}_{i_{0}, \tilde{\pi}_{i_{0}}^{-1} \circ \pi_{i_{0}}(k)}=x_{i_{0}, k}, k=1, \ldots, n$. The column i_{0} of $\widetilde{B}_{i_{0}}$ coincides with the one of B.
Thus to estimate $S_{i_{0}}$, we use B and $\widetilde{B}_{i_{0}}$ in the pick-freeze formula, instead of B and $C_{i_{0}}$.
II.1- Monte Carlo based Sobol' index inference

Caption:

point $1 \circ$ point $2 \Delta \quad$ point $3+\quad$ point $4 \times$ point $5 \diamond$

Design B (left), B and \widetilde{B} (right)

II- Monte Carlo based Sobol' index inference Caption: point $1 \circ$ point $2 \Delta \quad$ point $3+\quad$ point $4 \times$ point $5 \diamond$

Design B and \widetilde{B}_{1} (left), B and \widetilde{B}_{2} (right)

II- Monte Carlo based Sobol' index inference
Caption: point $1 \circ$ point $2 \Delta \quad$ point $3+\quad$ point $4 \times$ point $5 \diamond$

Design B and \widetilde{B}_{1} (left), B and \widetilde{B}_{2} (right)

Asymptotic confidence intervals with variance smaller than for MC.
Possible extension to indices of order two (via orthogonal arrays of strength 2).

The trick cannot be used to estimate total Sobol' indices due to constraints inherent to the construction of OAs of strength $d-1$. If one wants to estimate total Sobol' indices, the best is to use Saltelli's trick (see Saltelli, 2002):

For $A \subseteq\{1, \ldots, d\}$, let us use the notation $U_{A}=\operatorname{Var}\left(\mathbb{E}\left(Y \mid X_{A}\right)\right)+\mathbb{E}^{2}(Y)$ and $\mathbf{x}^{\sim A}=\left(\mathbf{x}_{A}, \mathbf{x}_{-A}^{\prime}\right)$.

	x^{\prime}	\times^{\sim}	$x^{\sim 2}$	x^{\sim}	$x^{\sim 4}$	$x^{\sim} \sim\{2,3$,	$x^{\sim} \sim\{, 0,4\}$	$\chi^{\sim} \sim\{2,2$,	$x^{\sim} \sim\{, 2,2\}$	${ }_{x} \sim\{(, 2,0,4\}$
$\stackrel{x^{\prime}}{ }$										
$\underset{\substack{x \\ x \\ \times 2}}{ }$		u_{-12}^{v}								
		$\stackrel{\sim}{u}$	U_{-2}	${ }^{v}$						
	${ }_{\text {U }}^{u_{-4}}$	u_{-16}	${ }_{\substack{\text { U }}}^{u_{12}}$		u_{4}					
$x^{\sim} \sim\{1,2,4\}$	u_{2}	u_{1}	0	u_{8}	u_{4}^{4}	u_{-12}	v			
$x^{\sim} \sim\{1,2,4\}$	u_{3}	u^{8}	u_{58}		u_{4}	u_{-13}	u_{-28}			
$\left.x^{\sim} \sim\{1,2\},\right\}$	u^{4}	u_{10}	u_{4}	u_{4}		u_{-a}	u_{-24}	u_{-3}	v	
$x^{\sim} \sim\{, 2,2,2\}$	$\mathbb{E}^{2} r$	"	,	,	u_{s}	u	${ }^{\text {a }}$	-	u_{-}	\checkmark

Table: The table gives for each cell the term that can be estimated by evaluating the model on the corresponding input vectors, $d=4$. For example, U_{-12} can be estimated from the evaluation of the model on two n-samples $x^{\sim 2}$ and $x^{\sim 1}$.

In conclusion, Saltelli's trick lead to the estimation of all first-order and total indices at a cost of $n(d+2)$ model evaluations and to the estimation of all first-order, second-order and total indices at a cost of $n(2 d+2)$ model evaluations.

Conclusions about Monte Carlo type inference :
We recommend the following (see Gilquin et al., 2019):
First and second order Sobol' indices: R package sensitivity, function sobolrep with total=FALSE.
The cost is $2 n$ with $n=q^{2}, q$ a prime number.
First, second order and total Sobol' indices: R package sensitivity, function sobolrep with total=TRUE. The cost is $n(d+2)$ with $n=q^{2}, q$ a prime number (see Gilquin et al., 2019).

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference Given data Sobol' index inference Spectral Sobol' index inference

Application to MODECOGeL

References

Pick-freeze estimator is based on a specific design of experiments that may not be available in practice. For instance, when the practitioner only has access to real data.
\Rightarrow We are then interested in an estimator based on a n-sample only, that is a given data estimator.

Pick-freeze estimator is based on a specific design of experiments that may not be available in practice. For instance, when the practitioner only has access to real data.
\Rightarrow We are then interested in an estimator based on a n-sample only, that is a given data estimator.

Let us present rank estimator of S_{1} from Gamboa et al. (2021) .
Let's consider a n-sample of the input/output pair $\left(X_{1}, Y\right)$ given by $\left(X_{1,1}, Y_{1}\right), \ldots,\left(X_{1, n}, Y_{n}\right)$.
The pairs $\left(X_{1,(1)}, Y_{(1)}\right), \ldots,\left(X_{1,(n)}, Y_{(n)}\right)$ are rearranged in such a way that $X_{1,(1)}<\ldots<X_{1,(n)}$. Example:

- $n=6$
- Original sample: $(1,5),(2,9),(-2,3),(6,-4),(0,8)$
- Rearranged sample: $(-2,3),(0,8),(1,5),(2,9),(6,-4)$

We define $Y_{(n+1)}=Y_{(1)}$. We then introduce

$$
\widehat{S}_{1}^{\mathrm{rank}}=\frac{\frac{1}{n} \sum_{i=1}^{n} Y_{(i)} Y_{(i+1)}-\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)^{2}}
$$

Theorem (Gamboa et al., 2021, see also Chatterjee, 2020)

1. Assume that $\left.X_{i} \sim \mathcal{U}[0,1]\right), i=1, \ldots, n$ and that \mathcal{M} is bounded. One has $\widehat{S}_{1}^{\text {rank }} \underset{n \rightarrow \infty}{\underset{\sim}{\text { a.s. }}} S_{1}$.
2. Assume that $\left.X_{i} \sim \mathcal{U}[0,1]\right), i=1, \ldots, n$ and that \mathcal{M} is twice differentiable wrt its first coordinate with bounded first derivatives. Then

$$
\sqrt{n}\left(\widehat{S}_{1}^{\text {rank }}-S_{1}\right) \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}}{\rightarrow}} \mathcal{N}\left(0, \sigma_{\text {rank }}^{2}\right) .
$$

Rank estimator is limited to first-order Sobol' index estimation.
In Broto et al. (2020), the authors propose a given data estimator based on nearest neighbors. This estimator can be defined for any order of interaction.

Consistency is proven under regularity assumptions on the model. No CLT is proven.

Devroye et al. $(2013,2020)$ propose an estimator of $\mathbb{E}\left[\mathbb{E}[Y \mid X]^{2}\right]$ based on two independent n-samples:

- the first one among which the first nearest neighbor of x is searched to estimate $x \mapsto \mathbb{E}[Y \mid X=x]$,
- the second one to build a plug-in estimator.

They prove a CLT (\sqrt{n}). Nevertheless the recentering factor is not $\mathbb{E}\left[\mathbb{E}[Y \mid X]^{2}\right]$ but the expected value of their estimator. In addition, the bias is negligible if and only if the dimension $d \leqslant 3$.

Ishigami toy model: $\mathcal{M}(x)=\sin \left(x_{1}\right)+7 \sin ^{2}\left(x_{2}\right)+0.1 x_{3}^{4} \sin \left(x_{1}\right)$,
$X_{i} \sim \mathcal{U}([-\pi, \pi]), i=1,2,3$.
We compare sobolrank with sobolrep with
$2 \times n=2 \times 19^{2}=2 \times 361=722$ model evaluations, $n_{\text {rep }}=100$. Root mean square errors are computed with 100 samples.

sobolrank	0.03635195	0.03440188	0.04715759
sobolrep	0.04199731	0.04436713	0.07468821

For the same number of model evaluations, sobolrep also provides second-order Sobol' indices. However it requires a pick-freeze design based on replicated OAs of strength 2.

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference Given data Sobol' index inference
Spectral Sobol' index inference

Application to MODECOGeL

References

For sake of clarity in the presentation, we consider the case $d=2$.
$Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} c_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$
with , for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.

For sake of clarity in the presentation, we consider the case $d=2$.

$$
Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} C_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)
$$

with , for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.

$$
\begin{aligned}
& \mathcal{M}_{0}=c_{0}(\mathcal{M}) \\
& \mathcal{M}_{1}\left(X_{1}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}} c_{k_{1}, 0}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \\
& \mathcal{M}_{2}\left(X_{2}\right)=\sum_{k_{2} \in \mathbb{Z}^{*}} c_{0, k_{2}}(\mathcal{M}) \Phi_{2, k_{2}}\left(X_{2}\right), \\
& \mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}} c_{k_{1}, k_{2}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right) .
\end{aligned}
$$

For sake of clarity in the presentation, we consider the case $d=2$.
$Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} C_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$
with , for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.
$\mathcal{M}_{0}=c_{0}(\mathcal{M})$,
$\mathcal{M}_{1}\left(X_{1}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}} c_{k_{1}, 0}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right)$,
$\mathcal{M}_{2}\left(X_{2}\right)=\sum_{k_{2} \in \mathbb{Z}^{*}} c_{0, k_{2}}(\mathcal{M}) \Phi_{2, k_{2}}\left(X_{2}\right)$,
$\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}} c_{k_{1}, k_{2}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$.
We have with Parseval identity:

- $\operatorname{Var}\left(\mathcal{M}_{1}\left(X_{1}\right)\right)=\sigma_{1}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}}\left|c_{k_{1}, 0}(\mathcal{M})\right|^{2}$, (idem for $\left.\sigma_{2}^{2}\right)$,
- $\operatorname{Var}\left(\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)\right)=\sigma_{1,2}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$,
- $\operatorname{Var}(Y)=\sigma^{2}=\sum_{\left(k_{1}, k_{2}\right) \in \mathbb{Z} \times \mathbb{Z},\left(k_{1}, k_{2}\right) \neq(0,0)}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$.

For sake of clarity in the presentation, we consider the case $d=2$.
$Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} c_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$
with , for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.
$\mathcal{M}_{0}=c_{0}(\mathcal{M})$,
$\mathcal{M}_{1}\left(X_{1}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}} c_{k_{1}, 0}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right)$,
$\mathcal{M}_{2}\left(X_{2}\right)=\sum_{k_{2} \in \mathbb{Z}^{*}} c_{0, k_{2}}(\mathcal{M}) \Phi_{2, k_{2}}\left(X_{2}\right)$,
$\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}} c_{k_{1}, k_{2}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$.
We have with Parseval identity:

- $\operatorname{Var}\left(\mathcal{M}_{1}\left(X_{1}\right)\right)=\sigma_{1}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}}\left|c_{k_{1}, 0}(\mathcal{M})\right|^{2}$, (idem for $\left.\sigma_{2}^{2}\right)$,
- $\operatorname{Var}\left(\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)\right)=\sigma_{1,2}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$,
$-\operatorname{Var}(Y)=\sigma^{2}=\sum_{\left(k_{1}, k_{2}\right) \in \mathbb{Z} \times \mathbb{Z},\left(k_{1}, k_{2}\right) \neq(0,0)}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$.
ex. : orthogonal polynomials, wavelet basis, Fourier basis.

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{\mathrm{x}=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{\mathrm{x}=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

We then infer each part of variance with a truncation:

- $\hat{\sigma}_{1}^{2}\left(\mathcal{M}, K_{1}, D\right)=\sum_{k_{1} \in K_{1}}\left|\hat{c}_{k_{1}, 0}(\mathcal{M}, D)\right|^{2}$, with $K_{1} \subset \mathbb{Z}^{*}$ of finite cardinal, (idem for $\hat{\sigma}_{2}^{2}$),
- $\hat{\sigma}_{1,2}^{2}\left(\mathcal{M}, K_{1,2}, D\right)=\sum_{\left(k_{1}, k_{2}\right) \in K_{1,2}}\left|\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)\right|^{2}$, with $K_{1,2} \subset \mathbb{Z}^{*} \times \mathbb{Z}^{*}$ of finite cardinal.

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{\mathrm{x}=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

We then infer each part of variance with a truncation:

- $\hat{\sigma}_{1}^{2}\left(\mathcal{M}, K_{1}, D\right)=\sum_{k_{1} \in K_{1}}\left|\hat{c}_{k_{1}, 0}(\mathcal{M}, D)\right|^{2}$, with $K_{1} \subset \mathbb{Z}^{*}$ of finite cardinal, (idem for $\hat{\sigma}_{2}^{2}$),
- $\hat{\sigma}_{1,2}^{2}\left(\mathcal{M}, K_{1,2}, D\right)=\sum_{\left(k_{1}, k_{2}\right) \in K_{1,2}}\left|\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)\right|^{2}$, with $K_{1,2} \subset \mathbb{Z}^{*} \times \mathbb{Z}^{*}$ of finite cardinal.

We infer the total variance with $\hat{\sigma}^{2}(\mathcal{M}, D)=\hat{c}_{0,0}\left(\mathcal{M}^{2}, D\right)-\hat{c}_{0,0}(\mathcal{M}, D)^{2}$.

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{\mathrm{x}=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

We then infer each part of variance with a truncation:

- $\hat{\sigma}_{1}^{2}\left(\mathcal{M}, K_{1}, D\right)=\sum_{k_{1} \in K_{1}}\left|\hat{c}_{k_{1}, 0}(\mathcal{M}, D)\right|^{2}$, with $K_{1} \subset \mathbb{Z}^{*}$ of finite cardinal, (idem for $\hat{\sigma}_{2}^{2}$),
- $\hat{\sigma}_{1,2}^{2}\left(\mathcal{M}, K_{1,2}, D\right)=\sum_{\left(k_{1}, k_{2}\right) \in K_{1,2}}\left|\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)\right|^{2}$, with $K_{1,2} \subset \mathbb{Z}^{*} \times \mathbb{Z}^{*}$ of finite cardinal.

We infer the total variance with $\hat{\sigma}^{2}(\mathcal{M}, D)=\hat{c}_{0,0}\left(\mathcal{M}^{2}, D\right)-\hat{c}_{0,0}(\mathcal{M}, D)^{2}$. The estimators of Sobol' indices can be written as:

$$
\hat{S}_{i}=\frac{\hat{\sigma}_{i}^{2}}{\hat{\sigma}^{2}}, i=1,2, \quad S_{1,2}=\frac{\hat{\sigma}_{1,2}^{2}}{\hat{\sigma}^{2}} .
$$

Classical designs:

(a) grille régulière

(c) grille creuse

(b) sous-groupe fini

(d) tableau orthogonal

The performance of previous estimators is linked to the decreasing speed of Fourier spectrum (regularity) of \mathcal{M}. The techniques FAST and RBD are two particular cases of such approaches (after model regularisation). See Tissot \& Prieur (2012) or Prieur \& Tarantola (2017) for a review.

FAST: (Cukier et al., 78) Fourier Amplitude Sensitivity Test

- we fix K_{u} an ensemble of a priori non negligible frequencies;

The performance of previous estimators is linked to the decreasing speed of Fourier spectrum (regularity) of \mathcal{M}. The techniques FAST and RBD are two particular cases of such approaches (after model regularisation). See Tissot \& Prieur (2012) or Prieur \& Tarantola (2017) for a review.

- we fix K_{u} an ensemble of a priori non negligible frequencies;
\qquad quadrature error.

The performance of previous estimators is linked to the decreasing speed of Fourier spectrum (regularity) of \mathcal{M}. The techniques FAST and RBD are two particular cases of such approaches (after model regularisation). See Tissot \& Prieur (2012) or Prieur \& Tarantola (2017) for a review.

FAST: (Cukier et al., 78) Fourier Amplitude Sensitivity Test

- we fix K_{u} an ensemble of a priori non negligible frequencies;
- we chose D cyclic group (design (b)) in order to control the quadrature error.

The performance of previous estimators is linked to the decreasing speed of Fourier spectrum (regularity) of \mathcal{M}. The techniques FAST and RBD are two particular cases of such approaches (after model regularisation). See Tissot \& Prieur (2012) or Prieur \& Tarantola (2017) for a review.

FAST: (Cukier et al., 78) Fourier Amplitude Sensitivity Test

- we fix K_{u} an ensemble of a priori non negligible frequencies;
- we chose D cyclic group (design (b)) in order to control the quadrature error.

Remarks:

- if \mathcal{M} regular, we can obtain a speed of convergence $\gg \sqrt{n}$;
- for the total indices fast99() (no confidence intervals in the function) Saltelli et al., 99.

RBD: (Tarantola et al., 06) Random Balance Designs

- we choose D an orthogonal array of strength 1 (design (d)), randomized by a random permutation $(D(\pi))$);
- K_{u} choice of a priori non negligible frequencies.

Remarks:

- these estimators are known to be biased;
- we can correct a part of this biais (Tissot et a , 2012)

RBD: (Tarantola et al., 06) Random Balance Designs

- we choose D an orthogonal array of strength 1 (design (d)), randomized by a random permutation $(D(\pi))$);
- K_{u} choice of a priori non negligible frequencies.

Remarks:

- these estimators are known to be biased;
- we can correct a part of this biais (Tissot et al., 2012);
- if the function is not regular enough, the bias remains important.

RBD: (Tarantola et al., 06) Random Balance Designs

- we choose D an orthogonal array of strength 1 (design (d)), randomized by a random permutation $(D(\pi))$);
- K_{u} choice of a priori non negligible frequencies.

Remarks:

- these estimators are known to be biased;
- we can correct a part of this biais (Tissot et al., 2012);
- if the function is not regular enough, the bias remains important.

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference Given data Sobol' index inference Spectral Sobol' index inference

Application to MODECOGeL

References

see Prieur et al, 2019

MODECOGeL is a one-dimensional coupled hydrodynamicalbiological model.

- hydrodynamic model: 1-D vertical simplification of primitive equations for the ocean, 5 state variables;
- ecosystem model: marine biogeochemistry, 12 biological state variables.

Application to MODECOGeL

$\triangleright 74$ independent scalar parameters

Index	Neme	Unit	Pdf	Mean	Std	Std/Mean
1	PicP max growth rate	t^{-1}	T(25,0.12)	3.	0.6	20\%
2	NanP max growth rate	t^{-1}	$\Gamma(25,0.1)$	2.5	0.5	20\%
3	MicP max growth rate	t^{-1}	T(25,0.08)	2.	0.4	20\%
4	dependence of NO3 limitation to NH4	C^{-1}	$\Gamma(400,0.00365)$	1.46	0.073	5\%
5	NO3 semisaturation for PicP	C	P(4,0.125)	0.5	0.25	50\%
6	NO3 semisaturation for NanP	C	$\Gamma(4,0.175)$	0.7	0.35	50\%
7	NO3 semisaturation for MicP	C	$\Gamma(4,0.25)$	1.0	0.5	50\%
8	NH4 semisaturation for PieP	c	[(4,0.075)	0.3	0.15	50\%
9	NH4 semisaturation for NanP	C	$\Gamma(4,0.125)$	0.5	0.25	50\%
111)	NH4 semisaturation for MicP	C	T(4,0.175)	0.7	0.35	50\%
11	optimal PAR for PicP	I	$\Gamma(25,0.4)$	10.	2.	20\%
12	optimal PAR for NanP	I	$\Gamma(25,0.6)$	15.	3.	20\%
13	optimal PAR for MicP	1	$\Gamma(25,0.8)$	20.	4.	20\%
14	variation of light limitation for PicP	-	$-\Gamma(4,0.2)$	-0.8	0.4	50\%
15	variation of light limitation for NanP	-	$-\Gamma(4,0.175)$	-0.7	0.35	50\%
16	variation of light limitation for MicP	-	$-\Gamma(4,0.15)$	-0.6	0.3	50\%
17	optimal temperature for PicP	T	$\mathcal{N}\left(15,3^{2}\right)$	15.	3.	20\%
18	optimal temperature for NanP	T	$\mathcal{N}\left(15,3^{2}\right)$	15.	3.	20\%
19	optimal temperature for MicP	T	$\mathcal{N}\left(16,3.2^{2}\right)$	16.	3.2	20\%
20	variation of temp. limitation for PicP	-	$-\Gamma(4,0.125)$	-0.5	0.25	50\%
21	variation of temp. limitation for NanP	-	$-\Gamma(4,0.125)$	-0.5	0.25	50\%
22	variation of temp. limitation for MicP	-	$-\Gamma(4,0.1375)$	-0.55	0.275	50%
23	bacteria growth limitation	-	$\Gamma(4,0.15)$	0.6	0.3	50%
24	semisaturation for BAC growth	C	$\Gamma(4,0.125)$	0.5	0.25	50\%
25	exudation ratio for PicP	-	$\Gamma(4,0.015)$	0.06	0.03	50\%
26	exudation ratio for NanP	-	$\Gamma(4,0.0125)$	0.05	0.025	50\%
27	exudation ratio for MicP	-	$\Gamma(4,0.01)$	0.04	0.02	50\%
28	max ingestion rate for NanZ	t^{-1}	P(25, 0.12)	3.	0.6	20\%
29	max ingestion rate for MicZ	t^{-1}	$\Gamma(25,0,08)$	2.	0.4	20\%
30	max ingestion rate for MesZ	t^{-1}	$\Gamma(25,0.06)$	1.5	0.3	20\%
31	threshold ingestion for NanZ	C	$\Gamma(4,0.0125)$	0.05	0.025	50\%
32	threshold ingestion for MicZ	C	$\Gamma(4,00075)$	0.03	0.015	50\%
33	threshold ingestion for MesZ	C	$\Gamma(4,0.0025)$	0.01	0.005	50\%
34	somisaturation for ingestion by NanZ	C	$\Gamma(4,0.125)$	0.5	0.25	50\%
35	semisaturation for ingestion by MicZ	C	$\Gamma(4,0.1875)$	0.75	0.375	50\%
36	semisaturation for ingestion by MesZ	C	$\Gamma(4,0.25)$	1.	0.5	50\%
37	efficiency of MesZ on MicP	-	$\beta(4.2,1.05)$	0.8	0.16	20\%
38	efficiency of NanZ on BAC	-	$\beta(4.2,1.05)$	0.8	0.16	20\%
39	efficiency of MicZ on NanZ	-	$\beta(4.2,1.05)$	0.8	0.16	20\%
411	efficiency of MesZ on MicZ	-	$\beta(4.2,1.05)$	0.8	0.16	20\%
41	efficlency of MicZ on MOP1	-	$\beta(19.8,79.2)$	0.2	0.04	20\%
42	efficiency of MesZ on MOP1	-	$\beta(19.8,79.2)$	0.2	0.04	20\%
43	efficlency of MesZ on MOP2	-	$\beta(19.8,79.2)$	0.2	0.04	20\%
44	mortality rate for PicP	t^{-1}	$\Gamma(4,0.015)$	0.06	0.03	50\%
45	mortality rate for NanP	t^{-1}	$\Gamma(4,0.0125)$	0.05	0.025	50\%
45	mortality rate for MicP	t^{-1}	$\Gamma(4,0.01)$	0.94	0.02	50\%
47	mortality rate for NanZ	t^{-1}	$\Gamma(4,0.015)$	0.06	0.03	50\%
18	mortality rate for MicZ	t^{-1}	$\Gamma(4,0.0125)$	0.05	0.025	50\%
49	mortality rate for MesZ	t^{-1}	$\Gamma(4,0.0075)$	0.03	0.015	50\%
510	mortality rate for BAC	t^{-1}	$\Gamma(4,0.015)$	0.96	0.03	50\%
51	threshold for predation	C	$\Gamma(4,0.005)$	0.02	0.01	50\%
52	maximum predation rate on MesZ	t^{-1}	$\Gamma(4,0,25)$	1.	0.5	50\%
53	semisaturation for predation on MesZ	C	$\Gamma(4,0.25)$	1.	0.5	50\%
54	excreted fraction of predation on MesZ	-	$\beta(2.33,4.67)$	0.333	0.167	50\%
55	fraction of grazing used for growth of NanZ	-	$\beta(4.2,1.05)$	0.8	0.16	20\%
B6	fraction of grazing used for growth of MicZ	-	$\beta(4.2,1.05)$	0.8	0.16	20\%
57	fraction of grazing used for growth of MesZ	-	$\beta(4.2,1.05)$	0.8	0.16	20\%
58	fraction of POM used for growth of MicZ	-	$\beta(12,12)$	0.5	0.1	20\%
59	fraction of POM used for growth of MesZ	-	$\beta(12,12)$	0.5	0.1	20\%
60	excretion rate for NanZ	t^{-1}	$\Gamma(4,0.0375)$	0.15	0.075	50\%
61	excretion rate for MicZ	t^{-1}	$\Gamma(4,0.025)$	0.1	0.05	50\%
62	excretion rate for MesZ	t^{-1}	$\Gamma(4,0.0125)$	0.05	0.025	50%
63	excretion rate for BAC	t^{-1}	$\Gamma(4,0.0375)$	0.15	0.075	50\%
64	temperature variation of excretion for NanZ	-	LogGamma	1.05	0.0525	5\%
65	temperature variation of excretion for MicZ	-	LogGamma	1.05	0.0525	5\%
66	temperature variation of excretion for MesZ	-	LogGamma	1.02	0.051	5\%
67	temperature variation of excretion for BAC	-	LogGamma	1.04	0.052	5\%
68	fraction of excretion as DOM	-	$\beta(2.75,8.25)$	0.25	0.125	50\%
69	POM1 docomposition rate	t^{-1}	$\Gamma(4,0.01625)$	0065	0.0325	50\%
70	POM2 decompasition rate	t^{-1}	$\Gamma(4,0.015)$	0.06	0.03	50\%
71	sedimentation velocity for MicP	V	$\Gamma(4,0.25)$	1.	0.5	50\%
72	nitrification rate	t^{-1}	$\Gamma(4,0.0075)$	0.03	0.015	50\%
73	light attenuation poefficient in sca water	-	$\Gamma(25,0.0016)$	0.04	0.008	20\%
74	fraction of photosynthetically active radiation	-	$\mathrm{P}(25,0.02)$	0.5	0.1	20\%

State variables

The ecosystem model provides a 12-component description of the ecosystem of the Ligurian Sea.

Variable	Acronym	Name
C_{1}	NO3	Nitrate
C_{2}	NH4	Ammonium
C_{3}	PicP	Picophytoplankton
C_{4}	NanP	Nanophytoplankton
C_{5}	MicP	Microphytoplankton
C_{6}	NanZ	Nanozooplankton
C_{7}	MicZ	Microzooplankton
C_{8}	MesZ	Mesozooplankton
C_{9}	BAC	Bacteria
C_{10}	DON	Dissolved organic nitrogen
C_{11}	POM1	Particulate organic matter (size 1)
C_{12}	POM2	Particulate organic matter (size 2)

The time evolution of each state variable is governed by the equation:

$$
\frac{\partial C_{i}}{\partial t}=\mathrm{ADV}_{i}+\mathrm{DIFF}_{i}+\mathrm{SMS}_{i} \quad \text { with } \quad \mathrm{SMS}_{i}=\sum_{j \neq i} \operatorname{FLUX}\left(C_{j} \rightarrow C_{i}\right)
$$

where $A D V_{i}$ and DIFF_{i} are advection and diffusion terms, and SMS_{j} is the "source minus sink" term summing up the fluxes (FLUX $\left(C_{j} \rightarrow C_{i}\right)$) between the various components of the ecosystem. We also introduce chlorophyll concentration $C_{0}=\alpha\left(\boldsymbol{C}_{3}+\boldsymbol{C}_{4}+\boldsymbol{C}_{5}\right)$.

Qols

Index j	Name	Definition
1	surface maximum	$\max _{t} C_{i}(0, t)$
2	time of surface maximum	$\operatorname{argmax}_{t} C_{i}(0, t)$
3	maximum of vertical average	$\max _{t} \frac{1}{Z} \int_{0}^{z} C_{i}(z, t) d z$
4	time of maximum of vertical average	$\operatorname{argmax}_{t} \frac{1}{Z} \int_{0}^{z} C_{i}(z, t) d z$
5	time and vertical average	$\frac{1}{Z T} \int_{0}^{T} \int_{0}^{z} C_{i}(z, t) d z d t$

Quantities of interest $Y_{i j}$. The maximum depth for averaging is $Z=40 \mathrm{~m}$, and T is the total duration of the experiment.

Processing chain

Workstation/laptop
Local Grid Computing / Distributed Storage

The steps for the estimation of all first-order (or all closed second-order) Sobol' indices with the sobolroalhs function of the R sensitivity package. The experimental design PlanPar is split into p sets of simulations (100 simulations each in our case). Each set of simulations is performed using MODECOGeL and the Qols are computed for each simulation. All values for the Qol are grouped in a single file QolGlob, which is sent to sobolroalhs for the actual

How the results look like?

Estimated first-order indices (y-axis) with their 95% confidence interval for the 74 model parameters (x-axis), for $n=10^{3}, 10^{4}, 10^{5}$ and 10^{6}, in the case of the output Y_{01}. The dashed horizontal line corresponds to a threshold arbitrarily chosen to be 0.01 . Confidence intervals were obtained with a bootstrap procedure and a bootstrap sample size of 100.

Map (74×74) of the second-order unclosed Sobol indices for Qol Y_{01}. The x and y axes correspond to the number of the parameters, and the grey scale to the value of the index. Note that the numbers indicated on the axes correspond to parameters with high first-order indices.

Top eight ranking of the local derivative $\partial Y / \partial X_{j}$, and first-order and total Sobol' indices S_{j} and $\mathrm{S}_{j}^{\text {tot }}$.

j	2	14	15	18	30	35	36	46	57	63	66	67
$\partial Y / \partial X_{j}$	$8^{\text {th }}$		$3^{\text {rd }}$	$4^{\text {th }}$		$7^{\text {th }}$		$6^{\text {th }}$		$5^{\text {th }}$	$2^{\text {nd }}$	$1^{\text {st }}$
$\mathrm{S}_{\{j\}}$		$7^{\text {th }}$	$2^{\text {nd }}$	$8^{\text {th }}$	$5^{\text {th }}$		$4^{\text {th }}$		$6^{\text {th }}$	$3^{\text {rd }}$		$1^{\text {st }}$
$\mathrm{S}_{\{j\}}^{\text {tot }}$		$3^{\text {rd }}$	$1^{\text {st }}$	$2^{\text {nd }}$	$7^{\text {th }}$		$4^{\text {th }}$		$8^{\text {th }}$	$5^{\text {th }}$		$6^{\text {th }}$

We can normalize local derivatives

$$
\mathrm{S}_{j}^{\mathrm{loc}}=\frac{V\left[X_{j}\right]}{V[Y]}\left(\frac{\partial Y}{\partial X_{j}}\right)^{2} .
$$

Derivative $\frac{\partial Y_{01}}{\partial X_{j}}$ (left), non dimensional derivative $\mathrm{S}_{j}^{\mathrm{loc}}=\frac{V\left[X_{j}\right]}{\operatorname{Var}\left(Y_{01}\right)}\left(\frac{\partial Y_{01}}{\partial X_{j}}\right)^{2}$ (right, upper panel), and first order and total Sobol' indices (right, lower panel) as functions of the number of the parameter (x-axis). The derivatives are computed for $\left(x_{1}, \ldots, x_{d}\right)=\left(\mathrm{E}\left(X_{1}\right), \ldots, \mathrm{E}\left(X_{d}\right)\right.$).

Summary of statistics

Estimation of Sobol' indices	$\begin{gathered} \text { sobolsalt } \\ \mathrm{n}=10^{5} \end{gathered}$		$\begin{gathered} \text { roalhs } \\ \mathrm{n}=10^{3} \\ \mathrm{~S} 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { roalhs } \\ \mathrm{n}=10^{4} \\ \mathrm{~S} 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { roalhs } \\ \mathrm{n}=10^{5} \\ \mathrm{~S} 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { roalhs } \\ \mathrm{n}=10^{6} \\ \mathrm{~S} 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { roalhs } \\ q=227 \\ \mathrm{~S} 2 \\ \hline \end{gathered}$
	S1	ST					
Estimated Error maximum value	0.0076	0.0064	0.077	0.025	0.0077	0.0025	0.024
mean value	0.0065	0.0047	0.062	0.020	0.0064	0.0020	0.018
standard deviation	2.010^{-7}	2.310^{-7}	2.710^{-5}	3.410^{-6}	5.710^{-8}	3.210^{-8}	2.710^{-7}
Number of evaluations	7.610^{6}		210^{3}	210^{4}	210^{5}	210^{6}	$q^{2} \simeq 10^{5}$

Statistics (maximum and mean values, standard deviation) related to the estimated error over all 74 parameters, and number of model runs required for the estimation of the Sobol' indices.

Introduction

Functional variance analysis

Sobol' index inference
Pick-freeze Sobol' index inference Given data Sobol' index inference Spectral Sobol' index inference

Application to MODECOGeL

References

Some references I

B. Broto, F. Bachoc, and M. Depecker. Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification, 8 (2):693-716, 2020.
S. Chatterjee. A new coefficient of correlation. Journal of the American Statistical Association, 0 (0):1-21, 2020.
R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, and J. H. Schaibly. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: Theory. Journal of Chemical Physics, 59:3873-3878, 1973.
R. I. Cukier, J. H. Schaibly, and K. E. Shuler. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: Analysis of the approximations. Journal of Chemical Physics, 63:1140-1149, 1975.
R. I. Cukier, H. B. Levine, and K. E. Shuler. Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26:1-42, 1978.
S. Da Veiga, F. Gamboa, B. looss, C. Prieur, Society for Industrial, and Applied Mathematics. Basics and Trends in Sensitivity Analysis: Theory and Practice in R. Computational science and engineering. Society for Industrial and Applied Mathematics, 2021.
L. Devroye, D. Schäfer, L. Györfi, and H. Walk. The estimation problem of minimum mean squared error. Statistics \& Decisions, 21(1):15-28, 2003.
L. Devroye, L. Györfi, G. Lugosi, and H. Walk. A nearest neighbor estimate of the residual variance. Electronic Journal of Statistics, 12(1):1752-1778, 2018.

Some references II

R. Faivre, D. Makowski, S. Mahévas, and B. looss. Analyse de sensibilité et exploration de modèles: application aux sciences de la nature et de l'environnement. Analyse de sensibilité et exploration de modèles, pages 1-352, 2013.
F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. Global sensitivity analysis: a new generation of mighty estimators based on rank statistics. to appear in Bernoulli.
F. Gamboa, A. Janon, T. Klein, and A. Lagnoux. Sensitivity analysis for multidimensional and functional outputs. Electronic Journal of Statistics, 8(1):575-603, 2014.
F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. Statistical inference for sobol pick-freeze monte carlo method. Statistics, 50(4):881-902, 2016.
L. Gilquin, E. Arnaud, C. Prieur, and A. Janon. Making the best use of permutations to compute sensitivity indices with replicated orthogonal arrays. Reliability Engineering \& System Safety, 187:28-39, 2019.
W. F. Hoeffding. A class of statistics with asymptotically normal distributions. Annals of Mathematical Statistics, 19:293-325, 1948.
A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. Asymptotic normality and efficiency of two sobol index estimators. ESAIM: Probability and Statistics, 18:342-364, 2014.
W. Mauntz. Global sensitivity analysis of general nonlinear systems. Master's Thesis, Imperial College. Supervisors: C. Pantelides and S. Kucherenko, 2002.

Some references III

C. Prieur and S. Tarantola. Variance-based sensitivity analysis: Theory and estimation algorithms. Handbook of uncertainty quantification, pages 1217-1239, 2017.
C. Prieur, L. Viry, E. Blayo, and J-M Brankart. A global sensitivity analysis approach for marine biogeochemical modeling. Ocean Modelling, 139:101402, 2019.
A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145:280-297, 2002.
A. Saltelli, K. Chan, and E. M. Scott. Sensitivity Analysis. John Wiley \& Sons, 2000.
I. M. Sobol'. Sensitivity analysis for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 1:407-414, 1993.
S. Tarantola, D. Gatelli, and T. A. Mara. Random balance designs for the estimation of first-order global sensitivity indices. Reliability Engineering and System Safety, 91:717-727, 2006.
J. Y. Tissot and C. Prieur. Bias correction for the estimation of sensitivity indices based on random balance designs. Reliability Engineering and System Safety, 107:205-213, 2012a.
J. Y. Tissot and C. Prieur. Variance-based sensitivity analysis using harmonic analysis. http://hal.archives-ouvertes.fr/docs/00/68/07/25/PDF, 2012b.
J. Y. Tissot and C. Prieur. A randomized orthogonal array-based procedure for the estimation of first- and second-order sobol' indices. Journal of Statistical Computation and Simulation, 85: 1358-1381, 2015.

Thanks for your attention!

