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Abstract. An efficient framework is described for the shape and topology optimization of realistic three-
dimensional, weakly-coupled fluid-thermal-mechanical systems. At the theoretical level, the proposed method-

ology relies on the boundary variation of Hadamard for describing the sensitivity of functions with respect

to the domain. From the numerical point of view, three key ingredients are used: (i) a level set based mesh
evolution method allowing to describe large deformations of the shape while maintaining an adapted, high-

quality mesh of the latter at every stage of the optimization process; (ii) an efficient constrained optimization

algorithm which is very well adapted to the infinite-dimensional shape optimization context; (iii) efficient
preconditioning techniques for the solution of large finite element systems in a reasonable computational

time. The performance of our strategy is illustrated with two examples of coupled physics: respectively

fluid–structure interaction and convective heat transfer. Before that, we perform three other test cases,
involving a single physics (structural, thermal and aerodynamic design), for comparison purposes and for

assessing our various tools: in particular, they prove the ability of the mesh evolution technique to capture

very thin bodies or shells in 3D.

Keywords. Shape and topology optimization, fluid–structure interaction, convective heat transfer, aerody-
namic design, mesh adaptation, distributed computing.

AMS Subject classifications. 74P10, 76B75, 74F10, 35Q79, 65N50, 65N55 .

Contents

1. Introduction 2
2. Shape optimization of a multiphysics system with the method of Hadamard 3

2.1. Presentation of the three-physics model 3
2.2. Shape sensitivities of three-physics systems using the method of Hadamard 5

3. Numerical resolution of the shape optimization problem 7
3.1. Null space gradient flow optimization algorithm 8
3.2. Level-set based mesh evolution method 9

4. Discretization and resolution of the three-dimensional state and adjoint equations 11
4.1. Foreword: solving large linear systems arising from the finite element discretization 11
4.2. Physics-dependent preconditioners for the resolution of the state and adjoint equations 11

5. Three-dimensional shape and topology optimization test cases 13
5.1. Cantilever beam subject to bending or torsional loads 15
5.2. Optimal design for pure thermal heat conduction 18
5.3. Lift–drag topology optimization for aerodynamic design 18
5.4. A three-dimensional fluid–structure interaction test case 22
5.5. Shape and topology optimization of three-dimensional convective heat transfer 24

References 29

Corresponding author. Email: florian.feppon@polytechnique.edu.
1Institute of Engineering Univ. Grenoble Alpes

1



1. Introduction

Shape and topology optimization for multiphysic systems is still a huge challenge. Contrary to classical
applications of optimal design techniques in aerodynamics, solely relying on geometric shape optimization
[77, 54, 88], one of the difficulty is that here both the shape and topology have to be optimized, in order
to obtain truly innovative designs. Furthermore, many applications, such as the design of aircraft engine
components in the field of aeronautics, require to simultaneously consider fluid, thermal, and mechanical
aspects in the optimization process. This raises new issues like the coupled discretization of the fluid and
solid subdomains, or the computational efficiency of computing the system performance.

Fairly many works have proposed topology optimization methods for situations where several of the
aforementioned physical effects arise: convective heat transfer problems (involving coupled fluid and thermal
equations, where the elastic response of the underlying structure is neglected) have been addressed using
density methods [73, 34, 38, 109, 97, 37, 36, 86, 91], or variants of the level-set method [4, 29, 107]. Systems
featuring interactions between a fluid and a solid phase, without taking thermal effects into account, have
been studied in slightly fewer works, and in two space dimensions only [108, 80, 14, 57, 72, 66]. Finally, the
optimal design of thermoelastic structures has been tackled in [59, 100, 41, 106, 28, 10]. These problems are
delicate, in part because of the very fine effects occurring at the interface between the fluid and solid phases
at play. Furthermore, the numerical computation of coupled physics involving fluids in three dimensions is
known to be very challenging.

The purpose of the present paper is to propose an efficient framework for three-dimensional shape and
topology optimization of coupled fluid–solid thermal systems. The physical situations of interest are described
by the incompressible Navier–Stokes equations in the fluid domain, the convection–diffusion equation for
heat propagation in both fluid and solid domains, and the linearized elasticity system for the mechanical
displacement of the solid domain.

Our method is based on our previous work [43] where we introduced the key ingredients of our framework
in 2D: (i) analytic shape derivative formulas obtained with the method of Hadamard [81, 51, 101] and (ii)
the level-set based mesh evolution algorithm of [7, 8, 9, 43] for the numerical realization of the deformation
of meshed shapes. The main advantage of the latter strategy is that an explicit mesh discretization of the
optimized fluid and solid domains remain available throughout the optimization process, while still allowing
for dramatic deformations from one stage to the other (including topological changes), contrary to classical
geometric methods. Also, in contrast with more commonly used density methods or with “classical” level-set
methods [12, 104], this allows to solve the state equations without any modification or approximation of the
original physics, e.g., without resorting to the Brinkman model for the fluid system, and without the need for
considering relaxed “grayscale” designs, whose physical interpretation may be difficult, and which is prone
to numerical inaccuracies, see [67, 65]. In particular, this approach is by nature non-intrusive: the physical
state equations could in principle be solved by a “black box” external solver.

Another salient aspect of our methodology is the use of the null space optimization algorithm developed
in one of our other previous works [44]. This algorithm is a generalization of gradient flow strategies for
constrained optimization problems which is well-suited for the shape optimization applications of this paper.
It allows us to solve a variety of optimization problems with a “small” number of quite arbitrary equality
and inequality constraints, without requiring the tuning of unintuitive algorithmic parameters.

We are motivated to solve large-scale problems in this context, close to realistic industrial applications. If
the validity of our overall multiphysics topology optimization algorithm was demonstrated numerically in our
previous work [43] on two-dimensional test cases, its implementation in 3D is, classically, substantially more
involved. Despite the fact that the theoretical ingredients of the topology optimization algorithm such as
the expressions of shape derivatives remain identical, three-dimensional situations feature indeed two main
sources of additional complexity.

On the one hand, the remeshing operations involved in our level-set based mesh evolution method are much
more delicate and numerically expensive in three dimensions than in two dimensions. Our implementation
extensively relies on the open-source platform Mmg [31] and its level-set discretization routines. The main
features of the underlying algorithm are described in details in [30], with a particular emphasis on the
three-dimensional case.
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On the other hand, the physical state equations need to be solved about a hundred times during a typical
shape optimization process which is very computationally demanding for large-scale problems, all the more
when fluid mechanics is involved. The main difficulty to overcome when such applications are considered is
the large size of the associated finite element problems. In this work, we resort to preconditioned iterative
methods and to distributed computing techniques which allow to solve large-scale finite element problems in
parallel at a reduced time- and memory-cost. This type of strategy is classical and has been implemented by
many works relying on density methods in the context of the optimization of mechanical structures [2, 76, 13]
or of heat convection systems [91, 86, 5, 23, 97]. Interestingly, this trend is also emerging in other design
optimization methods, such as evolutionary topology optimization [75] or level-set methods [61]. As far
as we are concerned, our numerical implementation relies on the PETSc library [17] and its interface in
FreeFEM [49]. Let us emphasize that one originality of our work is the implementation of discretization
and preconditioning techniques that are suited to isotropic or anisotropic unstructured meshes, which is a
challenging numerical context with respect to the aforementioned works, where a fixed, or a structurally
refined Cartesian grid is used.

The three-dimensional numerical examples tackled using our strategy make extensive use of parallel com-
puting and preconditioning in order to be achieved in reasonable CPU time. Our largest test case features
up to 5 million degrees of freedom solved on 24 processes. Admittedly, one may argue that their size remains
rather small when compared to real-life industrial problems reaching about one billion degrees of freedom.
However, we note that the algorithmic tools developed for this work, such as FreeFEM discretization or
PETSc preconditioners, have the ability to scale on much larger architectures. Since ParMmg, the parallel
counterpart of Mmg, does not handle yet adaptations of surfaces, we chose in the present article configu-
rations that could be still tractable when using a sequential remesher. Nevertheless, we believe that these
results are promising and pave the way to more challenging applications.

This article is organized as follows. In section 2, we describe our physical model and we review the main
mathematical ingredients which enable to solve shape optimization problems with the method of Hadamard.
In section 3, we briefly present the main ingredients of our numerical framework, namely the constrained
optimization algorithm and the level-set based mesh evolution method used to deform the shape through the
optimization process. Section 4 then discusses our choice of discretization and preconditioning techniques
for the solution of the three-dimensional multiphysics state equations involved in our shape optimization test
cases. Finally, section 5 is devoted to the presentation of a variety of three-dimensional test cases treated
by our implementation. Five particular physical models are considered: while the first three of them deal
with monophysics applications, in linear elasticity, heat conduction, or fluid mechanics, the fourth and fifth
ones are true multiphysics examples; they arise in the respective contexts of fluid–structure interaction and
convective heat transfer. We note that remeshing explicitly the fluid-solid interface at every iteration with a
locally high resolution allowed us to obtain very original designs which could have been difficult to capture
with more classical methods relying on fixed meshes.

2. Shape optimization of a multiphysics system with the method of Hadamard

This section sets the mathematical and physical frame of the article. We first describe in section 2.1 the
three physics model coupling fluid, mechanical and thermal properties. We then present in section 2.2 a
summary of the method of Hadamard for shape sensitivity analysis in this context.

2.1. Presentation of the three-physics model

Throughout this paper, D = Ωs ∪ Ωf is a fixed and bounded domain in Rd, where d = 2 or 3 in practice.

It is the disjoint reunion of a “fluid” phase Ωf and a “solid” phase Ωs = D\Ωf , separated by an interface
Γ := ∂Ωf ∩ ∂Ωs, which we aim to optimize, see Figure 1.

Three coupled physical effects are at play within D:

(i) the motion of the fluid inside the region Ωf , described by the velocity and pressure fields v : Ωf → Rd
and p : Ωf → R;

(ii) the diffusion of heat inside the whole domain D and its transport by convection in the fluid domain,
resulting in a temperature field T : D → R;
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Figure 1. Setting of the considered three-physics problem, not all the regions of ∂D featured in
(2.1) to (2.3) are represented.

(iii) the deformation of the solid region Ωs, characterized by its mechanical displacement u : Ωs → Rd,
induced by both the stress applied by the fluid and the dilation under thermoelastic effects.

Let us now provide a little more details about the above models, referring to [43] and the references therein
for the underlying mathematical theory.

The domain Ωf contains a Newtonian fluid, with viscosity ν and density ρ. Its velocity v and pressure p
satisfy the incompressible, steady-state Navier–Stokes equations:



−div(σf (v, p)) + ρ∇v v = ff in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩDf

σf (v, p)n = 0 on ∂ΩNf

v = 0 on Γ.

(2.1)

In the above system, ∇v is the Jacobian matrix of v, whose entries read (∇v)ij = ∂jvi, i, j = 1, . . . , d. The
internal efforts within the fluid are described by the fluid stress tensor σf (v, p) which is related to the rate
of strain tensor e(v) := 1

2 (∇v +∇vT ) via the Newton’s law:

σf (v, p) := 2νe(v)− pI,

where I is the d × d identity matrix; the external stresses, such as gravity, are modeled by a body force
ff . The system (2.1) features a decomposition of the boundary of the fluid phase as the disjoint reunion
∂Ωf = ∂ΩDf ∪ ∂ΩNf ∪ Γ of

(i) a Dirichlet (or inlet) part ∂ΩDf , where the flow enters with given velocity v = v0;

(ii) a Neumann (or outlet) part ∂ΩNf , where zero normal stress is observed;

(iii) the interface Γ with the solid domain Ωs, where no-slip boundary conditions are imposed.

The unit normal vector n : Γ→ Rd is oriented from Ωf to Ωs.

From the knowledge of the velocity of the fluid v, it is possible to identify the temperature T in the
total domain D, as a result of convection and diffusion inside the fluid domain Ωf , and of pure diffusion
inside the solid domain Ωs. Denoting by kf and ks the thermal conductivity coefficients inside Ωf and Ωs
respectively, and by cp the thermal capacity of the fluid, the temperature T is the solution to the steady-state
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convection–diffusion equations:

−div(kf∇Tf ) + ρcpv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

T = T0 on ∂ΩDT

−kf
∂Tf
∂n

= h on ∂ΩNT ∩ ∂Ωf

−ks
∂Ts
∂n

= h on ∂ΩNT ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf
∂n

= −ks
∂Ts
∂n

on Γ,

(2.2)

where the subscripts f and s denote restrictions Tf and Ts of T to Ωf and Ωs respectively. The temperature
T as well as the normal heat flux are continuous across the interface Γ between Ωf and Ωs, and volumic
sources Qf and Qs are at work inside Ωf and Ωs. This system features a decomposition of the boundary
∂D = ∂ΩNT ∪ ∂ΩDT into a Dirichlet part ∂ΩDT where a temperature T0 is imposed, and a Neumann part ∂ΩNT
where a given incoming heat flux h is applied. Note that the regions ∂ΩNT and ∂ΩDT are independent of those
∂ΩDf , ∂ΩNf , and Γ featured in the system (2.1). For instance, ∂ΩNT may partially or totally overlap ∂ΩNf or

∂ΩDf .

Eventually, the velocity v and pressure p inside the fluid domain Ωf , together with the temperature T
inside the total domain D, allow to determine the displacement u of the solid domain Ωs. The latter is filled
with an isotropic thermoelastic material with Lamé coefficients λ and µ, thermal expansion parameter α,
and temperature at rest Tref, so that u is the solution of the linear thermoelasticity system:

−div(σs(u, Ts)) = fs in Ωs

u = u0 on ∂ΩDs

σs(u, Ts)n = g on ∂ΩNs

σs(u, Ts)n = σf (v, p)n on Γ,

(2.3)

where the solid stress tensor is given by

σs(u, Ts) := Ae(u)− α(Ts − Tref)I with Ae(u) := 2µe(u) + λTr(e(u))I, (2.4)

and fs is an applied body force. In (2.3), the boundary ∂Ωs is decomposed as ∂Ωs = ∂ΩDs ∪∂ΩNs ∪Γ, where:

(i) the displacement u = u0 is prescribed on the Dirichlet part ∂ΩDs ;
(ii) a stress g is imposed on the Neumann part ∂ΩNs ;
(iii) the solid is subject to the pressure imposed by the fluid on the interface Γ with Ωf , i.e., equality holds

between the normal components of the fluid and solid stress tensors: σf (v, p)n = σs(u, Ts)n.

Again, this decomposition of ∂Ωs is independent of the decompositions of ∂Ωf and ∂D featured in the
systems (2.1) and (2.2).

Note that the coupling between the above three physical systems is weak, insofar as the deformation of
the fluid domain is neglected: as a result there is no influence of the solid deformation u onto the fluid
variables (v, p), see [43] for related discussions.

2.2. Shape sensitivities of three-physics systems using the method of Hadamard

In the physical situation of section 2.1, we consider design optimization problems of the generic form:

min
Γ

J (Γ,v(Γ), p(Γ), T (Γ),u(Γ))

s.t.

{
gi (Γ,v(Γ), l(Γ), T (Γ),u(Γ)) = 0, 1 6 i 6 p,

hj (Γ,v(Γ),m(Γ), T (Γ),u(Γ)) 6 0, 1 6 j 6 q,

(2.5)

where J is the objective function measuring the performance of the system and gi (resp. hj) are l equality
(resp. m inequality) constraints. These functions all depend on the subdivision of the working domain D
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into the fluid and solid parts Ωf , Ωs, either explicitly, or via the physical variables v(Γ), p(Γ),u(Γ), and T (Γ)
determined by (2.1) to (2.3). For notational simplicity, and with a little abuse, this dependence is made
explicit with the sole mention to Γ instead of referring to Ωf and Ωs. Several examples of such objective
and constraint functionals are provided in the applicative section 5.

Like most first-order optimization strategies, e.g., gradient descent methods, our numerical framework for
solving (2.5) rests on the derivative of the objective function J and constraints gi, hj with respect to the
position of the fluid–solid interface Γ. This notion can be understood in a variety of manners. In the present
work, we rely on the method of Hadamard [50, 6, 101], which considers variations of Γ of the form

Γθ := (Id + θ)(Γ), where θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1, (2.6)

where θ is a small vector field deforming Γ, see Figure 2. The shape derivative of a function Γ 7→ F (Γ) of
the two-phase decomposition D = Ωf ∪ Ωs is then defined as the derivative DF (Γ) : W 1,∞(Rd,Rd)→ R of
the underlying mapping θ 7→ F (Γθ) at θ = 0, so that the following asymptotic expansion holds:

F (Γθ) = F (Γ) + DF (Γ)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0. (2.7)

In principle, one additionnally imposes that the vector fields θ in the above definition vanish on the boundary
∂D of the total domain D, so that it is unchanged upon deformation by θ.

⌦s

�

⌦f ✓

D

Figure 2. Deformation of the interface Γ by a small vector field θ in the context of the boundary
variation method of Hadamard.

The objective and constraint functionals considered in our applications have the general structure

Γ 7→ J(Γ,v(Γ), p(Γ), T (Γ),u(Γ)), (2.8)

and so their dependence on the solid-fluid interface Γ, via the solution of the partial differential equations
(2.1) to (2.3) posed on the corresponding phases Ωf and Ωs, is not trivial. Nevertheless, analytic expressions
for these derivatives have been computed for quite arbitrary shape functionals J in [43]. They can be
assembled automatically from the sole knowledge of the partial derivatives of J thanks to the solution of
adequate adjoint systems. Since this is the most essential ingredient of our methodology, we reproduce this
result below, referring to [43], Proposition 4, for the proof and related comments.

Proposition 1. Let J be the transported objective function defined by

∀θ ∈W 1,∞(D,Rd) with θ = 0 on ∂D, (v̂, p̂, T̂ , û) ∈ H1(Ωf ,Rd)× (L2(Ωf )/R)×H1(D)×H1(Ωs,Rd),

J(θ, v̂, p̂, T̂ , û) := J(Γθ, v̂ ◦ (I + θ)−1, p̂ ◦ (I + θ)−1, T̂ ◦ (I + θ)−1, û ◦ (I + θ)−1). (2.9)
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If J has continuous partial derivatives then the objective function J in (2.8) is shape differentiable and the
derivative reads

d

dθ

[
J(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ)

=
∂J

∂θ
(θ) +

∫
Ωf

[w · div(ff ⊗ θ)− (σf (v, p) : ∇w + ρw · ∇v · v)div(θ)] dx

+

∫
Ωf

[σf (v, p) : (∇w∇θ) + σf (w, q) : (∇v∇θ) + ρw · (∇v∇θ) · v]dx

−
∫

Ωs

div(θ)(ks∇T · ∇S)dx−
∫

Ωf

div(θ)(kf∇T · ∇S + ρcp(v · ∇T )S)dx

+

∫
Ωs

ks(∇θ +∇θT )∇T · ∇Sdx+

∫
Ωf

[
kf (∇θ +∇θT )∇T · ∇S + ρcpv · (∇θT∇T )S

]
dx

+

∫
Ωs

div(Qsθ)Sdx+

∫
Ωf

div(Qfθ)Sdx

+

∫
Ωs

[−div(θ)σs(u, T ) : ∇r + σs(u, T ) : (∇r∇θ) +Ae(r) : (∇u∇θ) + r · div(fs ⊗ θ)] dx, (2.10)

where r, S,w, and q are the adjoint state solutions of the following variational problems:∫
Ωs

Ae(r) : ∇r′dx =
∂J

∂û
(r′) ∀r′ ∈ Vu(Γ) , (2.11)∫

Ωs

ks∇S · ∇S′dx+

∫
Ωf

(kf∇S · ∇S′ + ρcpSv · ∇S′)dx =

∫
Ωs

αdiv(r)S′dx+
∂J

∂T̂
(S) ∀S′ ∈ VT (Γ) , (2.12)

w = r on Γ and ∀(w′, q′) ∈ Vv,p(Γ),∫
Ωf

(
σf (w, q) : ∇w′ + ρw · ∇w′ · v + ρw · ∇v ·w′ − q′div(w)

)
dx =∫

Ωf

−ρcpS∇T ·w′dx+
∂J

∂(v′, p′)
(w′, q′), (2.13)

and where Vu(Γ), VT (Γ), and Vv,p(Γ) are the functional spaces:

Vu(Γ) := {r ∈ H1(Ωs,Rd) | r := 0 on ∂ΩDs }, (2.14)

VT (Γ) := {S ∈ H1(D) |S := 0 on ∂ΩDT }, (2.15)

Vv,p(Γ) := {(w, q) ∈ H1(Ωf ,Rd)× L2(Ωf )/R |w = 0 on ∂Ωf}. (2.16)

Remark 1. Usually, (2.10) is called the volume form of the shape derivative because it involves volume
integrals on Ωs and Ωf . Under technical regularity assumptions, this derivative can be rewritten in terms of
surface integrals over the optimized boundary Γ, see Proposition 5 in [43] in the present setting. Although
mathematically equivalent, these two expressions yield different implementations, with different numerical
behaviors, see [42] for some numerical comparisons in the present context and [53, 110, 70] for further
developments. In the present article, all our examples relied on the volume expression (2.10) of the shape
derivative, except the one of section 5.3 where we used the surface expression in proposition 2 below.

3. Numerical resolution of the shape optimization problem

In this section, we provide a few details about the numerical methods involved in our treatment of the shape
optimization problem (2.5). More precisely, in section 3.1, we briefly present our optimization algorithm for
finding a suitable “descent” direction θ with respect to the problem (2.5). Then, in section 3.2, we recall
the main features of the level-set based mesh evolution method allowing to update numerically the shape
according to this deformation. The solution of discrete finite element systems is deliberately left aside from
this section, this important point being the central topic of section 4.
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3.1. Null space gradient flow optimization algorithm

The constrained shape optimization problem (2.5) is solved thanks to the null space algorithm developed
in [44]. The latter calculates a deformation θ of a given shape Γ, such that the value of the objective function
J(Γ) is decreased, while ensuring that the constraints gi and hj are “better satisfied”.

For simplicity, let us first briefly expose the method in a finite dimensional counterpart of (2.5), namely

min
x∈Rn

J(x)

s.t.

{
g(x) = 0

h(x) 6 0,

(3.1)

with l and m equality and inequality constraint vectors g(x) ∈ Rl and h(x) ∈ Rm. Our method finds a local
optimum of (3.1) by solving the following “null space gradient flow” in pseudo-time t > 0:

ẋ(t) = −αJξJ(x(t))− αCξC(x(t)). (3.2)

The ordinary differential equation (3.2) features two orthogonal directions ξJ(x) and ξC(x), defined by:

ξJ(x) := (I−DCT
Î(x)

(DCÎ(x)DC
T
Î(x)

)−1DCÎ(x))∇J(x), (3.3)

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x), (3.4)

where for a given subset of indices I ⊂ {1, . . . , q}, the notation CI(x) :=
[
g(x) hI(x)

]T
stands for the

vector gathering g and the components of h indexed by I. The subset Ĩ(x) featured in (3.4) is that of the
saturated or violated inequality constraints (we denote by m̃(x) its number of elements):

Ĩ(x) := {i ∈ {1, . . . ,m} |hi(x) > 0} with m̃(x) := Card(Ĩ(x)).

In a nutshell, ξC(x) in (3.4) is a Gauss–Newton direction aiming at decreasing the violation of the constraints,
as measured by CĨ(x)(x). The “null space” direction ξJ(x) is the orthogonal projection of the gradient ∇J(x)

tangentially to a subset Î(x) ⊂ Ĩ(x) of constraints which must remain active. This latter subset is optimal
insofar as it contains exactly the indices of those saturated or violated inequality constraints that must be

enforced at the current stage; the other inequality constraints hj , for j /∈ Î(x), naturally end up “better

satisfied” when moving along the direction −ξJ(x). Mathematically, Î(x) is characterized by the solution to
the dual quadratic subproblem

(λ∗(x),µ∗(x)) := arg min
λ∈Rl

µ∈Rm̃(x),µ>0

||∇J(x) + Dg(x)Tλ+ DhĨ(x)(x)Tµ||, (3.5)

and by setting Î(x) := {i ∈ Ĩ(x) |µ∗i (x) > 0}. Hence, −ξJ(x) is the best possible descent direction respecting
locally both equality and inequality constraints.

Finally, the optimization problem (3.1) is solved by using a Euler discretization scheme with time step
∆t:

xn+1 = xn −∆t(αJξJ(xn) + αCξC(xn)). (3.6)

The main practical advantage of the method lies in the fact that it does not require the tuning of non-
physical parameters. It is enough that the time step ∆t be sufficiently small, while the parameters αJ and
αC are easily set, depending on how fast the initially violated constraints must be enforced.

The above strategy can be adapted to deal with constrained shape optimization problems of the form (2.5),
where Rn is replaced by a set of shapes Γ, given the following adjustments.

1. The definitions of the null space and Gauss–Newton directions ξJ(Γ) and ξC(Γ) now involve shape deriva-
tives:

ξJ(Γ) := (I−DCT
Î(Γ)

(DCÎ(Γ)DC
T
Î(Γ)

)−1DCÎ(Γ))∇J(Γ), (3.7)

ξC(Γ) := DCT
Ĩ(Γ)

(DCĨ(Γ)DC
T
Ĩ(Γ)

)−1CĨ(Γ)(Γ), (3.8)
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where the gradient ∇J(Γ) and the transpose shape derivative DCT
Î(Γ)

are computed by taking advantage

of the classical regularization–extension operation of shape derivatives, see [25, 24, 16, 15, 35] and section
5 of [43]. For instance, in our case, ∇J(Γ) is obtained by solving the following Riesz identification elliptic
problem:

find ∇J(Γ) ∈ H1(D,Rd) s.t. ∀θ ∈ H1(D,Rd),
∫
D

(γ2∇J(Γ) : ∇θ +∇J(Γ) · θ)dx = DJ(Γ)(θ), (3.9)

where γ is a regularization length scale typically set to a few times the mesh element size. In a similar
spirit, the transpose T of (3.7) and (3.8) is different from the usual matrix transpose T in (3.3) and (3.4),
see section 2.1 in [44] for the mathematical definition.

2. According to the method of Hadamard, the Euler scheme (3.6) is replaced with the following design
update step:

Γn+1 = (Id−∆t(αJξJ(Γn) + αCξC(Γn))) (Γn).

3.2. Level-set based mesh evolution method

When it comes to the numerical representation of shapes and their deformations in the course of the op-
timization process, we rely on the level-set based mesh evolution strategy introduced in [9], see also [85]
for a preliminary version of this methodology. The main idea of this method is to take advantadge of two
numerical representations of the fluid subdomain Ωf ⊂ D, or equivalently the solid subdomain Ωs, at each
stage of the evolution:

(1) meshed representation: a conforming simplicial mesh T of D is available in which Ωf is explicitly
discretized as a meshed subdomain; see Figure 3a.

(2) level-set representation: following [12, 104], Ωf is implicitly described using the level-set method
[83]; see Figure 3b. It is the negative subdomain of a function φ : D → R satisfying

∀x ∈ D,


φ(x) < 0 if x ∈ Ωf ,

φ(x) = 0 if x ∈ Γ,

φ(x) > 0 if x ∈ Ωs.

(3.10)

We then consistently alternate between both descriptions of Ωf depending on their suitability with respect
to the ongoing operation. On the one hand, the finite element analyses involved in the resolution of the
systems (2.1) to (2.3) and the corresponding adjoint equations (2.11) to (2.13) are carried out by using the
meshed representation, which features explicitly the phases Ωf and Ωs as meshed subdomains. On the other
hand, their motion is tracked using their level-set representation, thus leaving room for topological changes
in the course of the evolution.

Let us now outline how this idea is implemented in our shape and topology optimization process. At a
given stage of the optimization process, the computational domain D is equipped with a mesh T in which
the current interface Γ (and the corresponding phases Ωf , Ωs) is explicitly discretized. A deformation vector
field θ is provided by the null space gradient flow described in section 3.1, such that the new shape Γθ is
“better” (at first order) than the current one Γ. In practice, θ is given at the vertices of the computational
mesh T , cf. Figure 3a. Our mesh evolution algorithm then computes a new mesh T ′ of D adapted to the
discretization of the deformed configuration Γθ, corresponding to the next iteration, along the following lines:

1. an initial level-set function φ0 : D → R representing Ωf is calculated as the signed distance function to
Ωf at the vertices of the mesh T , cf. Figure 3b. Multiple algorithms are available to achieve this, such
as fast marching method [99] or the fast sweeping method [92]. In our implementation, we rely on the
open-source algorithm Mshdist from one of our previous works [32];

2. the evolution of the shape is accounted for by solving the following advection equation on the mesh T
of D: 

∂φ

∂t
(t, x) + θ(t, x) · ∇φ(t, x) = 0, (t, x) ∈]0; 1]×D,

φ(0, x) = φ0(x), x ∈ D.
(3.11)
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A new level-set function φ′(·) := φ(1, ·) is obtained, associated with the new fluid and solid domains
Ω′f = Ωf,θ and Ω′s = Ωs,θ, and the new interface Γ′ = Γθ = ∂Ω′s ∩ Ω′f , see Figure 4a;

3. A new, conforming, and high-quality mesh T ′ of D is obtained where Ωf explicitly appears as a meshed
subdomain. This is achieved in two steps, thanks to the open-source platform Mmg [30]:

(i) the new shape Ω′f is discretized into T by splitting its elements according to the zero level set

of φ′. This part is purely combinatorial and it yields a conforming but poor-quality mesh T̃ in
which Γ′ (and Ω′f , Ω′s) explicitly appears as a meshed interface (resp. as meshed subdomains),
see Figure 4b;

(ii) remeshing operations [30, 9, 43, 45] are performed iteratively to improve the quality of the mesh

T̃ and the approximation of the discrete interface Γ. This yields a high-quality mesh T ′, cf.
Figure 4c.

(a)
(b)

Figure 3. Initial setting of the level-set based mesh evolution algorithm: (A) a vector field θ is
defined at the vertices of the computational mesh T of the background domain D in which Ωf ⊂ D
is explicitly discretized; (B) a level-set function φ0 representing Ωf is computed on the mesh T .

(a) (b) (c)

Figure 4. Mesh evolution algorithm: (A) the level-set function φ0 associated with the subdomain

Ωf is advected on T according to θ; (B) a poor-quality mesh T̃ of the updated domain Ω′
f is

obtained by splitting the elements of T according to the updated level-set function; (C) T̃ is
iteratively remeshed into a new, high-quality mesh T ′, which lends itself to finite element analyses.

Remark 2. 1. With this strategy, it is possible to adapt the mesh T ′ so that it features small elements
near Γ (as a priority near the regions with high curvature), and coarser elements elsewhere.

2. Occasionally, a few low-quality elements may remain in the mesh T ′. Nevertheless, in all the treated
examples, our finite element resolution strategy proved robust to their presence.
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4. Discretization and resolution of the three-dimensional state and adjoint equations

As stressed above, the algorithmic ingredients outlined in section 3 can be used identically for solving both 2D
(as illustrated in [43]) and 3D topology optimization problems, in theory. However, the implementation in the
three-dimension case requires substantial algorithmic efforts. At first indeed, important differences must be
taken into account when it comes to the meshing and mesh adaptation of two- and three-dimensional domains.
We do not discuss further these delicate matters, since they are extensively detailed in our previous work
[30]. Secondly, one cornerstone of three-dimensional simulations lies in the assembly and in the resolution of
large sparse linear systems. This is the main focus of this section.

4.1. Foreword: solving large linear systems arising from the finite element discretization

The computation of the solutions to the physical state equations (2.1) to (2.3) requires to solve various linear
or linearized nonlinear systems of the form:

Ax = b. (4.1)

The matrix A results from the finite element discretization of a linear differential operator, or its linearization
when it comes to the Navier–Stokes equations (2.1). Such systems also occur during the resolution of the
adjoint problems (2.11) to (2.13) involved in the calculation of shape derivatives, see proposition 1. In a
three-dimensional situation, the size of A quickly becomes prohibitively large for the use of exact LU or
Cholesky factorizations to solve (4.1), since their algorithmic cost grows superlinearly with respect to the
size of A [47, 84]. Classically, at large scale, one resorts instead to iterative methods, such as the conjugate
gradient algorithm (CG) or GMRES, whose convergence rate depends crucially on the condition number of
A, see e.g. [94]. These methods are very competitive provided that the system (4.1) can be appropriately
preconditioned, so that a reasonable number of iterations is required. Unlike exact factorization techniques,
which are applied as black box solvers on the coefficient matrix A, the preconditioning stage of iterative
solvers must be adapted carefully depending on the physics at hand, as we discuss in the next paragraph.

Before entering into specifics, let us briefly detail our numerical environment. In our applications, we rely
on FreeFEM [49] for the finite element discretization of our variational problems, and on PETSc [18, 19]
as the linear algebra behind the numerical resolution of the associated linear systems. As we have seen in
section 3.2, the computational meshes used in our strategy are adapted to the physical domains: they are
calculated owing to the Mmg library (currently, in a sequential manner), and they are then partitioned using
standard libraries such as SCOTCH [26] or Metis [62]. After that initial step, assembling finite element
matrices, solving linear systems, and evaluating volume or surface integrals is performed in a distributed
fashion, see [60] for a more in-depth introduction. Let us mention that several works have recently been
conducted in the shape and topology optimization literature, regarding the use of such high performance
computing techniques; however, these either rely on non-adaptive structured meshes [1] or refined structured
meshes [96]. The state-of-the-art in shape and topology optimization using unstructured, adapted meshes
seems rather limited, see [58] for a two-dimensional sequential monophysics example.

4.2. Physics-dependent preconditioners for the resolution of the state and adjoint equations

As we have explained in section 4.1, the use of exact factorizations is ruled out because of the typically large
size of the systems involved in three-dimensional settings. Physics-dependent preconditioners must then be
tailored to each system (2.1) to (2.3) to ensure that the iterative linear algebra methods involved in their
resolution are robust throughout the optimization process and converge rapidly.

4.2.1. Linear elasticity

The discrete counterpart of the linear elasticity equation (2.3) is a symmetric definite positive system of the
form (4.1). The smoothed-aggregation Geometric Algebraic Multigrid (GAMG) preconditioner from PETSc
is known to be very efficient for solving such systems [3]. To make it robust with respect to variable mesh
size and material coefficients, it is properly configured using a matrix blocksize of 3 (i.e., all unknowns are
coupled in small dense 3-by-3 blocks) and a near null space of dimension 6 made of the rigid body modes,
e.g., 3 translations and 3 rotations. Furthermore, a coarsening threshold of 0.01 is used.
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4.2.2. Heat conduction–convection

The thermal problem (2.2) arises in a convection-dominated regime. Thus, a simple preconditioner such as
the additive Schwarz method (ASM) [105] with one level of algebraic overlap and using exact subdomain
solvers proves to be efficient.

4.2.3. Navier–Stokes equations

Solving the 3D steady-state incompressible Navier–Stokes equations is more challenging than the previous
elasticity and heat conduction problems, partly because the identification of appropriate preconditioners is
more delicate.

Our implementation relies on the modified augmented Lagrangian preconditionner (mAL) [21], whose
performance at large-scale was recently assessed by using FreeFEM and PETSc [79]. Furthermore, since its
implementation is freely available and thanks to the flexibility of FreeFEM and the composability of PETSc
solvers, the integration of the mAL preconditioner in our optimization framework is rather straightforward.
The cornerstone of this method is the addition of a penalization term for the null-divergence constraint in
the variational formulation associated with the nonlinear Navier–Stokes problem (2.1):

find (v, p) ∈ Vv,p(Γ) such that ∀(w, q) ∈ Vv,p(Γ),∫
Ωf

[σf (v, p) : ∇w + ρw · ∇v · v − qdiv(v)− pdiv(w) + γdiv(v)div(w)] dx =

∫
Ωf

ff ·wdx, (4.2)

where we recall that the space Vv,p(Γ) is defined in (2.16), and the coefficient γ > 0 penalizes the constraint
div(v) = 0. The nonlinear problem (4.2) is solved thanks to the Newton method: starting from an initial
guess (v0, p0), at each step k > 0 of the process, the current couple (vk, pk) of velocity and pressure is
updated as:

vk+1 := vk + δvk, pk+1 := pk + δpk,

where the increment (δvk, δpk) is computed by solving the linearized version of (4.2) around (vk, pk), the
so-called Oseen problem:

find (δvk, δpk) ∈ Vv,p(Γ) such that ∀(w, q) ∈ Vv,p(Γ),∫
Ωf

[σf (δvk, δpk) : ∇w + ρw · ∇vk · δvk + ρw · ∇(δvk) · vk − qdiv(δvk)− δpkdiv(w)] dx

+

∫
Ωf

γdiv(δvk)div(w)dx =

∫
Ωf

ff ·wdx. (4.3)

In our implementation, the initial guess (v0, p0) is the solution to the Stokes counterpart problem to (4.2),
obtained by setting ρ = 0. The difficult part of the method is the resolution of the discretization of (4.3),
which is of the form:

AOseen =

A BT

B 0

 , (4.4)

where A is the matrix discretizing the bilinear form of (4.3):

(δvk,w) 7→
∫

Ωf

[σf (δvk, δpk) : ∇w + ρw · ∇vk · δvk + ρw · ∇(δvk) · vk + γdiv(δvk)div(w)] dx,

and the block B is the discretization of the divergence operator (w, q) 7→
∫

Ωf
qdivwdx. Following [79],

a lower-triangular preconditioner MOseen for AOseen is built by using the PETSc FieldSplit feature, which
roughly speaking amounts to split the velocity and pressure fields:

MOseen :=

A 0

B S

 . (4.5)

The action of the inverse of the pressure Schur complement S = −BA−1BT is computed from the user-
supplied approximation S−1 = −(γ + 1/Re)Mp, where Mp is the mass matrix, corresponding to the bilinear
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form (p, q) 7→
∫

Ωf
pqdx and Re = ρ/ν is the Reynolds number. The action of the inverse of A−1 on a vector is

computed by further splitting A into 3 diagonal blocks (one for each component of the velocity), and solving
each subsystem by means of the ASM with exact subdomain solvers for the right-preconditioned GMRES
[95]. As the velocity preconditioners are variable, the outer iterative method is the flexible GMRES [93].

4.2.4. Adjoint linear systems

On the one hand, little to no modification of the preconditioner settings for the elasticity and thermal
problems is required for solving efficiently the respective adjoint systems (2.11) and (2.12). Thus, GAMG
(resp. ASM) is still used to this purpose with the same parameters as in section 4.2.1 (resp. section 4.2.2).

The treatment of the adjoint fluid system (2.13) is slightly different to that of the direct Navier–Stokes
problem described in section 4.2.3. Indeed, although although the linear system associated to (2.13) involves
the transpose of the Oseen matrix (4.4), (2.13) implies that the divergence div(w) of the fluid adjoint variable
w may be nonzero if the objective function J(Γ,v(Γ), p(Γ), T (Γ),u(Γ)), and thus the transported function
J of (2.9) depends on the pressure variable p. For this reason, the mAL preconditioner cannot be used
anymore, as its stability crucially relies on the penalization term γdiv(v)div(w) in (4.2), which is supposed
to be close to zero.

For this reason, another PETSc FieldSplit configuration is used. The velocity and pressure fields are
still split, but instead of using a multiplicative block Gauss–Seidel FieldSplit type, a Schur complement
preconditioner is built by PETSc. This time, the velocity field is not split according to its components in
the canonical basis of R3, but the ASM with exact subdomain solvers is still used to right-precondition the
GMRES procedure involved in the approximation of the inverse of the velocity block A. For the pressure
block, at most 5 iterations of the Jacobi-preconditioned CG are computed.

4.2.5. Comparative performance of various stages of the parallel finite element implementation

We evaluate the computational efficiency of our numerical framework in the context of the lift-drag design
test case of section 5.3 where only the fluid physics is involved.

Using three different executions, corresponding to different numbers of processes, we report in Table 1 the
running times corresponding to the main operations performed during the first iteration of our optimization
algorithm. The number of vertices of the considered computational mesh is 33, 500 in the total domain and
30,180 in the fluid domain. This configuration corresponds to a rather ‘small’ problem but it is considered to
allow for the comparison with a run on a single process. More precisely, we examine the following operations
of our overall implementation which are accelerated by parallel computing:

(1) all steps required for solving the state equations (2.1) to (2.3);
(2) the computation of the values of the objective and constraint functions;
(3) all steps required for computing the shape derivatives of these functionals, including the resolution

of the adjoint systems;
(4) the resolution of identification problems of the form (3.9) which feature the inversion of a linear

elliptic problem.

We note that the most computationally expensive tasks consists in the solution of the Navier-Stokes system
(2.1) and of the adjoint problem (2.13), as well as the various finite element matrix or vector assembly steps.
As already noticed in previous works, e.g. [22], we observed in several of our test cases that iterative solvers
require often more iterations to converge for the adjoint problem than for the primal. All things considered,
the scaling obtained is quite satisfactory and it allows us to run multiphysics shape optimization test cases
in reasonable CPU time.

5. Three-dimensional shape and topology optimization test cases

In this section, we treat five instances of the program (2.5). The first three sets of examples involve only a
single physics, which is helpful to validate our implementation before passing to more challenging coupled
physics applications.

In section 5.1, we examine the optimization of the shape of mechanical structures subject to either bending
or torsional loads in the regime of linear elasticity.
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Action 1 process 16 processes

Partitioning 0.91 3.2

Build Stokes matrix and RHS 13.55 1.28

Solve Stokes problem 22.75 2.85

Solve Oseen linear problems for three Newton iterations 383 13.2

Assemble FE matrices for three Newton iterations 153 15.6

Computing objective function Lift 13.9 1.48

Computing drag constraint Drag 9.3 0.97

Assembling the adjoint fluid matrix 74.23 6.66

Assembling Riesz identification matrix 1.04 0.09

Assembling adjoint RHS for the objective function Lift 12.58 1.24

Solved adjoint fluid problem (5.6) for the Lift constraint 36.09 14.09

Assembled shape derivative of the Lift functional 0.4 0.08

Identification of the shape derivative to a gradient 0.64 0.49

Total 820.53 96.53

Table 1. Runtimes all finite element operations performed at the first iteration of the aerodynamic
design test case of section 5.3 performed on Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz.

The next section 5.2 considers an optimal design problem in pure heat conduction. The physics at play is
admittedly the least complicated to solve among the four considered situations since it involves only a scalar
elliptic problem; nevertheless, the obtained optimized design is very intricate and it clearly illustrates the
efficiency of our mesh evolution method and the robustness of the remeshing library Mmg.

The third context of interest is that of shape and topology optimization in fluid mechanics. In section 5.3,
we tackle the very classical problem of finding optimal aerodynamic designs with respect to the lift and
drag forces induced by a fluid. This problem has been the object of much effort in the literature, as in e.g.
[55, 89]. However, these contributions most often consider industrial contexts featuring very high Reynolds
numbers and where the shape to optimize is parameterized by a small number of parameters. This makes
sense because very small design update can lead to a substantial increase of performance. Often, automatic
differentiation is used rather than Hadamard’s shape derivatives in order to obtain the sensitivity to these
parameters in the context of the solution of the physics with industrial codes. By contrast, we demonstrate
that the application of our shape and topology optimization method, relying on analytic Hadamard’s shape
derivatives, allows to compute optimized aerodynamic designs, for moderate Reynolds numbers, without
resorting to any parameterization of the shape.

The last two test cases involve true coupled physics applications involving two physics at a time. Section 5.4
is concerned with the shape and topology optimization of a three-dimensional fluid–structure interacting
system: a vertical plate is pushed down by a fluid. The problem is then to find a distribution of solid
material around the plate in order to make the whole structure as little compliant as possible.

Finally, section 5.5 shows an application of our method to a three-dimensional shape and topology op-
timization problem in convective heat transfer. These last two test cases involve meshes containing up to
300,000 vertices in both the fluid and solid domains, which results in linear systems featuring more than
5× 106 degrees of freedom.

All these results can still be considered as preliminary, since many improvements could be considered in
order to reach much larger, industrial size problems: one of the limiting factor at the present moment lies
in the fact that the remeshing step of the optimization algorithm is still sequential and very expensive, see
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the running CPU times reported below in Table 2. However, to the best of our knowledge, there is currently
no freely available library for performing unstructured mesh adaptation according to a level-set function in
a distributed fashion.

5.1. Cantilever beam subject to bending or torsional loads

We start by reproducing the classical benchmark test case of a three-dimensional cantilever beam subject to
either a bending or a torsional load. The computational domain D is a box of dimensions 2 × 1 × 1. The
optimized solid structure Ωs ⊂ D is fixed at four squares of size 0.3×0.3 located on the left-hand side of
the boundary ∂D as depicted on Figure 5. A force g is applied on a disk-shaped region at the center of the
right-hand side of ∂D. We consider two situations:

• bending load: g is vertical and pointing downward: g := −ey where (ex, ey, ez) denotes the canonical
basis of R3;

• torsional load: g corresponds to a torsion force field:

g :=

[
0

(z − 0.5)√
(y − 0.5)2 + (z − 0.5)2

− (y − 0.5)√
(y − 0.5)2 + (z − 0.5)2

]T
.

In both cases, we aim to minimize the compliance of the structure Ωs under a volume constraint:

min J(Ωs,u(Ωs)) :=

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) :=

∫
Ωs

dx = VT ,

(5.1)

where u(Ωs) (or simply u for brevity) is the solution to the linear elasticity system (2.3) in the above context,
and VT is a target volume, set to respectively 0.15 and 0.08 for the bending and torsion test cases.

Figure 5. Setting of the three-dimensional cantilever test case of section 5.1 subjected to a bending
load. The red regions correspond to four square-shaped Dirichlet boundaries to which the whole
structure is fixed, and the blue disk is the region of ∂D supporting Neumann boundary conditions
(where either a bending or a torsion force field is applied).

5.1.1. Bending test case

We first deal with the bending test case, which has already been treated with the level-set mesh evolution
algorithm in our previous work [9], with a much smaller resolution however: the initial mesh in the present
study contains 108,605 vertices, whereas it only contained 18,081 vertices in the aforementioned article. The
present higher resolution allows the capture of very thin plate-like structures which are rarely seen when
using too coarse meshes.

The numerical results are shown on Figure 6, and the convergence histories for the objective and constraint
functions are provided in Figure 7. These plots illustrate the use of remeshing in our topology optimization
methodology. Remarkably, a high-quality mesh is available at each stage of the optimization process, while
the shape undergoes multiple topological changes in the course of the evolution.
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Figure 6. From top left to bottom right: iterations 0, 5, 10, 20, 40 and 1250 of the optimization
of a three-dimensional cantilever subjected to a bending load, cf. section 5.1.
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(a) Objective function J(Ωs).
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(b) Volume fraction Vol(Ωs)/Vol(D) (VT = 0.15).

Figure 7. Convergence histories for the 3D cantilever test cases subjected to a bending load of
section 5.1.1.

5.1.2. Torsion test case

Optimization results for the torsion test case are presented on Figure 8; the convergence histories for the
objective and constraint functions are plotted on Figure 9. It is interesting to note that the optimized shape
is utterly different from that obtained in the bending test case in section 5.1.1, the outer part of the structure
showing multiple holes in the present situation.

5.1.3. On the influence of the remeshing method

Remarkably, the topology optimized designs obtained with our remeshing algorithm feature plate-like
structures not thicker than one or two mesh elements (as illustrated on Figure 2). These results are quite
original when compared to those obtained with more classical SIMP or level-set methods, where the lower
resolution imposed by the uniform size of the grid has the tendency to generate structures featuring rather
holes and bars [11, 98, 1].

Note that, in the two numerical examples of Figs. 7 and 9, convergence is not fully attained at the last
iteration (respectively 1,250 and 3,500 for the bending and torsion test cases), since the objective function
is still decreasing slightly. As illustrated in Figs. 6 and 8, the most essential features of the final shape are
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Figure 8. From top left to bottom right: iterations 0, 10, 30, 1,000, 2,000, and 3,500 of the
optimization of a three-dimensional cantilever subjected to a torsional load, cf. section 5.1.2.
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(a) Objective function J(Ωs).
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(b) Volume fraction Vol(Ωs)/Vol(D).

Figure 9. Convergence histories for the 3D cantilever test case subjected to a torsional load of
section 5.1.2.

(a) Bending test case. (b) Torsion test case.

Figure 10. Cut of the optimized designs obtained in sections 5.1.1 and 5.1.2. Our remeshing algo-
rithm is able to capture very thin plate-like structures not thicker than one or two mesh elements.
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captured quite quickly (in about 40 iterations), however we found that the optimizer still manages to improve
the shape very slowly after many iterations. Our experience suggests this behavior could be explained by the
facts that (i) the optimization landscape is locally rough (convergence is not improved by taking larger steps)
and (ii) when there are no more topology changes, our remeshing strategy works like a mesh adaptation and
allows for very small scale changes which can have a definite influence on the objective function. Maybe it
is a manifestation of the ill-posed character of shape optimization, whereby smaller and smaller details can
improve the objective function. In any case, it is an important issue which deserves further investigations
and cannot be done here by lack of space (we plan to deal with it in a future work).

5.2. Optimal design for pure thermal heat conduction

We now focus on the optimization of a pure heat conduction system: only the thermal equation (2.2) is
solved. The setting is represented on Figure 11. The hold-all domain D is a box with size 1× 1× 1; it arises
as the disjoint reunion of a phase Ωs filled by a material with low conductivity ks = 1 and its complement
Ωf with a material with high conductivity kf = 100. A Dirichlet boundary condition is imposed on a small
square of size 0.4 × 0.4 at the bottom face of ∂D where the temperature T = 0 is imposed. All other
external boundaries of the cube D are adiabatic, i.e., ∂T/∂n = 0. The whole domain is heated with a source

Figure 11. Setting for the pure conduction test case of section 5.2. The cube is heated uniformly
and the temperature is prescribed to T = 0 at the red square of the bottom face. The other
boundaries are adiabatic.

Qs = Qf = 104 and the goal is to find the shape of the interface Γ = ∂Ωs ∩ ∂Ωf between the two materials
which minimizes the average temperature over D under a constraint on the volume of the highly conducting
phase Ωf :

min
Γ

J(Γ, T (Γ)) :=

∫
D

Tdx

s.t. Vol(Ωf ) = VT ,

(5.2)

where the target volume VT equals 0.05.

Numerical results are reported on Figs. 12 and 13, and the convergence histories of the optimization
process are plotted on Figure 14. The resolution of the mesh of D varies from 63,761 vertices for the
initial design to 206,464 vertices for the final design. Remarkably, the remeshing software Mmg and our
optimization method are able to capture sheet-like structures not thicker than one or two times the size of
an element of the mesh.

5.3. Lift–drag topology optimization for aerodynamic design

This section investigates three-dimensional shape and topology optimization for lift–drag problems in the
field of aerodynamic design. The lift is the vertical force generated by a flow around an obstacle (e.g. the
wing of a plane), keeping it afloat; it is usually defined as a surface integral involving the (fluid) normal
stress tensor. The drag is the energy dissipated by the fluid around the obstacle, causing it to slow down.
Lift–drag shape optimization, that is, the question of finding designs with large lift and low drag insofar
as possible, is a very classical problem which has been the aim of a very large amount of contributions
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Figure 12. From top left to bottom right: iterations 0, 5, 15, 30, 100, and 258 of the optimization
of the three-dimensional heat conduction system considered in section 5.2.
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Figure 13. Different three-dimensional views of the optimized design for the heat conduction test
case of section 5.2.
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(a) Objective function J(Γ).
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Figure 14. Convergence histories for the three-dimensional heat conduction test case of section 5.2.

[87, 78, 55, 56, 40, 68, 48]. However, these references have considered situations very close to realistic
applications where

(1) the physics is more challenging than in our case, featuring for instance high Reynolds numbers, or a
compressible velocity field;

(2) the shape design is usually described by means of a few CAD parameters to optimize;
(3) very small updates of the shape may lead to substantial gains of efficiency.

In this context, it makes sense to seek for improved geometries by means of very small deformations of the
proposed CAD design. Few works have actually tried to apply shape and topology optimization techniques
to such lift–drag problems, where the design shape is allowed to deform freely: we are essentially aware of
[27, 63, 46, 103]. In what follows, we treat a lift–drag optimization problem with the method of Hadamard
and our topology optimization framework on a three-dimensional example featuring a moderate Reynolds
number Re = 200. We are not aware, to the best of our knowledge, of analogous results in this three-
dimensional setting.

We start this study by describing briefly in section 5.3.1 the computation of the shape derivative of the
lift functional. Although this question has already been considered in several works of the literature, the
calculation and the numerical implementation of the resulting formulas do not seem completely standard to
us; we propose a special treatment based on a classical idea of [20, 39]. We then present in section 5.3.2 a
three-dimensional example of an optimized design for an instance of the lift–drag problem.

5.3.1. Shape derivatives of the lift functional

The computational domain D = R3 features a liquid phase Ωf flowing around a solid obstacle Ωs ⊂⊂ D, see
Figure 15a. The notation convention is that of section 2: the boundary ∂D reads: ∂D = ∂ΩD ∪ ∂ΩN , where
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the flow is entering the domain from the Dirichlet boundary ∂ΩDf with given velocity v = v0 and exits the

domain with a zero normal stress boundary condition σf (v, p)n = 0 on ∂ΩNf . The remaining part of the

fluid boundary ∂Ωf is the solid interface Γ = ∂Ωf\(∂ΩDf ∪ ∂ΩNf ) = ∂Ωs, which is to be optimized.

The lift generated by the obstacle Ωs is the total force exerted by the fluid Γ in the vertical y-direction:

Lift(Γ,v(Γ), p(Γ)) := −
∫

Γ

ey · σf (v, p) · nds, (5.3)

where we recall that σf (v, p) = 2νe(v)−pI, and we have used the notation a ·M ·b := aTMb for any vectors
a, b ∈ R3 and matrix M ∈ R3×3. Note that the minus sign accounts for our convention of section 2 whereby
the normal n is pointing outward the fluid domain. Several authors have considered the optimization of
the lift functional, using for instance surrogate models [69], control points [64], the SIMP method and a
different objective functional [63], and a time varying setting [90, 82, 71], see also [102] for a numerical
analysis of the shape derivative of this functional. In order to calculate this shape derivative, we propose
an alternative method, which relies on a reformulation of the lift functional (5.3) as a volume integral. Let
X ∈ H1(Ωf ) be any extension of the constant function 1 from Γ to the whole fluid domain Ωf . In our
particular implementation, X is obtained as the solution to the following Poisson problem:

−∆X = 0 in Ωf

X = 1 on Γ

X = 0 on ∂Ωf\Γ.
(5.4)

The function Xey is an extension of the vector field ey from Γ to Ωf , vanishing on ∂Ωf\Γ. this enables to
rewrite Lift(Γ,v(Γ), p(Γ)) as a volume integral by using integration by parts:

Lift(Γ,v(Γ), p(Γ)) = −
∫

Γ

Xey · σf (v, p) · nds

= −
∫

Ωf

div(Xσf (v, p) · ey)dx

= −
∫

Ωf

(∇X · σf (v, p) · ey + Xdiv(σf (v, p)) · ey)dx

=

∫
Ωf

(Xff · ey − ρXey · ∇v · v −∇X · σf (v, p) · ey)dx,

(5.5)

where we have used the state equation −div(σf (v, p))+ρ∇vv = ff to obtain the last line. This reformulation
is rather classical and is often used in numerical applications, since it is known to yield a more accurate
evaluation of the lift functional [20, 39]. Equation (5.5) can now be differentiated with respect to the shape
following a methodology very similar to that presented in [43]. The detailed computation is available in [42],
Proposition 6.1. Here, we limit ourselves with the statement of the result:

Proposition 2. Let the adjoint fluid variable (w, q) ∈ Vv,p(Γ) be the solution to

∀(w′, q′) ∈ Vv,p(Γ),∫
Ωf

(
σf (w, q) : ∇w′ + ρw · ∇w′ · v + ρw · ∇v ·w′ − q′div(w)

)
dx =

∂Lift

∂(v, p)
(w′, q′), (5.6)

where Vv,p(Γ) is the functional space defined in (2.16). The lift functional Γ 7→ Lift(Γ,v(Γ), p(Γ)) is differ-
entiable with respect to the domain and its shape derivative reads:

d

dθ

∣∣∣∣
θ=0

[
Lift(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ)

=

∫
Γ

[
ff · ey + 2νe(v) : (∇X ⊗ ey) + ff ·w + σf (w, q) : ∇v)

]
θ · nds. (5.7)

The above formula, in surface form, is easily implemented in our shape and topology optimization frame-
work summarized in section 2. It is at the basis of the solution of the test case presented in the next
paragraph.
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Remark 3. Similarly as in the point (2) of remark 1, there exists also a volume expression of the shape
derivative (5.7) which is slightly lengthier (see Proposition 6.1 in [42] for the full details), and which yields
the same numerical optimum in this case.

5.3.2. Numerical test case

We consider the problem of maximizing the lift generated by a flow obstacle Ωs ⊂⊂ D under an inequality
constraint on the drag so that the obstacle remains aerodynamic. In addition, the volume occupied by the
obstacle and the location of its center of mass are prescribed:

min − Lift(Γ,v(Γ), p(Γ))

s.t.


Drag(Γ,v(Γ), p(Γ)) 6 Drag0

Vol(Ωf ) = VT

X(Ωs) :=
1

|Ωs|

∫
Ωs

xdx = x0.

(5.8)

The drag functional is defined by

Drag(Γ,v(Γ), p(Γ)) :=

∫
Ωf

σf (v, p) : ∇vdx =

∫
Ωf

2νe(v) : e(v)dx.

The computation of its shape derivative is classical, see e.g. [42, 33, 52].

We solve this problem in three space dimensions: the hold-all domain is the box D = [0, 1]3. A flow is
entering with a velocity v0 = ex from the left-hand side of D. A free-slip boundary condition v · n = 0 is
imposed on the other boundaries of the cube. The physical parameters are still set to ν = 1/200 and ρ = 1

corresponding to Re = ρHvmax

ν = 200, the characteristic length of D being H = 1. The volume target is set
to VT = 0.01.

The imposed upper bound Drag0 is set to 1.5 · Drag∗ = 0.0456, where Drag∗ = 0.0304 is the optimized
value obtained in the resolution of the minimum drag problem subject to the same volume and position
constraints (computation not reported in this paper).

The optimized shape with associated velocity profile is shown on Figure 15. The final fluid mesh features
54,299 vertices. The finite element problems associated with the Navier–Stokes and adjoint equations are
solved by using the parallel computing technique described in section 4 with 12 processes. Convergence
histories are shown on Figure 16. A single solution of the state equations, including discretization and
application of the nonlinear Newton solver, takes approximately 2 minutes. The computation of the shape
derivative, including adjoing system solutions, takes approximately the same time. Each remeshing step
performed sequentially is achieved approximately in one minute.

5.4. A three-dimensional fluid–structure interaction test case

Our first multiphysics test case is concerned with a moderately large-scale fluid–structure interaction problem.
The situation is that on Figure 17: the computational domain is the box D = [0, 4] × [0, 1] × [0, 1]. It is
the disjoint reunion of a fluid phase Ωf and a mechanical structure Ωs. A fluid is entering D from its left
boundary with a velocity v0 = yex. A no-slip boundary condition v = 0 is prescribed on the bottom face of
the domain, while the top and side faces bear a free-slip boundary condition v · n = 0. The flow exits the
domain with a zero normal stress boundary condition σf (v, p)n = 0. The mechanical structure Ωs ⊂ D is
fixed on a square patch of the bottom face (i.e. the Dirichlet boundary condition u = 0 is imposed in this
region) and it is subjected to the stress induced by the fluid; namely, u is the solution of (2.3)). A vertical
plate is set as a non-optimizable part of the mechanical structure, as well as a small layer above the bottom
Dirichlet boundary. In this context, our goal is to find how to distribute additional material in order to make
the structure Ωs as rigid as possible. The problem features of course a volume constraint on the mechanical
structure, so that it reads

min
Γ

J(Γ,u(Γ)) :=

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) = VT .

(5.9)
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(a) Initial shape. (b) Optimized design.

(c) Other views of the optimized design.

Figure 15. Optimized shape for the three-dimensional lift–drag maximization problem of section 5.3.
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(a) Objective function Lift(Γ,v(Γ), p(Γ)).
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(b) Volume constraint Vol(Ωs)/Vol(D).
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(c) Center of mass constraint X(Ωs) = (x, y, z).
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(d) Drag constraint Drag(Γ,v(Γ), p(Γ)).

Figure 16. Convergence histories for the three-dimensional lift–drag optimization test case of section 5.3.
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Figure 17. Setting of the fluid-structure interaction test case of section 5.4. A flow is entering
from the left-hand side (in blue); a no-slip boundary condition is imposed at the bottom wall, and
a slip boundary condition on the other side walls. The flow is pushing against a non optimizable
vertical mechanical plate tightened to the bottom wall with a zero Dirichlet boundary condition
(on the red surface).

Solving state equations 24 processes 15’

Computing shape derivatives and gradients 24 processes 2’

Advection of the level-set function sequential 24”

Symmetrization and regularization of the level-set function 24 processes 13”

Remeshing sequential 2’

Computation of the signed distance function sequential 3’

Table 2. Runtimes for the first iteration of the fluid–structure interaction test case of section 5.4,
using a mesh with 220,283 vertices.

The Reynolds number, fluid density, and viscosity are respectively set to Re = 60, ρ = 1, and ν =
ρH||v0||∞/Re = 0.012. The characteristic length corresponding to the height of the non-optimizable plate is
H = 0.7 and ||v0||∞ = 1. The Lamé coefficients of the mechanical structure are λ = 0.00529 and µ = 0.0476.
The volume target equals 3 percent of that of the total domain: VT = 0.03Vol(D).

The optimized shape obtained is plotted on Figure 18. Not surprisingly, the final design has an aerody-
namic profile in order to reduce the stress applied by the fluid flow.

For this test case, finite element computations were run in parallel on 24 processes. The number of
mesh vertices for the first iteration is 220,283. This includes 132,775 nodes in the fluid domain and thus
approximately 1.7 million degrees of freedom for the linearized fluid system. For the last iteration, there are
82,454 mesh nodes, 66,021 of which are in the fluid domain. Runtimes for the first mesh are listed in Table 2.
The most CPU intensive task is the solution of the state equations. The runtimes mentioned include mesh
decomposition steps, finite element matrix assemblies, nonlinear solver for the Navier–Stokes system, etc.

5.5. Shape and topology optimization of three-dimensional convective heat transfer

Our second and last multiphysics test case is concerned with convective heat transfer: the elastic deformation
of the solid structure is not taken into account. This test case is the three-dimensional counterpart of a two-
dimensional case considered e.g. in [74, 43].

The setting is depicted on Figure 22. The computational domain D = [0, 2]× [0, 1]× [0, 1] is a box divided
into a fluid and a solid phase Ωf , Ωs, with different thermal conductivities. The fluid is entering end from
the left side of D through a disk-shaped inlet boundary ∂Ωin

f of radius 0.1. It is exiting at the right side

through a disk-shaped outlet boundary ∂ΩNf of same radius. The input velocity profile v0 is parabolic, with

maximal velocity ||v0||∞ = 1, and a (cold) temperature T = 0 is prescribed in this region. The flow is exiting
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(a) Initial shape.

(b) Final design.

(c) Final design, front (resp. back) view on the left (resp. right).

Figure 18. Initial and optimized designs for the three-dimensional fluid–structure interaction test
case of section 5.4.

from the right side of the domain through a disk-shaped outlet boundary bearing the Neumann boundary
condition σf (v, p)n = 0. A stripe located at the middle of the outer boundary of the box D is kept at fixed
(hot) temperature T = 10. The remaining regions of ∂D are considered adiabatic. We seek to optimize
the shape of the solid–fluid interface Γ in order to maximize the heat stored by the fluid, under constraints
on the static pressure loss and the volume occupied by the fluid. Mathematically, the following constrained
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Figure 19. (From left to right, top to bottom) Intermediate iterations 0, 40, 100, 125, 175, and
300 for the fluid–structure test case of section 5.4.

optimization program is considered, see [43, 42]:

min
Γ

J(Γ,v(Γ), T (Γ)) := −
∫

Ωf

ρcpv · ∇Tdx

s.t.


DP(p(Γ)) :=

∫
∂Ωin

f

pds−
∫
∂ΩN

f

pds 6 DPT

Vol(Ωf ) = VT .

The fluid density is ρ := 10 and its viscosity is set to ν := 0.167 which corresponds to a Reynolds number
Re := ρ||v0||∞H/ν = 60 with a characteristic length H = 1. The fluid diffusivity and capacity coefficients
are respectively set to kf := 1 and cp := 500 which corresponds to a Péclet number Pe := ρcp||v0||∞H/kf =
5, 000. The solid material is set to be 10 times more diffusive than the fluid material, i.e., ks := 10.
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Figure 20. Linear elastic deformation of the optimized solid structure under the load force applied
by the fluid for the test case of section 5.4.
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(a) Objective function J(Ωs,u(Ωs)).
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(b) Volume fraction Vol(Ωs)/Vol(D).

Figure 21. Convergence history for the fluid–structure interaction optimization test case of section 5.4.
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Figure 22. Setting for the convective heat transfer problem of section 5.5. A cold fluid is flowing
from the left to the right blue disk-shaped boundaries and is heated by the red stripe side boundary
over which a hot temperature is imposed.

Given these parameters, the upper bound threshold for the pressure drop is set to DPT := 0.85. The
prescribed volume for the fluid phase is set to 20% of the total volume: VT = 0.2 ·Vol(D).

The result of the optimization is shown on Figs. 24 and 25 and the associated convergence histories are
reported in Figure 23. Intermediate iterations of the optimization process are plotted on Figure 26. The
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initialization is a box filled with islands of solid spherical inclusions. Note that the final solid domain is
connected although this requirement is not enforced explicitly. Similarly to what could be observed in the
two-dimensional test case, the optimized design features thin inclusions of fluid attached to the main pipes
so as to take advantage of the insulating low-diffusivity of the fluid.
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(a) Objective J(Γ,v(Γ), T (Γ)).
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(b) Volume fraction Vol(Ωf )/Vol(D).
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(c) Static pressure drop DP(p(Γ)).

Figure 23. Convergence history for the convective heat transfer optimization test case of section 5.5.

Figure 24. Optimized fluid domain for the convective heat transfer test case of section 5.5. The
colors correspond to the temperature profile.

The meshes considered for this test case are characterized by a resolution ranging from approximately
267,000 to 616,800 vertices in the whole computational domain, and ranging from 126,000 to 300,000 vertices
for the sole fluid domain. Hence, the resolution of the fluid system involves the inversion of finite element
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Figure 25. Sectional view of the optimized fluid domain for the convective heat transfer test case
of section 5.5. The color corresponds to the temperature profile.

matrix with about 5×106 degrees of freedom. The whole optimization process takes approximately 3 days
with the finite element related operations running in parallel on 24 processes.
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