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Foreword: optimal design and robustness‘

The mathematical description of realistic systems in-
volves physical parameters, e.g.
- In structure mechanics: loads, elastic coefficients.

- In fluid mechanics: viscosity, density of the fluid.

These are often known imperfectly, through measure-
ments, because either

- They are measured or estimated,

- They are altered during the use of the design.

Turbine blades operate un-
H H H H F der very uncertain load
The optimality of a design is very sensitive to the =~ ¢* temperature - conditions.

parameters describing its environment,

= Need for “Robust” optimal design.

All the formulations of this requirement suffer from
drawbacks.

.3“_2
. . The wavelength of light injected
the main conceptual flaw of stochastic approaches. into nanophotonic components is

uncertain.

The idea of distributional robustness is a remedy to
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e The design h is sought within a set Uaq:

® f:D — [0,1] may be a “grayscale” density function, defined on a large “hold-all” domain D;
® h may be a “black-and-white” shape Q C
e The physical parameters are aggregated into an element ¢ in a set = C R,

When h is an elastic structure, £ may represent the loads applied on h, or the material parameters (Young's

modulus, Poisson’s ratio)

e The cost of h when the parameters ¢ are at play is C(h, &).

When h is a structure, C(h, §) may be the compliance of h, depending on the elastic displacement uj, ¢

D D
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A generic, abstract optimal design setting (I1)

e The nominal optimal design problem, when £ is known exactly, reads:
min C(h
heuad ( ’ 6)7
where constraints are omitted for simplicity.

e The optimal character of a design is strongly dependent on the actual value of &.
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The optimal elastic microstructure to cope with a vertical traction load ¢ for the compliance C(h, &) is also the
worst one when an arbitrarily small horizontal component is added to £: C(h, £ + ne;) = oo

[ah

= Need for a means to incorporate “robustness” into the optimal design problem.
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When no information is available about £ except for a maximum bound m,
robustness with respect to £ is usually enforced via the worst-case program:

min Juc(h), where Juc(h) = sup C(h,§).
h€taa gl <m

Drawbacks of this approach:

e This yields a difficult and costly bi-level optimization problem, which can often
be addressed only via coarse approximations

e Such formulations often lead to “pessimistic” designs, showing poor nominal
performance for the sake of anticipating an unlikely worst-case scenario.
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e Stochastic approaches assume the knowledge of the law of £, as a probability
measure Piye € P(Z):

VA C =, the probability that £ belong to Ais Puue({€ € A}) = / dPtrye(€).
A

e Stochastic optimal design problems involve a probabilistic quantity of C(h, £), e.g.

- The mean value

E(h) = / C(h, €) dPuue(€).

- Other quantiles such as the variance
V(h) = [ (C(h.&) ~ E(N)* dPuun(s)

- A probability of failure:
P(h) := Prrwe ({€ € = s.t. C(h,€) > Cr}),
where Cr is a safety threshold.
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Drawbacks of this approach:

e The evaluation of the stochastic integrals at play is very costly.
e The probability law Pgue of £ is assumed to be known, while often, this law is

only accessible through a set of samples &, i=1,..., N.

The recent idea of distributionally robustness alleviates the need for an exact
knowledge of the law of &, and demands only an “estimate” P of the latter:

Minimize the worst value sup /C(h, &) dQ(&) of the mean value of C(h, &)

Q “close " to P

when the uncertainty law Q € P(Z) is “close” to P.

P. Mohajerin Esfahani and D. Kuhn, Data-driven distributionally robust optimization
using the wasserstein metric: Performance guarantees and tractable reformulations,
Mathematical Programming, 171 (2018), pp. 115-166.

F. Lin, X. Fang, and Z. Gao, Distributionally robust optimization: A review on theory
and applications, Numerical Algebra, Control & Optimization, 12 (2022), p: 159.
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© Distributionally robust shape and topology optimization
@ Presentation of the general idea
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e The only available information about the uncertainty £ € = is a nominal law P,
which is e.g. the empirical mean of observed samples &, i =1,..., N:

1 N
P:= Z 65:"
i=1

=|

e The distributionally robust optimal design problem reads:

i, Ja(B) where Ju(5) = sup. /: C(h, €) dQ(E),

where the ambiguity set U(IP) C P(Z) is made of the probability laws Q which are

“close” to P.
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e The ambiguity set U(IP) may be of various natures:

- U(P) may be the set of probability measures on = whose moments are
“close” to those of P, up to a certain order k:

/5 dp(€) /5 aQ(e ‘<m}

- U(P) may be the set of probability measures which are “close” to P,

UP) = {@ € P(2) s.t. sup

|| <k

U(P) = {Q e P(2), d(P,Q) < m},

where d(-,-) is a suitable notion of “distance” on P(Z).

e Depending on U(P), the problem may be amenable to a tractable reformulation.

e We shall consider ambiguity sets of the latter type, relying on the
entropy-regularized Wasserstein distance on P(=).
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e A coupling is a probability measure 7 € P(= x =).

e The first and second marginals 71, m2 € P(=Z) of m € P(= x =) are defined by:

Yo € C(Z), /: :‘P(é)dﬂ'({,C):/:90({)(171,1({)7 and
[ _etoare.0) = [ o0 dm(o).

e Interpretation: If m € P(= x =) is a coupling with marginals P, Q € P(Z),
(&, ¢) = proportion of the mass of Q at ¢ coming from the mass at £ in P.

m(&, )

é = ‘(1 Cz =

7(€, ¢) is the amount of mass at ¢ in the second marginal Q coming from the mass'at £ in the first marginal P.
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Let = be a compact subset of R*; the Wasserstein distance W (P, Q) between two
probability measures P, Q € P(Z) is

WEQ= it / _el&.an(e.0)

where the ground cost c(€,¢) on R? is chosen to be quadratic c(€,¢) = |€ — ¢|>.

e The Wasserstein distance "lifts” the ground cost ¢(€,¢) on = into a distance over
measures on =.

e It is a flexible means to evaluate the distance between P, Q € P(=), which can
smoothly identify differences (e.g. translations) on the supports of P and Q.

G. Peyré and M. Cuturi, Computational optimal transport: With applications to data
science, Foundations and Trends in Machine Learning, 11 (2019), pp. 355-607.
F. Santambrogio, Optimal transport for applied mathematicians, Birkauser, 2015.
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e For a variety of purposes, this quantity is often regularized

w Q)= ot ([ _cle.ane.q)+eHm).
w1=P, m2=0 =—X=

where the entropy H(m) of a coupling 7 is:

dr P .
H(r) = { J=y=log 37 dm if m is absolutely continuous w.r.t. o,

=X=
9 otherwise.

e The fixed reference coupling mo € P(= x =) plays the role of a “prior”.

e A judicious choice about 7o, with nice statistical guarantees, is

(£,9)

m0(€,¢) = P(€)dve(C), with de(C) == age™ 2o 1=(C)d¢,

for some o > 0 and a normalization factor ae

Foralpcc=x3), [ plean(ed = [ ([ele0ae©) are),

e Intuition: o "spreads” the mass of P at £ over a characteristic length scale o.
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The distributionally robust optimal design problem

The entropy-regularized distributionally robust optimal design problem reads:

h€Uyq
WE(]P’ Q)<m

min Jg, .(h), where Jg .(h) = sup /C (h, &) dQ(&).

This problem looks very difficult to treat at first glance...

tractable reformulation up to the use of convex duality.

but it can be given a
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Besides “mild” assumptions, suppose that:

e = is a convex and compact subset of R¥,
e f:= — R is a continuous function,

e [P € P(=) is a probability measure.

For any m > 0, and for a sufficiently small value of o, the following equality holds:

. M
;u(5<m/ f(¢)dQ(¢) = A|r§0{)\m—|—)\g/zlog (/E dre(¢ )) d]P(&)}.

Intuition: We introduce a Lagrange multiplier A for the constraint on W, (PP, Q):

;u([;m/f(C)dQ = inf) /f ¢) dQ(¢) + A(m — W.(P, @)))
= ;QE@Z;?)(/E £(¢) dQ(C) + A(m — E(P,@))),

where the exchange of the infimum and supremum proceeds from convex duality:
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Inserting the definition of W.(P,Q), it follows:

e [ (000 = int TR {Am+ [ (70 = xete ) = xehi(m) dw(g,q)},

Given the definition of H(7), the maximization holds over couplings 7 of the form

7(€,¢) = a(€, ¢)mo(, ¢), for some function a € L(Z x Z),

and so:
sup f(¢) dQ(¢) = inf sup Am
W (P,Q)<mJ= A20 Lerlzxs)

Jz a§,Q) dvg(O)=1

* / (F(O) = Ac(€, ) = Acloga(¢, ) ) (&, €) dmol€, C)}.

Exploiting the Euler-Lagrange equation for the inner maximization, we obtain:

o6 = ([ ang) "R

and the desired result follows.
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e The entropy-regularized distributionally robust optimization problem rewrites:

min D(h, \), where

hEUzg

A
e

C(h,9)—
D(h,/\)::)\m+)\s/log</e X

e st(C)) aB(e).

e This problem can be solved by a standard optimization algorithm based on the

derivatives of the objective functional D(h, A) with respect to h and .

e Constraints could be added to the problem without additional conceptual difficulty.
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Topology optimization of a 2d mast (1)

We consider the topology optimization of a 2d
mast.

The uncertain parameter £ is the (constant)
load vector applied on the two arms [y.

The considered problem is

hrenblfgd Jar,e(h) s.t. Vol(h) = V7,
built from the compliance as the cost C(h,&):

C(h,&) = /Df - up,¢ dx.

The nominal law is made from a single obser-
vation

P = §¢,, where & =(0,-1).
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Optimized density in the mast topology optimization example.
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© Two numerical examples
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Shape optimization of a 2d cantilever ()

We consider the shape optimization of
a 2d cantilever.

The uncertain parameter ¢ is the (con-
stant) load vector applied on T'y.

—
]

The considered problem is

|
——

//
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min Jur.+(2) st Vol(Q) = Vr,

where the cost C(, €) is the compliance:

C(Q,¢) = /Q§~ ug,e dx.

The nominal law is made from a single observation

P= 551, where fl = (—1,0).
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Shape optimization of a 2d cantilever (II)

Optimized shape in the 2d cantilever shape optimization example.
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Conclusions:

e Distributional robustness considers the minimization of the worst case

h—  sup  Eeg(C(h,€))

Q “close” to P
of the mean value of a cost C(h, &) when the law Q of £ is close to a nominal law P.

e One relevant notion of distance between probability laws is the
(entropy-regularized) Wasserstein distance.

e The distributionally robust optimization problem can be given a tractable
reformulation owing to convex duality.

Perspectives:

e Application of this methodology to more realistic problems, e.g. with nominal laws
built from multiple samples.

e Distributionally robust versions of other probabilistic quantities of the cost:
variance, quantiles, conditional value at risk, ...
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T Fedowy

Thank you for your attention!
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