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Abstract. In purely functional programming languages imperative features,
more generally computational effects are prohibited. However, non-functional lan-
guages do involve effects. The theory of decorated logic provides a rigorous for-
malism (with a refinement in operation signatures) for proving program properties
with respect to computational effects. The aim of this thesis is to first develop
Coq libraries and tools for verifying program properties in decorated settings as-
sociated with several effects: states, local state, exceptions, non-termination, etc.
Then, these tools will be combined to deal with several effects.

The syntax of any programming language defines the set of rules that a programmer may
utilize during coding progress while its semantics stand for proving program properties. In a
purely functional programming language, a term f with an argument of type X and a result
of type Y (which may be written f : X → Y) is denotationally interpreted as a function f
between the sets [[X]] and [[Y]]. It follows that, when an operation has several arguments, they
can be evaluated in parallel, or in any order. It is possible to interpret a purely functional
programming language via categorical semantics based on cartesian closed categories. The
word “cartesian“ here refers to the categorical products, which are interpreted as cartesian
products of sets and used for dealing with pairs of arguments. The logical semantics of such a
language defines a set of rules that may be used for proving properties of programs. But non-
functional programming languages such as IMP, C or Java do include computational effects.
For instance, a C or IMP function may modify the state structure and a Java function may
throw an exception during the computation. Such operations are examples of computational
effects. To cope with them, [Dumas:2011a] provides a canonical approach. It indeed uses
decorations on the main operators of the effect (with superscripts between parentheses) instead
of mentioning the effect itself. I.e., any state accessor function f , seen as X × S → Y can
be interpreted as f (1) : X → Y where X and Y are sets with the distinguished set of states
S and with cartesian product operator, “ × “. Thus, this approach proposes a refinement in
the operator signatures by keeping them closer to syntax where there is no effect appearance
but instead decorations. Technical details of the refinement are based on category theoretical
objects: see procedure 0 .

Accordingly, my PhD study simply focuses on formal models of computational effects (with
effect combinations) through decorated logic over cartesian effect categories [Dumas:2011a].
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Besides, we develop Coq libraries to verify program properties with respect to effects in ques-
tion.

1: procedure Dec. acc.(C, S) Cartesian effect category C, distinguished states object S
2: Φ : C→ C is an endo-functor defined as follows:

Φ(X) = X× S and Φ(f : X→ Y) = (f× idS) : X× S→ Y× S

3: cM (Φ, δ : Φ⇒ Φ2, ε : Φ⇒ idC) is the states comonad with following settings:
δX : X× S→ X× S× S and εX : X× S→ X

(x, s) 7→ (x, s, s) and (x, s) 7→ x
4: C1 is the coKleisli category of cM over C defined as:

Obj(C1) = Obj(C), Hom(C)(X, Y) = Hom(C1)(ΦX, Y) g(1) ◦C1 f
(1) = g0 ◦C Φ(f0) ◦C δ

5: return Any accessor f0 : X× S→ Y ∈ Hom(C) is interpreted as f(1) : X→ Y ∈ Hom(C1)

6: end procedure

Following is the brief description to the procedure 0 : the endofunctor, Φ on cartesian
effect category of sets, C, is a comonad with natural transformations δ and ε. Thus, this
triple yields in the existence of the coKleisli category, C1. Therefore, any impure function
f (1) : X → Y ∈ C1 is the interpretation of f0 : X × S → Y ∈ C representing accessors.

To interpret modifiers, the endofunctor, Φ1(having the same settings with Φ) on category,
C1 with compatible natural transformations µ and η is proven as a monad on which a Kleisli
category, C2 is built. Similarly, any impure function f (2) : X → Y ∈ C2 is the interpretation
of f0 : X × S → Y × S ∈ C thus representing modifiers. Additional to those syntactical tricks,
we also have an algebra for states effect mainly based on monadic equational logic, categorical
products and some observational properties. The hierarchy rules define the transition between
different sorts of operators: a pure function can be seen as an accessor and similarly an accessor
function can be seen as a modifier. For details, see [Dumas:2012:states].

A generic Coq library formalizing the states effect in above given settings was developed and
detailed in [Dumas:2014:coqstates]. The main idea here is to prove the 7 primitive properties
of the states structure proposed by [Plotkin&Power:2002]. This provides an environment in
which programmers are enabled to prove program properties through already proven lemmas
with respect to states effect. Those proofs become crucial when the order of evaluation is not
specified or more generally when parallelization comes into play [Lucassen&Gifford:1988]. To
check the soundness of this proof system, we have specialized the generic library for the case of
IMP language and proven equalities between some IMP programs involving terminating loops
and conditionals. See the link .

Thanks to the duality between exceptions and states [Dumas:2012:duality], all the syntactical
tricks together with the algebra for states have been dualized for exceptions. I.e., lookup
operation on the state is dual to tagging an exception. Thus, an environment to cope with
exceptions effect has been ensued and developed in Coq. Here is the link to the generic library
for exceptions. In addition, we have combined mentioned effects through the following non-
canonical way: just composing functors and merging the algebras. In order to see its soundness,
we have specialized the library for {IMP+Exc}1 language. It can be found through the link .

1The fact that IMP has no exception handling mechanism, we simply defined throw operation and try-
catch block as additional commands. The resulting language is called {IMP+Exc}. It is developed
in Coq syntax but in IMP semantics where all commands have 1→ 1 type.

2

http://coq.inria.fr/
https://forge.imag.fr/frs/download.php/522/STATES-0.6.tar.gz
https://forge.imag.fr/frs/download.php/569/IMP-STATES-0.1.tar.gz
https://forge.imag.fr/frs/download.php/541/EXCEPTIONS-0.1.tar.gz
https://forge.imag.fr/frs/download.php/557/IMP-STATES-EXCEPTIONS-0.1.tar.gz


It apparently follows that in this library equational proofs between {IMP+Exc} programs can
be stated including both states and exceptions effects.

Considering future directions, we are planning to introduce a canonical framework first to
combine states and exceptions in decorated settings. Then, we will make attempts to generalize
the idea to the other ones. In the mean time, the comparison with monad transformers is
planned to be stated.
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