Digital signatures

Exercise 1. *Complexity analysis of the extended Euclidean Algorithm* The goal of the exercise is to analyze the complexity of the extended Euclidean Algorithm, reminded below.

```
Input: a, b \in \mathbb{Z}_{\geq 0}, a > b

Output: g, u, v such that g = \gcd(a, b) = au + bv

1 (r_0, u_0, v_0) \leftarrow (a, 1, 0)

2 (r_1, u_1, v_1) \leftarrow (b, 0, 1)

3 i \leftarrow 2

4 While r_{i-1} \neq 0:

5 (q_i, r_i) \leftarrow \text{QUOREM}(r_{i-2}, r_{i-1})

6 (u_i, v_i) \leftarrow (u_{i-2} - q_i u_{i-1}, v_{i-2} - q_i v_{i-1})

7 i \leftarrow i + 1
```

- **1.** The first goal is to bound the number of iterations of the while loop. For two integers a and b, we define $s(a,b) = a + \frac{1}{\varphi}b$ where $\varphi = \frac{1}{2}(1+\sqrt{5})$, so that $\varphi^2 = \varphi + 1$.
 - **i.** Let $a \ge b \in \mathbb{Z}$ and (q, r) = QUOREM(a, b). Prove that $s(b, r) \le \frac{1}{\varphi} s(a, b)$. Prove and use that $\varphi 1 = \frac{1}{\varphi}$.
 - **ii.** Deduce that the number of iterations of the while loop is $O(\log a)$.
- **2.** We now bound the growth of the u_i 's and v_i 's.

8 Return $(r_{i-2}, u_{i-2}, v_{i-2})$

- i. Prove that for all $i \ge 0$, $r_i v_{i+1} r_{i+1} v_i = (-1)^i a$ and $r_i u_{i+1} r_{i+1} u_i = (-1)^{i+1} b$.
- **ii.** Prove that for all $i \ge 0$, $u_{2i} \ge 0 \ge u_{2i+1}$ and $v_{2i} \le 0 \le v_{2i+1}$.
- **iii.** Deduce that for $i \ge 1$, $|u_i| \le b/r_{i-1}$ and $|v_i| \le a/r_{i-1}$.
- **3.** Finally we bound the bit complexity of the algorithm. For, we remind that the product and Euclidean division of two integers a and b can be computed in time $O(\ell_a \ell_b)$ and $O((\ell_a \ell_b + 1)\ell_b)$ respectively where $\ell_a = \log a$ and $\ell_b = \log b$. For $i \ge 0$, let $\ell_i = \log(r_i)$.
 - i. Prove that line 5 has cost $O((\ell_{i-2} \ell_{i-1} + 1)\ell_1)$.
 - ii. Prove that line 6 has cost $O((\ell_{i-2} \ell_{i-1})(\ell_0 \ell_{i-2}))$.
 - iii. Conclude that the bit complexity of the algorithm is $O(\log(a)\log(b))$.

¹The fastest algorithms have running time approximately $O(\ell_a \log \ell_b)$ for both problems.

Exercise 2. DSA

The *Digital Signature Algorithm* (DSA) is a standardized signature scheme based on the discrete logarithm problem. It uses an indentification protocol, which is transformed into a signature scheme (though not through Fiat-Shamir transform). In the exercise, p is a prime number and G is a (cyclic) subgroup of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of prime order q with generator g. We define a pair keys $sk = x \in \{0, ..., q-1\}$ and $pk = h = g^x$.

- **1.** The identification protocol works as follows: The prover chooses $k \leftarrow \{1, \dots, q-1\}$ and sends $\ell \leftarrow g^k$; The verifier chooses $\alpha, r \leftarrow \{0, \dots, q-1\}$ and sends them; The prover computes $s = k^{-1} \cdot (\alpha + xr) \mod q$; The verifier accepts iff $s \neq 0$ and $g^{\alpha \cdot s^{-1}} \cdot h^{r \cdot s^{-1}} = \ell$ (where s^{-1} is the inverse of s modulo q).
 - **i.** Prove that if $s \neq 0$, the protocol is correct.
 - **ii.** Compute the probability that s = 0.
- **2.** To define the DSA signature scheme, we consider a hash function $H: \{0,1\}^* \to \{0,\ldots,q-1\}$. To sign with the private key x, the signer simulates the identification protocol, replacing the random choices of α and r by $\alpha \leftarrow H(m)$ and $r \leftarrow \ell \mod q$. If s=0, the signer restarts with a new value k.
 - i. Write the algorithm Sign formally. What should be the output?
 - ii. Describe the verification algorithm Vrfy and prove that it is correct.
 - **iii.** We define a variant of DSA where the message space is $\{0, \ldots, q-1\}$, and where H is simply omitted. Show that this variant is insecure, that is one can forge a signature without knowing the private key. Is this an existential or a universal forgery?