
Transport Layer Security (TLS)
Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


2/21

What is TLS?

A cryptographic protocol to provide secure communication over a network

Features
▶ Data encryption
▶ Server and optional client authentication
▶ Integrity checking

Usage
▶ On top of some reliable transport protocol e.g TCP
▶ Browsing (https), file transfer (ftps), email (smtps), VoIP (xmpp), . . .

Two-stage protocol
Handshake: negotiation of cryptographic parameters, key exchange

Record-layer: authentication and encryption of the communication



3/21

A very brief history of TLS
The SSL family
▶ Produced by Netscape Communications (Tahar Elgamal)

SSL 1.0: Unpublished many security flaws
SSL 2.0: 1995 – deprecated in 2011
SSL 3.0: 1996 – deprecated in 2015

The TLS family
▶ Standardized by the Internet Engineering Task Force

TLS 1.0: 1999 – deprecated in 2021
TLS 1.1: 2006 – deprecated in 2021
TLS 1.2: 2008 – in use
TLS 1.3: 2018 – in use our focus



4/21

Quick summary of previous lectures

Confidentiality

Authenticity

Other

Symmetric Public-key (asymmetric)



5/21

Contents

1. TLS Handshake protocol

2. TLS record-layer protocol

3. Some attacks



6/21

TLS Handshake protocol: goals

Establish a secure session between the client and the server

Agree on the algorithms/protocols
▶ Version of the protocol
▶ Which algorithms to use
▶ Key size

Authentication
▶ Authenticate the server using certificate authorities
▶ (possibly) Authenticate the client

Key exchange
▶ Set-up keys for future encryption / authentication



7/21

TLS Handshake protocol: the ingredients
Starting point: Key exchange
▶ The Client and Server must agree on shared keys for subsequent communication
▶ Use of Diffie-Hellman Key Exchange protocol

“What-ifs?”
What if an adversary intercepts the messages from the Server?

→ the Server signs its messages with its private key
What if the public key is not really the Server’s public key?

→ the Server provides a certificate from a Certificate Authority
What if an adversary replays the exchange?

→ use random nonces to make replays impractical
What if some messages were modified in transit?

→ use a MAC
What if the Server and Client do not use the same algorithms?

→ include their descriptions in the messages



8/21

TLS Handshake protocol: overview

Client initial data: a set of CAs public keys {pk1, . . . , pkn}
Server initial data: a pair (pkS, skS) and a certificate certi→S from a CA

1. Client sends a message with one or several sets of parameters:
▶ a group G with generator g, a symmetric encryption scheme Enc and hash function H
▶ a group element h = gx ∈ G and a random nonce NC ↞ {0, 1}n

2. Server: upon reception, chooses a set of parameters (G, Enc,H) and
▶ computes a shared secret K = gxy and keys k′

S , k′
C , kS , kC using a key derivation function

▶ sends a message made of
▶ the choice of parameters
▶ the group element gy and a random nonce NS ↞ {0, 1}n

▶ Enck′S
(pkS , certi→S , σ) where σ is a signature (with skS) of the message

3. Client: upon reception,
▶ computes the shared secret K and the keys k′

S , k′
C , kS and kC

▶ decrypts pkS , certi→S and σ and checks whether pkS and σ are valid
▶ computes and sends a MAC of all exchanged messages, using k′

C

4. Server: checks the MAC
Shared final data: keys kS and kC



9/21

Sets of parameters
Groups
▶ One of several predefined groups
▶ Includes elliptic curves and subgroups of finite fields

Symmetric encryption
▶ Requires Authenticated Encryption with Associated Data

▶ combines symmetric encryption with MAC

Hash function
▶ Used for key derivation function and HMAC
▶ Includes SHA-256 CM3



10/21

The key derivation function

Goal: from a secret K , deduce one or several keys

▶ The secret may not have the right format
▶ The secret may not be uniform in a suitable set

Example of HKDF
Input: a secret K , optional salt s, optional info i, output length L

1. t ← HMAC(s,K) extract stage
2. z0 ← empty string
3. for j = 1 to L:
4. zj ← HMAC(t, zj−1∥i∥0x⟨j⟩) expand stage
5. Return z1∥ · · · ∥zL



11/21

Security intuition for TLS
Authentication
▶ Using the certificate, pkS is guaranteed to be the correct public key
▶ If σ is valid, the client must be communicating with the intended server
▶ Protection against replay attack: use of the random nonce

Integrity
▶ The server signs all messages of the Diffie-Hellman key-exchange

▶ the values were not modified in transit
▶ protection against a person-in-the-middle attack

Confidentiality
▶ Based on Diffie-Hellman key exchange security



12/21

Contents

1. TLS Handshake protocol

2. TLS record-layer protocol

3. Some attacks



13/21

TLS record-layer protocol: goal

Ensure confidentiality, integrity and authenticity of the communications

Context
▶ The Client and Server share two keys kS and kC
▶ They agreed on a set of cryptographic algorithms

Tools
▶ Symmetric encryption
▶ Message authentication codes

→ Authenticated Encryption with Associated Data



14/21

The tool: Nonce-based Authenticated Encryption with Associated Data
Construction
Encryption: c ← Ek(m, d,N) where

▶ m is the message encrypted
▶ d is the associated data clear
▶ N is a nonce

Decryption: Dk(c, d,N) returns
▶ either m, if c is correct, and d , N are unchanged
▶ or « reject »

Properties
Correction if for all k and m, Dk(Ek(m, d,N), d,N) = m

Security if whenever no nonce is used more than once,
▶ ciphertexts are indistinguishable IND-CPA security
▶ a valid ciphertext is hard to forge ciphertext integrity



15/21

TLS record-layer protocol: overview
Shared data
▶ two keys kC and kS
▶ a sequence number n, initialized to 0

Data sending
▶ Data is split into blocks of 214 bytes

▶ Each block is sent separately
▶ For each block, nonce-based AEAD encryption with inputs:

▶ k: kC or kS , depending on the sender
▶ m: the block to be sent
▶ d : empty associated data
▶ N : n⊕ IV where IV = IVC or IVS is random obtained in the handshake

End of session
▶ Not part of the TLS protocol
▶ Delegated to the application layer



16/21

Contents

1. TLS Handshake protocol

2. TLS record-layer protocol

3. Some attacks



17/21

Attack on the CA infrastructure
Stevens et al., 2009

Reminder: role of certificates
▶ A Certificate Authority signs a certificate certCA→S for the Server’s public key pkS
▶ The Client can accept the public key as valid
▶ A fake certificate allows an adversary to impersonate the Server

A bad signature algorithm: RSA-MD5
▶ Signature algorithm (simplified):

1. Hash the value using MD5 → H(m)
2. Compute σ = H(m)d mod N

▶ Collision attack on MD5 → forge of signatures

Fake certificates
▶ The adversary asks a CA to sign a certificate certCA→S
▶ The adversary finds a collision → cert′ with the same signature
▶ Difficulty: cert′ should be a certificate → chosen-prefix collision



18/21

Attack on the handshake protocol
Logjam attack, Adrian et al., 2015

Context
▶ TLS gives the choice between different algorithms / key sizes
▶ Some of them are too weak
▶ Example: 512-bit subgroups of finite fields for Diffie-Hellman key exchange

▶ Discrete logarithm within a few minutes (after two weeks of precomputation)

An active attack strategy
1. Intercept the Client’s message to the Server

▶ Tamper it to ask for weak DH parameters
▶ Forward to the Server

2. Intercept the answer from the Server
▶ Hide the weak request
▶ Forward the Server’s DH parameters

3. Compute a discrete logarithm → get the shared secret



19/21

Logjam attack in practice
Real-life experiment
▶ Attack implemented in practice
▶ Tested on the top 1 million domains → 8.4% of them were vulnerable
▶ Not only for HTTPS, but also SMTP+STARTTLS, POP3S, IMAPS

Reasons for success
▶ Some servers still implement weak cryptography
▶ Some clients fail to reject weak DH groups
▶ Efficient discrete logarithm computations
▶ Some clients are fine with waiting

Discrete logarithms with precomputation: Number Field Sieve (NFS)
Precomputation: build a database of discrete logarithms
Computation: descent to compute a targeted discrete logarithm
▶ Offline precomputation, shared for all subsequent computations



20/21

Attack on the record-layer protocol
BEAST attack, Duong & Rizzo, 2011

The theoretical vulnerability (Rogaway, 2002)
▶ Symmetric encryption using CBC mode of operation

▶ m1∥m2∥ · · · ∥mt → c0∥c1∥ · · · ∥ct
▶ c0 is a random IV
▶ ci ← Ek(mi ⊕ ci−1) for i > 0

▶ Attack if IV is not uniform CM2, slide 29/37

Exploitation of the vulnerability
▶ In TLS 1.0, use of CBC with a predictible IV → last block of previous record
▶ The attack focuses on authentication cookies
▶ (Partially) Chosen Plaintext Attack

It is that easy?
▶ Requires code injection for instance

→ Attacks mix cryptography techniques with security techniques

https://membres-ljk.imag.fr/Pierre.Karpman/cry_intro2023_cm2.pdf#page=29


21/21

Conclusion
TLS mixes everything we have seen!
▶ Symmetric encryption through Authenticated Encryption with Associated Data
▶ MAC: direct use and through AEAD
▶ Diffie-Hellman key exchange
▶ Signatures
▶ Public-Key encryption through KEM → in a variant called KEMTLS

Protocols are hard to design
▶ Many attacks on different aspects of TLS
▶ Every tiny vulnerability will probably be exploited

For more: Cybersecurity master!
▶ More advanced cryptographic primitives and concepts
▶ More details on security architectures
▶ Other aspects of cybersecurity


	TLS Handshake protocol
	TLS record-layer protocol
	Some attacks

