Public-key encryption Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

Introduction

Symmetric (or private key) encryption

- Alice and Bob share a common key k
- Alice wants to send *m* to Bob:
 - 1. Alice computes $c \leftarrow \operatorname{Enc}_k(m)$
 - 2. Alice sends *c* to Bob
 - 3. Bob computes $m' \leftarrow \text{Dec}_k(c)$

and if all goes well: m = m'

Key exchange

- ▶ Alice and Bob must agree on a common key *k*.
- Diffie-Hellman protocol based on cyclic groups

Public-key (a.k.a asymmetric) cryptography: no prior key exchange!

Contents

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

Principle

Encryption Alice encrypts m with Bob's public key: $c \leftarrow \operatorname{Enc}_{pk_B}(m)$ Decryption Bob decrypts c with his private key: $m' \leftarrow \operatorname{Dec}_{sk_B}(c)$ Correctness if m = m'

Security if an adversary cannot compute m, knowing both c and pk_B

Formalization of public-key encryption

Definition

A public-key encryption scheme is given by 3 algorithms:

- Gen_n() returns a pair of keys (pk, sk) where *n* is the security parameter
- $\mathsf{Enc}_{pk}(m)$ returns a ciphertext *c* for a message $m \in \mathcal{M}_{pk}$

 $Dec_{sk}(c)$ returns a message *m* or an error

Correctness: for all $(pk, sk) \leftarrow \text{Gen}_n()$ and all $c \leftarrow \text{Enc}_{pk}(m)$, $\text{Dec}_{sk}(c) = m$

Remarks

- *pk* is the *public key* and *sk* the *private* (or secret) key.
- The public key defines the message space \mathcal{M}_{pk}
 - require a mapping from $\{0,1\}^*$ to \mathcal{M}_{pk}
 - often obvious
- The security parameter n sets the keys lengths
- Gen is implicit for symetric encryption

often implicit e.g: return $k \leftarrow \{0,1\}^n$

.

CPA-security

CPA indistinguishability game

Challenger: $(pk, sk) \leftarrow Gen()$

Adversary: given pk, produces $m_0, m_1 \in \mathcal{M}_{pk}$ of the same size

Challenger: $b \leftarrow \{0,1\}; c \leftarrow \operatorname{Enc}_{pk}(m_b)$

Adversary: given *c*, returns a bit b'; *success* if b = b'

Advantages

Adv_{Enc}^{IND-CPA}(A) =
$$\left| \Pr[b' = 1 | b = 1] - \Pr[b' = 1 | b = 0] \right| = |2 \Pr[\text{success}] - 1|$$

Adv_{Enc}^{IND-CPA}(t) = max_{At} Adv_{Enc}^{IND-CPA}(A_t) where A_t has running time $\leq t$

Remarks

- Extremely similar with IND-CPA for symmetric encryption
 - ► No oracle access to Enc_{pk}(·)
- $Enc_{pk}(\cdot)$ must be randomized: Why?
- No perfectly secret public-key encryption

The public key is... public!

CCA-security

CCA indistinguishability game

Challenger: $(pk, sk) \leftarrow Gen()$

Adversary: has oracle access to $Dec_{sk}(\cdot)$ during the whole experiment

given *pk*, produces $m_0, m_1 \in \mathcal{M}_{pk}$ of same size

Challenger: $b \leftarrow \{0, 1\}; c \leftarrow \operatorname{Enc}_{pk}(m_b)$

Adversary: given c, returns a bit b'; success if b' = b not allowed to ask $Dec_{sk}(c)$!

Advantages

•
$$\operatorname{Adv}_{\operatorname{Enc}}^{\operatorname{IND-CCA}}(A) = \left| \operatorname{Pr}[b' = 1 | b = 1] - \operatorname{Pr}[b' = 1 | b = 0] \right| = |2 \operatorname{Pr}[\operatorname{success}] - 1|$$

Adv_{Enc}^{IND-CCA}(q, t) = max_{At} Adv_{Enc}^{IND-CCA}($A_{q,t}$) where $A_{q,t}$ has running time $\leq t$ and makes $\leq q$ queries to Dec_{sk}(\cdot)

Remarks

- The security notion needed in practice
- ▶ Implies *non-malleability*: Knowing $c \leftarrow \text{Enc}_{pk}(m)$ but not *m*, it is *hard* to compute c' such that $\text{Dec}_{sk}(c') = f(m)$ for some chosen $f(\cdot)$

What about *multiple* encryptions?

Two (equivalent) questions

- ▶ What happens if we re-use the same public key several times?
- Can we encrypt arbritrary long messages?

Reminder in the symmetric case

- $\blacktriangleright \ \ Block \ ciphers \rightarrow fixed-length \ deterministic \ encryption$

Security for multiple encryption

- The building block is already randomized
- ▶ No modes of operations \rightarrow only ECB
- Formally: IND-CPA \Rightarrow IND-CPA for multiple encryptions

 $\operatorname{Enc}_{pk}(m_1) \| \cdots \| \operatorname{Enc}_{pk}(m_B)$

Encryption: public-key or symmetric + key exchange?

Advantages of symmetric encryption + key exchange

- Symmetric encryption usually lighter than public-key encryption
 - Reduced communications
 - Reduced computations

Advantages of public-key encryption

- $\blacktriangleright\,$ Only one protocol to manage \rightarrow fewer points of weakness
- Each user has only one private key to keep in the long run

Voiks in asynchronous vituations Hybrid encryption

- General idea
 - Encrypt the message *m* with a symmetric key $k \rightarrow c$
 - Encrypt the key k with a public key pk
 ightarrow c'
 - ▶ Send c and $c' \rightarrow$ decryption in the obvious manner
- More general framework: we can do *better* than encrypting the key k
 - KEM/DEM Paradigm

Contents

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

Question

Prove that $Enc_k(m) = k \times m$ provides a secure encryption scheme

Remark

Several senders can all use Bob's public key: security for a single encryption \Rightarrow security for multiple encryptions

ElGamal encryption scheme

Construction

Public: a cyclic group *G* of order $q \simeq 2^n$ with generator *g*

Gen(): 1.
$$x \leftarrow \{0, ..., q - 1\}$$

2. $h \leftarrow g^{x}$
3. Return $pk = h$ and $sk = x$ $(\mathcal{M}_{pk} = G)$
Enc_{pk}(m): 1. $y \leftarrow \{0, ..., q - 1\}$
2. $c_{1} \leftarrow g^{y}; c_{2} \leftarrow h^{y} \cdot m$
3. Return $c = (c_{1}, c_{2})$
Dec_{sk}(c_{1}, c_{2}): 1. Return $\hat{m} = c_{2} \cdot c_{1}^{-x}$

Correction

$$\hat{\mathbf{m}} = c_2 \cdot c_1^{-\mathbf{x}} = h^{\mathbf{y}} \cdot \mathbf{m} \cdot (g^{\mathbf{y}})^{-\mathbf{x}} = g^{\mathbf{x}} \mathbf{y} \cdot \mathbf{m} \cdot g^{-\mathbf{x}} = \mathbf{m}$$

Group multiplication for encryption

Lemma

Let *G* be a cyclic group of order *q* and generator *g* and *z* \leftarrow {0, ..., *q* - 1} (uniformly):

() \triangleright g^z is a uniform element of G

(2) for any $m \in G$, $g^z \cdot m$ is uniform in G

(1) ces
$$P_{z}\left[g^{z}=h\right] = \frac{1}{q}$$
 for all $h \in G$: this is true vince for all h , there is a unique $z \in \{0, ..., q^{r}\}$
such that $g^{2}=h$
(2) If h is uniform in G , the h on is uniform in G .
(et $l \in G$. $Pr\left[h \cdot m = l\right] = Pr\left[h = m^{-1} \cdot l\right] = \frac{1}{q}$

Security proof

Theorem

If DDH holds for G, ElGamal encryption scheme is IND-CPA secure. More precisely, $\operatorname{Adv}_{\operatorname{ElGamal}(G)}^{\operatorname{IND}-\operatorname{CPA}}(t) \leq 2 \cdot \operatorname{Adv}_{G}^{\operatorname{DDH}}(t)$ for all t. We build to for Experies. A receives ha=gx, h=yz, h== { gx3 ifl=1 gx3 ifl=1 Exp odd (A) C: Similates the DH protocol b & go, 13 ×1,×2,×3 & fo, 19-13 Sinds h_= g×1, h_2=g×2, h_3= { g×3 if b=0 1. As calle As to get mo, m1 2. A chooses b' fo, is and can Enc. (mb) A: Outputs I 3. A ushs A' for a bit b' Exp EG(6) (A): 4. A outpute (6=1 if 6'=6' 6=0 otherwise. An: Sands mo, ma C: b'a go, is and c = Encpk (mb) $Adv = \frac{1}{2} \left(A\right) = \left[P_{r}\left[b_{1}=1 \mid b_{2}=1\right] - P_{r}\left[b_{2}=1 \mid b_{2}=0\right]\right]$ A: Outputs L' Is Assume A' has advantage &'

Additional remarks

Choice of the group *G*

 $\log q$ security $\log p$ ▶ The order *q* must be prime, for DDH Several choices (subgroup of $(\mathbb{Z}/p\mathbb{Z})^{\times}, ...$) 2048 224 112 different security levels 3072 256 128 standardization by NIST and other agencies 7680 384 192 15360 512 256

Message space G?

- Solution 1: bijection between *G* and $\{0, 1\}^{\ell}$
- Solution 2: ElGamal-based KEM + key derivation function

CCA (in)security

- ▶ If $(c_1, c_2) \leftarrow \text{Enc}_{pk}(m)$, then $\text{Dec}_{sk}(c_1, m' \cdot c_2) = m' \cdot c_2 \cdot c_1^{-sk} = m' \cdot m$ ⇒ ElGamal encryption scheme is *malleable*, hence not CCA secure
- CCA-secure variants exist, mainly using hybrid encryption

Contents

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

Introduction

Observation

- Public-key encryption scheme designed for small messages
- Block-by-block encryption possible...
- ... but expensive

large ciphertext expansion

Use of key exchange

- 1. Agree on a shared key k
- 2. Use symmetric encryption with k

The idea of hybrid encryption

Sender encrypts the message with a key $k \to c$ encrypts the key k with the public key of the receiver encapsulated key Receiver decrypts first the encapsulated key with its secret key $\to k$ decrypts c using $k \to m$

The KEM/DEM paradigm

Definition

A Key Encapsulation Mechanism (KEM) is given by three algorithms:

Gen_n(): produces a pair (pk, sk)Encaps_{pk}(): produces a pair (c, k)Decaps_{sk}(c): returns k

Usage

To send *m* using public-key *pk*:

1.
$$(c, k) \leftarrow \text{Encaps}_{pk}()$$

2. $c' \leftarrow \text{Enc}_k(m)$ (with symmetric encryption

key encapsulation data encapsulation

Security notions

- Definitions of IND-CPA / IND-CCA security for KEMs
- ▶ IND-CPA KEM and symmetric encryption \Rightarrow IND-CPA public-key encryption
- Ditto for IND-CCA

Generic construction from public-key encryption scheme

Definition

Given: Public-key encryption scheme (Enc, Dec)

Encaps_{pk}(): 1. $k \leftarrow \{0,1\}^n$ 2. $c \leftarrow \text{Enc}_{pk}(k)$ Decaps_{sk}(c): 1. $k \leftarrow \text{Dec}_{sk}(c)$

Security

- If the public-key scheme is IND-CPA secure, the KEM too
- Ditto with IND-CCA security

Comments

- Using ElGamal for instance, must encode k in the group G
- Not the only nor best solution:
 - We need: from pk, produce c and k such that k can be recovered from sk and c
 - We don't need: c to be an actual encryption of k using pk

DDH-based KEM

Construction

Public: a cyclic group G of order q generated by g

Gen():
1.
$$x \leftarrow \{0, \dots, q-1\}$$

2. $h \leftarrow g^x$
3. $H \leftarrow$ some hash function from G to $\{0, 1\}^{\ell}$
4. return $pk = (h, H)$ and $sk = (x, H)$
Encaps_{pk}():
1. $y \leftarrow \{0, \dots, q-1\}$
2. return $c \leftarrow g^y$ and $k \leftarrow H(h^y)$
Decaps_{sk}(c):
1. return $k \leftarrow H(c^x)$

Correction

E

on

$$c^{x} = g^{yx} - (g^{x})^{y} = h^{y} = H(c^{x}) = H(h^{y})$$

Security (admitted)

▶ If DDH holds for G and H is regular, the KEM is IND-CPA secure

If CDH holds for G and H is a random oracle, the KEM is IND-CPA secure

Conclusion

Public-key encryption schemes

- Usually heavier than symmetric encryption schemes
- Good solution: use hybrid encryption
- Key management can be tricky \rightarrow *public key infrastructures*

ElGamal encryption scheme

- Basic idea very close to Diffie-Hellman key exchange protocol
- Requires other tools to make it IND-CCA secure
- Security based on DDH or CDH assumption

Other protocols

- Variant of the DDH based KEM is standardized as DHIES/ECIES
 - ► IND-CPA or IND-CCA security proofs under suitable assumptions
- Cramer & Shoup protocol: IND-CCA security under DDH assumption
- Other unrelated protocols using completely different assumptions RSA, LWE, ...

KEM/DEM paradigm