Public-key encryption
Introduction to cryptology

Bruno Grenet

M1INFO, MOSIG & AM

Université Grenoble Alpes — IM?AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

Introduction

Symmetric (or private key) encryption

> Alice and Bob share a common key k

> Alice wants to send m to Bob:
1. Alice computes ¢ < Ency(m)
2. Alice sends ¢ to Bob
3. Bob computes m’ <— Dec(c) and if all goes well: m = m’

Key exchange

> Alice and Bob must agree on a common key k.
> Diffie-Hellman protocol based on cyclic groups

[Public-key (a.k.a asymmetric) cryptography: no prior key exchange!

Contents

1. Public-key encryption

Principle

® Alice Bob ®
—m =Decy,(c)
@

m
L c =Ency,(m)

Encryption Alice encrypts m with Bob’s 'public key: ¢ <~ Enc,y,(m)

Decryption Bob decrypts ¢ with his 'private key: m’ < Decg,(c)
Correctness if m= m'

Security if an adversary cannot compute m, knowing both c and pkg

Loosely based on: J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021.

Formalization of public-key encryption

Definition
A public-key encryption scheme is given by 3 algorithms:
Gen,() returns a pair of keys (pk, sk) where nis the security parameter
Enc,(m) returns a ciphertext c for a message m € My
Decy(c) returns a message m or an error

Correctness: for all (pk, sk) <— Gen,() and all ¢ <= Encyi(m), Decgy(c) = m

Remarks
> pk is the public key and sk the private (or secret) key.
» The public key defines the message space M
> require a mapping from {O 1} to M
> often obvious
> The security parameter n sets the keys lengths often implicit
» Gen is implicit for symetric encryption e.g: return k « {0,1}"

CPA-security

CPA indistinguishability game
Challenger: (pk, sk) «+ Gen()
Adversary: given pk, produces mg, my € M of the same size
Challenger: b « {0,1}; ¢ <= Encp(mp)
Adversary: given c, returns a bit b'; success if b= b

Advantages
> AdvIND—CPA(4) — ‘Pr [0 =1]b=1] — Pr[y =1|b = 0]| = [2Pr [success] — 1|
> AdviPCPA(1) = maxy, AdviNPTCPA(A,) where A; has running time < t
Remarks
> Extremely similar with IND-CPA for symmetric encryption
> No oracle access to Encpy(-) The public key is... public!

» Encp(-) must be randomized: Why?
> No perfectly secret public-key encryption

CCA-security
CCA indistinguishability game

Challenger: (pk, sk) < Gen()
Adversary: has oracle access to Decg(+) during the whole experiment
given pk, produces mg, m € M,y of same size

Challenger: b « {0,1}; ¢ <= Encpy(mp)

Adversary: given c, returns a bit b'; success if b = b not allowed to ask Decg(c)!
Advantages

> AdvIND—CCA(4) — ‘Pr [0 =1]b=1]— Pr[¥ =1|b = 0]| = [2Pr [success] — 1|

> AdviPTCCA (g, 1) = maxa, AdviiPC“A(A,) where A, ; has running time < t and

makes < g queries to Decg(+)

Remarks
» The security notion needed in practice
» Implies non-malleability: Knowing ¢ <= Encp(m) but not m, it is hard to compute ¢’

such that Decg(c’) = f(m) for some chosen f(+)

What about multiple encryptions?

Two (equivalent) questions

> What happens if we re-use the same public key several times?
> Can we encrypt arbritrary long messages?

Reminder in the symmetric case

> Block ciphers — fixed-length deterministic encryption
> Modes of operations — variable-length randomized encryption

Security for multiple encryption

» The building block is already randomized
» No modes of operations — only ECB Encpi(m)|
» Formally: IND-CPA =- IND-CPA for multiple encryptions

-+ ||Encp(mp)

Encryption: public-key or symmetric + key exchange?

Advantages of symmetric encryption + key exchange

> Symmetric encryption usually lighter than public-key encryption
» Reduced communications
> Reduced computations

Advantages of public-key encryption

» Only one protocol to manage — fewer points of weakness
» Each user has only one private key to keep in the long run
» ‘\)orllg NS OSTV\A'\AOV\OUS \h‘\\\hhk‘l‘vS

Hybrid encryption

» General idea
> Encrypt the message m with a symmetric key k — ¢
» Encrypt the key k with a public key pk — ¢
» Send c and ¢’ — decryption in the obvious manner
> More general framework: we can do better than encrypting the key k
> KEM/DEM Paradigm

Contents

2. ElIGamal encryption scheme

From Diffie-Hellman to ElIGamal

(. tA hA — gtA rtB . |
tp
. k—pla| — B=9 k=hip .
Alice Bob
c= Enck(mz ¢ m = Deck(cl

From Diffie-Hellman to ElIGamal

hA:gtA

hp= gtB

o= -
. k—=hi

Alice

c=kxm

,tB

kE=hl .

Bob

m=kxc

From Diffie-Hellman to ElIGamal

i)
t
. k= Rl thng
Alice b
.= hA - gtA C= (Cl,Cz)
kczzk X m

From Diffie-Hellman to ElIGamal

Alice

c;=kxm

o=)
. k—=hi

c,=ha=yg

ta

A

t
/hB:gB

S =pkp

c=(cy,C.)

Question

(tBISkB o)
. Bob
k=c,®

m =k X Cy
| J

Prove that Ency(m) = k x m provides a secure encryption scheme

Remark

Several senders can all use Bob’s public key:
security for a single encryption = security for multiple encryptions

ElGamal encryption scheme

Construction

Public: a cyclic group G of order g ~ 2" with generator g

Gen(): 1.
2.
3.
Enc,i(m):
Qk 2.
3.

Decg(cr, 2): 1.

Correction

—_

x «{0,...,q—1}
h <+ g~
Return pk = hand sk = x

y «{0,...,g—1}
a+— g0+ h-m
Return ¢ = (¢, ©2)

Return m=c; - ¢ *

Y. R _%Y)”‘ - axfm . 3—\{7 N

A
m=c, e

Mpi = G)

Group multiplication for encryption

Lemma

Let G be a cyclic group of order g and generator g and z «— {0, ..., ¢ — 1} (uniformly):
(Y » g7 is a uniform element of G
\2) » forany m € G, g - mis uniform in G

e R it racr Ll
Ywce 3 =

® 12 b u;\le iAC. *h how o w\:&‘w w G .
W ee. Pelwmse] = PLh=wt]=%

Security proof

If DDH holds for G, EIGamal encryption scheme is IND-CPA secure. More precisely,

Theorem

AdV[ETGDam(;r(AG)() < 2- Adv2PH(¢) for all t.
= O (o
Fx? G (\'

C: Sl VAN Q/a\maQ

A
g&mé\& :8’(4 [/\7' 8 3)‘ ‘K/L—'
A ose e £ A ey
Ex"5ele (ﬂq\
l'_ %w,&s M, Ma
éj, L'g.ﬁo 3«»4 c— /vw,l(“"u
A odes B

G ASSU«.& A(_ (s L}dow\’f} s

We L“J{n‘ ft Bo(t&e'}g’ .
A rcave Aﬂzé“, L\;-g‘ ha=

A. 7AD Cﬁle‘\LL‘ . 3;3 m,, My
270() o\toostg L'(é- 20,@ W\ok C,C—-Ewc‘,k(‘”\

Kq¥

3

3. 705 u\\u% 7%‘ {,’o <o {%«LA 1;/
\A\ G> L U; \o)
Ao 2R

Aé\/m{(l\‘) \‘?[g by | - P’[L =
+()

,1«/2-

L+
3" .

)

/

Additional remarks

Choice of the group G

» The order g must be prime, for DDH logp logq security
» Several choices (subgroup of (Z/pZ)*, ...) 2048 224 12
> different security levels 3072 256 128
> standardization by NIST and other agencies 7680 384 192
15360 512 256
Message space G?
> Solution 1: bijection between G and {0, 1}* for some G
> Solution 2: EIGamal-based KEM + key derivation function
CCA (in)security
sk _ m - m

> If (1,) < Encp(m), then Decy(cim’ - ;) =m' - ¢ - ¢

= ElGamal encryption scheme is malleable, hence not CCA secure

» CCA-secure variants exist, mainly using hybrid encryption

Contents

3. Hybrid encryption

Introduction

Observation
» Public-key encryption scheme designed for small messages
> Block-by-block encryption possible...
> ... but expensive large ciphertext expansion

Use of key exchange

1. Agree on a shared key k
2. Use symmetric encryption with k

The idea of hybrid encryption

Sender encrypts the message with a key k — ¢
encrypts the key k with the public key of the receiver encapsulated key
Receiver decrypts first the encapsulated key with its secret key — k
decrypts c using k = m

The KEM/DEM paradigm

Definition
A [Key Encapsulation Mechanism (KEM) is given by three algorithms:
Geny,(): produces a pair (pk, sk)
Encaps,,(): produces a pair (c, k)
Decaps,,(c): returns k

Usage

To send m using public-key pk:
1. (c, k) < Encaps () key encapsulation
2. ¢ « Ency(m) (with symmetric encryption) data encapsulation

Security notions
> Definitions of IND-CPA / IND-CCA security for KEMs
> IND-CPA KEM and symmetric encryption = IND-CPA public-key encryption
> Ditto for IND-CCA

Generic construction from public-key encryption scheme
Definition
Given: Public-key encryption scheme (Enc, Dec)

Encaps ,(): 1. k<« {0,1}"
2. ¢ < Encp(k)

Decaps,,(c): 1. k < Decg/(c)

Security

> If the public-key scheme is IND-CPA secure, the KEM too
> Ditto with IND-CCA security

Comments
» Using EIGamal for instance, must encode k in the group G
> Not the only nor best solution:
> We need: from pk, produce c and k such that k can be recovered from sk and ¢
> We don’t need: ¢ to be an actual encryption of k using pk

DDH-based KEM

Construction
Public: a cyclic group G of order g generated by g

Gen(): 1. x«{0,...,q—1}
2. h+ g¥
3. H <« some hash function from G to {0,1}*
4. return pk = (h, H) and sk = (x, H)
Encaps,(): 1 y«{0,...,q—1}

N

return ¢ <— g” and k < H(h")
Decaps,, (c): 1. return k < H(c¥)

Correction
Cx = a")(._(ax)ft kY => “(Cx>:H(L‘1>
Security (admitted)

> If DDH holds for G and H is regular, the KEM is IND-CPA secure
> If CDH holds for G and H is a random oracle, the KEM is IND-CPA secure

Conclusion

Public-key encryption schemes

» Usually heavier than symmetric encryption schemes
» Good solution: use hybrid encryption KEM/DEM paradigm
> Key management can be tricky — public key infrastructures

ElGamal encryption scheme
> Basic idea very close to Diffie-Hellman key exchange protocol
> Requires other tools to make it IND-CCA secure
> Security based on DDH or CDH assumption

Other protocols
» Variant of the DDH based KEM is standardized as DHIES/ECIES
> IND-CPA or IND-CCA security proofs under suitable assumptions
» Cramer & Shoup protocol: IND-CCA security under DDH assumption
> Other unrelated protocols using completely different assumptions ~ RSA, LWE, ...

	Public-key encryption
	ElGamal encryption scheme
	Hybrid encryption

