
Public-key encryption
Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2/21

Introduction
Symmetric (or private key) encryption
▶ Alice and Bob share a common key k
▶ Alice wants to send m to Bob:

1. Alice computes c ← Enck(m)
2. Alice sends c to Bob
3. Bob computes m′ ← Deck(c) and if all goes well: m = m′

Key exchange
▶ Alice and Bob must agree on a common key k.
▶ Diffie-Hellman protocol based on cyclic groups

Public-key (a.k.a asymmetric) cryptography: no prior key exchange!

3/21

Contents

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

4/21

Principle

BobAlice

m
mEncc=)(pkB c

cDecm =)(skBc

Encryption Alice encrypts m with Bob’s public key: c ← EncpkB(m)
Decryption Bob decrypts c with his private key: m′ ← DecskB(c)

Correctness if m = m′

Security if an adversary cannot compute m, knowing both c and pkB

Loosely based on: J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021.

5/21

Formalization of public-key encryption
Definition
A public-key encryption scheme is given by 3 algorithms:

Genn() returns a pair of keys (pk, sk) where n is the security parameter
Encpk(m) returns a ciphertext c for a message m ∈Mpk

Decsk(c) returns a message m or an error

Correctness: for all (pk, sk)← Genn() and all c ← Encpk(m), Decsk(c) = m

Remarks
▶ pk is the public key and sk the private (or secret) key.
▶ The public key defines the message spaceMpk

▶ require a mapping from {0, 1}∗ toMpk
▶ often obvious

▶ The security parameter n sets the keys lengths often implicit
▶ Gen is implicit for symetric encryption e.g: return k ↞ {0, 1}n

6/21

CPA-security
CPA indistinguishability game
Challenger: (pk, sk)← Gen()
Adversary: given pk, produces m0, m1 ∈Mpk of the same size

Challenger: b ↞ {0, 1}; c ← Encpk(mb)
Adversary: given c, returns a bit b′; success if b = b′

Advantages
▶ AdvIND−CPA

Enc (A) =
∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]

∣∣∣ = |2Pr [success]− 1|
▶ AdvIND−CPA

Enc (t) = maxAt AdvIND−CPA
Enc (At) where At has running time ≤ t

Remarks
▶ Extremely similar with IND-CPA for symmetric encryption

▶ No oracle access to Encpk(·) The public key is. . . public!
▶ Encpk(·) must be randomized: Why?
▶ No perfectly secret public-key encryption

7/21

CCA-security
CCA indistinguishability game
Challenger: (pk, sk)← Gen()
Adversary: has oracle access to Decsk(·) during the whole experiment

given pk, produces m0, m1 ∈Mpk of same size
Challenger: b ↞ {0, 1}; c ← Encpk(mb)
Adversary: given c, returns a bit b′; success if b′ = b not allowed to ask Decsk(c)!

Advantages
▶ AdvIND−CCA

Enc (A) =
∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]

∣∣∣ = |2Pr [success]− 1|
▶ AdvIND−CCA

Enc (q, t) = maxAt AdvIND−CCA
Enc (Aq,t) where Aq,t has running time ≤ t and

makes ≤ q queries to Decsk(·)

Remarks
▶ The security notion needed in practice
▶ Implies non-malleability: Knowing c ← Encpk(m) but not m, it is hard to compute c′

such that Decsk(c′) = f (m) for some chosen f (·)

8/21

What about multiple encryptions?
Two (equivalent) questions
▶ What happens if we re-use the same public key several times?
▶ Can we encrypt arbritrary long messages?

Reminder in the symmetric case
▶ Block ciphers → fixed-length deterministic encryption
▶ Modes of operations → variable-length randomized encryption

Security for multiple encryption
▶ The building block is already randomized
▶ No modes of operations → only ECB Encpk(m1)∥ · · · ∥Encpk(mB)
▶ Formally: IND-CPA⇒ IND-CPA for multiple encryptions

9/21

Encryption: public-key or symmetric + key exchange?
Advantages of symmetric encryption + key exchange
▶ Symmetric encryption usually lighter than public-key encryption

▶ Reduced communications
▶ Reduced computations

Advantages of public-key encryption
▶ Only one protocol to manage → fewer points of weakness
▶ Each user has only one private key to keep in the long run

Hybrid encryption
▶ General idea

▶ Encrypt the message m with a symmetric key k → c
▶ Encrypt the key k with a public key pk → c′
▶ Send c and c′ → decryption in the obvious manner

▶ More general framework: we can do better than encrypting the key k
▶ KEM/DEM Paradigm

10/21

Contents

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

11/21

From Diffie-Hellman to ElGamal

BobAlice

tA tBhA = gtA

c = Enck(m)
c

m = Deck(c)

hB
tA k= hA

tB k=

Question
Prove that Enck(m) = k ×m provides a secure encryption scheme

Remark
Several senders can all use Bob’s public key:
security for a single encryption⇒ security for multiple encryptions

11/21

From Diffie-Hellman to ElGamal

BobAlice

tA tB

c = k × m m= k-1× c
c

hB
tA k= hA

tB k=

hA = gtA

Question
Prove that Enck(m) = k ×m provides a secure encryption scheme

Remark
Several senders can all use Bob’s public key:
security for a single encryption⇒ security for multiple encryptions

11/21

From Diffie-Hellman to ElGamal

BobAlice

tA

c1 = hA = gtA

hB
tA k= pkB

skBtB =

c2 = k × m m= k-1× c2

c1
tB k=c= (c1,c2)

Question
Prove that Enck(m) = k ×m provides a secure encryption scheme

Remark
Several senders can all use Bob’s public key:
security for a single encryption⇒ security for multiple encryptions

11/21

From Diffie-Hellman to ElGamal

BobAlice

tA

c1 = hA = gtA

hB
tA k= pkB

skBtB =

c2 = k × m m= k-1× c2

c1
tB k=c= (c1,c2)

Question
Prove that Enck(m) = k ×m provides a secure encryption scheme

Remark
Several senders can all use Bob’s public key:
security for a single encryption⇒ security for multiple encryptions

12/21

ElGamal encryption scheme
Construction

Public: a cyclic group G of order q ≃ 2n with generator g

Gen(): 1. x ↞ {0, ..., q − 1}
2. h← gx

3. Return pk = h and sk = x (Mpk = G)

Encpk(m): 1. y ↞ {0, ..., q − 1}
2. c1 ← gy ; c2 ← hy ·m
3. Return c = (c1, c2)

Decsk(c1, c2): 1. Return m̂ = c2 · c−x
1

Correction

13/21

Group multiplication for encryption
Lemma
Let G be a cyclic group of order q and generator g and z ↞ {0, ..., q − 1} (uniformly):
▶ gz is a uniform element of G
▶ for any m ∈ G, gz ·m is uniform in G

14/21

Security proof
Theorem
If DDH holds for G, ElGamal encryption scheme is IND-CPA secure. More precisely,
AdvIND−CPA

ElGamal(G)(t) ≤ 2 · AdvDDH
G (t) for all t .

15/21

Additional remarks

Choice of the group G
▶ The order q must be prime, for DDH
▶ Several choices (subgroup of (Z/pZ)×, . . .)

▶ different security levels
▶ standardization by NIST and other agencies

log p log q security

2048 224 112
3072 256 128
7680 384 192
15360 512 256

Message space G?
▶ Solution 1: bijection between G and {0, 1}ℓ for some G
▶ Solution 2: ElGamal-based KEM + key derivation function

CCA (in)security
▶ If (c1, c2)← Encpk(m), then Decsk(c1,m′ · c2) = m′ · c2 · c−sk

1 = m′ ·m
⇒ ElGamal encryption scheme is malleable, hence not CCA secure

▶ CCA-secure variants exist, mainly using hybrid encryption

16/21

Contents

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

17/21

Introduction
Observation
▶ Public-key encryption scheme designed for small messages
▶ Block-by-block encryption possible. . .
▶ . . . but expensive large ciphertext expansion

Use of key exchange
1. Agree on a shared key k
2. Use symmetric encryption with k

The idea of hybrid encryption
Sender encrypts the message with a key k → c

encrypts the key k with the public key of the receiver encapsulated key
Receiver decrypts first the encapsulated key with its secret key → k

decrypts c using k → m

18/21

The KEM/DEM paradigm
Definition
A Key Encapsulation Mechanism (KEM) is given by three algorithms:

Genn(): produces a pair (pk, sk)
Encapspk(): produces a pair (c, k)

Decapssk(c): returns k

Usage
To send m using public-key pk:

1. (c, k)← Encapspk() key encapsulation
2. c′ ← Enck(m) (with symmetric encryption) data encapsulation

Security notions
▶ Definitions of IND-CPA / IND-CCA security for KEMs
▶ IND-CPA KEM and symmetric encryption⇒ IND-CPA public-key encryption
▶ Ditto for IND-CCA

19/21

Generic construction from public-key encryption scheme
Definition

Given: Public-key encryption scheme (Enc,Dec)

Encapspk(): 1. k ↞ {0, 1}n

2. c ← Encpk(k)

Decapssk(c): 1. k ← Decsk(c)

Security
▶ If the public-key scheme is IND-CPA secure, the KEM too
▶ Ditto with IND-CCA security

Comments
▶ Using ElGamal for instance, must encode k in the group G
▶ Not the only nor best solution:

▶ We need: from pk, produce c and k such that k can be recovered from sk and c
▶ We don’t need: c to be an actual encryption of k using pk

20/21

DDH-based KEM
Construction

Public: a cyclic group G of order q generated by g

Gen(): 1. x ↞ {0, . . . , q − 1}
2. h← gx

3. H ← some hash function from G to {0, 1}ℓ
4. return pk = (h,H) and sk = (x,H)

Encapspk(): 1. y ↞ {0, . . . , q − 1}
2. return c ← gy and k ← H(hy)

Decapssk(c): 1. return k ← H(cx)

Correction

Security (admitted)
▶ If DDH holds for G and H is regular, the KEM is IND-CPA secure
▶ If CDH holds for G and H is a random oracle, the KEM is IND-CPA secure

21/21

Conclusion
Public-key encryption schemes
▶ Usually heavier than symmetric encryption schemes
▶ Good solution: use hybrid encryption KEM/DEM paradigm
▶ Key management can be tricky → public key infrastructures

ElGamal encryption scheme
▶ Basic idea very close to Diffie-Hellman key exchange protocol
▶ Requires other tools to make it IND-CCA secure
▶ Security based on DDH or CDH assumption

Other protocols
▶ Variant of the DDH based KEM is standardized as DHIES/ECIES

▶ IND-CPA or IND-CCA security proofs under suitable assumptions
▶ Cramer & Shoup protocol: IND-CCA security under DDH assumption
▶ Other unrelated protocols using completely different assumptions RSA, LWE, . . .

	Public-key encryption
	ElGamal encryption scheme
	Hybrid encryption

