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Part 1. Optimal transport theory and duality

1. Primal problem

1.1. Monge problem. The first optimal transport problem was stated by Gaspard Monge,
a French engineer and mathematician in 1784, in his famous thesis "Mémoire sur la théorie
des déblais et des remblais" [7].

Framework:
• We consider two compact sets X and Y of Rd.
• µ and ν probablility measures on X and Y .
• c : X × Y → R a cost function which is continuous.

Monge problem amounts to finding a map that transports X to Y , while minimizing the cost
of transport and while preserving the measure. We first need to define what it means to
preserve the measure and define the notion of push-forward.

Definition 1 (Pushforward). Let T : X → Y be a map, µ a measure on X. The pushforward
of µ by T is a measure on Y , denoted by T]µ defined for every Borelien B on Y by

T]µ(B) = µ(T−1(B)).

Definition 2 (Transport map). A T : X → Y is said to be a transport map between (X,µ)
and (Y, ν) if it preserves the mass, namely if one has T]µ = ν.

Monge problem (1780). Monge problem consists in finding the minimum of

(MP) := inf
T

∫
X
c(x, T (x))dµ(x),

over the set of measurable maps T : X → Y satisfying T]µ = ν.
Remark that we need the two measures to have the same global mass, since we want the

preservation of measure.

Example 1 (Continuous setting). By continuous setting, we mean the case where µ(x) =
f(x)dx and ν(x) = g(x)dx are two absolutely continuous mesures on Rd, with densities f
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and g. In this case, if we assume that T is a smooth bijection, the fact of being a transport
map to solving the following jacobian equation:

f(x) = g(T (x))| det(DT (x))|,
where DT (x) is the Jacobian matrix of T at x.

Proof. The proof is a direct consequence of the change of variable formula. When T : X → Y
is a diffeomorphism, the change of variable formula reads for every Borelian B ⊂ X

ν(B) :=
∫
B
g(y)dy =

∫
A=T−1(B)

g(T (x))
∣∣∣ det(DT (x))

∣∣∣dx.
Therefore, one has

ν(B) = µ(T−1(B)) ⇔
∫
T−1(B) g(T (x))| det(DT (x))|dx =

∫
T−1(B) f(x)dx.

�

Example 2 (Discrete setting). In the discrete settingX = {x1, · · · , xn} and Y = {y1, · · · , ym}.
We consider tow probability measures µ =

∑
x∈X µxδx and ν =

∑
y∈Y νyδy. In this case, the

problem amounts to finding a map T : X → Y that minimizes∑
x∈X

c(x, T (x))µx,

under the mass preservation constraint constraint
∀y ∈ Y νy =

∑
x∈T−1(y)

µx.

Uniform case. In the particular case where the two sets have the same cardinal (m = n),
and the two probability measures are uniform (µx = νy = 1/n), the mass conservation
constraint enforces T to be a one-to-one map. Therefore, the Monge problem amounts to
finding a one-to-one map T : X → Y that minimizes∑

x∈X
c(x, T (x)).

Example 3 (Semi-discrete setting). In the semi-discrete setting, we suppose that the source
is continuous and the target discrete. More precisely, we assume X ⊂ Rd is a compact set (it
can be more general), that µ(x) = ρ(x)dx is an absolutely continuous measure with respect
to the Lebesgue measure. The set Y = {y1, · · · ym} is discrete with a measure ν =

∑
y δyνy.

A map T : X → Y is a transport map if one has
T]µ = ν ⇐⇒ ∀y ∈ Y, νy = µ(T−1(y)).

The Monge problem in that case reads

inf
T

∑
i

∫
T−1(y)

c(x, y) ρ(x)dx under the constraint T]µ = ν.

Example of bakeries in a town. Let X be a town and ρ be the density of population. Let
Y = {y1, · · · , ym} be a set of bakeries. Each bakery has an amount of bread νi. We assume
that the total amount of bread ν(Y ) is equal to the quantity of bread needed by the whole
population µ(X). We denote by c(x, y) the distance to go to a bakery y. The problem is to
affect globally the people depending on their location x to bakeries yi such that the sets of
trajectories is minimized. This corresponds to exactly solve the Monge problem.
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Figure 1. Counter-example: X = [0, 1]× {0}; µ = H1
|X ; Y = [0, 1]× {−1} ∪

[0, 1] × {1} and ν = H1
|Y /2 and quadratic cost: no optimal transport map

exist.

No existence of transport map.
− Example 1: discrete uniform measures where |X| = 4 and |Y | = 3 : no transport map.
− Example 2: if µ has an atom and ν is absolutely continuous : no transport map

No existence of optimal transport map (when transport maps exist).
− Example 3: X = [0, 1]×{0}; µ = H1

|X ; Y = [0, 1]×{−1} ∪ [0, 1]×{1} and ν = H1
|Y /2 and

quadratic cost: no optimal transport map exist. Indeed:

Proof. 1) The minimum cost is more than 1.
Indeed, for every x, y ∈ X × Y c(x, y) > 1, so for every map T : X → Y∫

X
c(x, T (x))dµ(x) >

∫
X

dµ(x) = H1(X) = 1.

2) The infimum is equal to 1. We build Tn : X → Y by subdividing into intervals, Tn ∈
Γ(µ, ν). One can show that for every x c(x, Tn(x)→ 0 and so∫

X
c(x, Tn(x))dµ(x)→ 1.

3) The infimum is not reached. Suppose there exists a solution T : X → Y . Then almost
everywhere c(x, y) = 1, so T maps horizontally. Define Y − = [0, 1]×{−1}, Y + = [0, 1]×{1},
X− = T−1(Y −). Then by the conservation of mass, one has

H1(X−) = µ(X−) = µ(T−1(Y −)) = ν(Y −) = 1
2 .

We denote Ỹ the orthogonal projection of X− onto Y +. Then
H1(Ỹ ) = H1(X−) = 1/2.

Also, since T is horizontal, T−1(Ỹ ) = ∅ so that
µ(T−1(Ỹ )) = µ(∅) = 0 6= ν(Ỹ ) = H1(Ỹ )/2 = 1/4.

�
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In general, we need regularity assumptions on µ to get existence of optimal transport maps.
Non linearity. The Monge problem is obviously non linear.

We will see that when we relax this problem, it becomes linear and we have existence
of a solution under mild assumptions. (For instance, in the above example, if we allow for
instance to split the mass, then there exists a solution.)

1.2. Kantorovitch relaxation.

Definition 3 (Marginals). The marginals of a measure γ on a product space X × Y are
the measures ΠX#γ and ΠY#γ, where ΠX : X × Y → X and ΠY : X × Y → Y are their
projection maps.

Definition 4 (Transport plan). A transport plan between two probability measures µ, ν on
two metric spaces X and Y is a probability measure γ on the product space X × Y whose
marginals are µ and ν. The space of transport plans is denoted Γ(µ, ν), i.e.

Γ(µ, ν) = {γ ∈ P(X × Y ) | ΠX#γ = µ, ΠY#γ = ν} .

Remark 1.
− The conditions on the marginals means :

µ(A) = ΠX#γ(A) = γ(Π−1
X (A)) = γ(A× Y ).

ν(B) = γ(X ×B).
− Note that Γ(µ, ν) is a convex set.
− Note that the set of transport plans Γ(µ, ν) is never empty, as it contains the measure
µ⊗ ν.

Definition 5 (Kantorovich’s problem). Consider two compact metric spaces X,Y , two prob-
ability measures µ ∈ P(X), ν ∈ P(Y ) and a cost function c ∈ C0(X × Y ). Kantorovich’s
problem is the following optimization problem

(1.1) (KP) := inf
{∫

X×Y
c(x, y)dγ(x, y) | γ ∈ Γ(µ, ν)

}
Remark 2. The infimum in Kantorovich’s problem is less than the infimum in Monge’s prob-
lem:

(KP) 6 (MP).
Indeed, for T be a transport map between µ and ν.
− we have the map (id, T ) : X → X × Y
− we put γT = (id, T )#µ. One can easily check that ΠX#γT = µ and ΠY#γT = ν so that
γT ∈ Γ(µ, ν) is a transport plan between µ and ν.

ΠX#γT (A) = γT (A× Y ) = µ((id, T )−1(A× Y )) = µ(A ∩ T−1(Y )) = µ(A)

− Moreover, by the definition of push-forward,∫
X×Y

c(x, y)dγT (x, y) =
∫
X

(c ◦ (id, T ))(x)dµ(x)
∫
X
c(x, T (x))dµ(x)

thus showing that (KP) 6 (MP).

Proposition 1. Kantorovich’s problem (KP) admits a minimizer.
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Proof.
1) P(X × Y ) is weakly compact (it is known by Banach-Alaoglu).
Indeed, Banach-Alaoglu tells that if E is a topological vector space, E′ its dual, then any
bounded subset B′ ⊂ E′ is compact for the weak topology. By definition, Ln ∈ E′ converges
weakly to L if it simply converges.
In our case, the set of measures M(X × Y ) is identified to C0(X × Y )′ (by Riesz theorem
with γ 7→

(
Lγ : ϕ 7→

∫
ϕdγ

)
); P(X × Y ) ⊂M(X × Y ) is bounded (for ‖Lγ‖ := supϕ Lγ(ϕ));

So by Banach-Alaoglu, it is compact for the weak topology
2) The set of transport plans Γ(µ, ν) ⊆ P(X × Y ) is weakly closed, so weakly compact.
Indeed, the definition of ΠX#γ = µ can be expanded into

ϕ ∈ C0(X),
∫
X×Y

ϕ(x)dγ(x, y) =
∫
X
ϕ(x)dµ(x).

Take a sequence γn ∈ Γ(µ, ν) converging (for the weak topology) to γ ∈ P(X × Y ) which is
weakly compact. Then by the previous equation

∀ϕ ∈ C0(X),
∫
X×Y

ϕ(x)dγn(x, y) =
∫
X
ϕ(x)dµ(x)

is constant so converges to the same value. Therefore ΠX#γ = µ. Therefore γ ∈ Γ(µ, ν).
Hence Γ(µ, ν) is weakly closed
3) We conclude the existence proof by remarking that the functional that is minimized in
(KP), namely

F : γ ∈ Γ(µ, ν) 7→
∫
c(x, y)dγ(x, y),

is weakly continuous by definition (for every γn → γ in a weak sense, then F (γn)→ F (γ) by
definition). �

2. Discrete case

In this section, I am going to give and prove the results in the discrete case. The framework
is much simpler and gives a nice intuition of what happens.

2.1. Kantorovitch relaxation. We consider two probability measures µ and ν supported
on two finite sets X and Y : µ =

∑
x∈X µxδx and ν =

∑
y∈Y νyδy. One is also given a cost

function, namely a map c : X × Y → R. The idea of the relaxation is to allow the mass at a
location x to be split. More precisely, we allow µx to be sent to several y, each µy receiving
a quantity γx,y. The relaxation of the optimal transport problem then mounts to finding

min
γ

∑
x∈X,y∈Y

c(x, y)γxy,

where γ : X × Y → R+ is such that

∀x ∈ X
∑
y∈Y

γxy = νx and ∀y ∈ Y
∑
x∈X

γxy = µy.

We assume µx > 0 and νy > 0 for every x, y.

Remark 3.
• Note that in this problem, the function to be minimized is linear (in γ) and that the
constraints are also linear. This is called a linear program.
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Matrix notation. Since the problem is linear, we can express it with matrices. We denote
X = {x1, · · · , xn}, Y = {y1, · · · , ym} and

P =

 P1,1 · · · P1,m
...

Pn,1 · · · Pn,m

 1m =

 1
...
1

µ =

 µ1
...
µn

 ν =

 ν1
...
νm


We denote by 〈A|B〉 the scalar product between two matrices A and B (if we see the matrices
as vectors of size nm). With these notations, the problem reads

min
P∈Γ(µ,ν)

〈P |C〉,

where Γ(µ, ν) is the set of transport plans between µ and ν given by

Γ(µ, ν) := {P > 0, P1m = µ and P t1n = ν}.

Economic interpretation (Mines and factories). A natural problem that illustrates
the Kantorovitch relaxation is the following well known ressource allocation problem. We
consider an operator that runs a set of warehouses and of fctories. Here
X = {x1, · · · , xn} is a set of warehouses
Y = {y1, · · · , ym} is a set of factories.
The factories yj need a certain amount νj of a material. All the warehouse xi have an amount
µi of this material.
The cost of transport to move a unity of material between xi to yi is given by Ci,j = c(xi, yj).
Hence the cost to transport a quantity γi,j between xi and yj is exactly γi,jci,j . The total cost
of transporting the material for the operator is thus exactly 〈P|C〉 and the operator wants
to find the transport plan P that minimizes this quantity.

2.2. Assignment problem: a particular case.

Definition 6 (Assignment problem). We assume X and Y have the same cardinal. The
assignment problem amounts to finding a bijection σ : X → Y that minimizes

(AP) = min
σ:X→Y

∑
x∈X

c(x, σ(x)).

Assignment problem = Monge problem : if we take µ and ν to be uniform measures (i.e.
µx = νy = 1

n) and T : X → Y . Then we remark that T is a bijection iff T is a transport map.

(AP) = (MP)

Definition 7. A bistochastic matrix γ is a square matrix with coefficients in [0, 1] such that
the sum of each raw and of each columns equals 1.

Clearly, if γ : X → Y is a transport plan between two uniform probability measures, then
nγ is a represented by bistochastic matrix.
Theorem 2 (Birkoff). The set of bistochatic matrices is a convex polytope in the space of
matrices of dimensions n× n, whose extremal points are exactly permutation matrices.
As a direct corollary, one has
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Corollary 3. The Kantorovitch transport problem is equivalent to an assignment problem
(AP) = (MP) = (KP)

Proof. We minimize a linear function on a convex set. The minimum is not unique, but there
always exists a minimum that is an extremal point (make a drawing). �

This means that there exists a bijection that solves the Kantorovitch problem. In other
words, that there always exists a Monge solution to the Kantorovitch problem. However,
there is no uniqueness in general, and all solution are not maps.

2.3. Formal derivation of Kantorovitch duality. This kind of derivation is classical and
is using the Lagrangian. The Lagragian associated to the Kantorovitch relaxation is given by

L(ϕ,ψ) :=
∑

x∈X,y∈Y
c(x, y)γxy +

∑
x∈X

µx −∑
y∈Y

γx,y

ϕ(x)−
∑
y∈Y

(
νy −

∑
x∈X

γx,y

)
ψ(y)

Step 1. Remark that

sup
ϕ,ψ

L(ϕ,ψ) =
{ ∑

x∈X,y∈Y c(x, y)γxy if γ is a transport plan
+∞ otherwise

Indeed, if one of the constraint is not satisfied, then by choosing appropriately ϕ and ψ, the
supremum is infinite. We deduce from this that

(KP) = inf
γ∈Γ(µ,ν)

∑
x∈X,y∈Y

c(x, y)γxy = inf
γ>0

sup
ϕ,ψ

L(ϕ,ψ)

Step 2. We admit here that we can exchanging the inf and sup. In fact, this a consequence
of Fenchel-Rockafellar theorem (as in the book of Villani for instance) or the proof can be
done with the Karush-Kuhn-Tucken Theorem. Therefore one gets

(KP) = sup
ϕ,ψ

inf
γ>0

L(ϕ,ψ)

Step 3. Remark that

L(ϕ,ψ) =
∑

x∈X,y∈Y
c(x, y)γxy +

∑
x∈X

µxϕ(x)−
∑
y∈Y

νyψ(y) +
∑

x∈X,y∈Y
(ψ(y)− ϕ(x))γx,y

=
∑

x∈X,y∈Y
(c(x, y)− ϕ(x) + ψ(y)) γxy +

∑
x∈X

µxϕ(x)−
∑
y∈Y

νyψ(y).

By replacing these in the Lagrangian function one gets:
(KP)

= supϕ,ψ infγ>0 L(ϕ,ψ)
= supϕ,ψ infγ>0

∑
x∈X,y∈Y (c(x, y)− ϕ(x) + ψ(y)) γxy +

∑
x∈X µxϕ(x)−

∑
y∈Y νyψ(y)

= supϕ−ψ6c
∑
x∈X µxϕ(x)−

∑
y∈Y νyψ(y)

Remark that in this equation the inf is equal to −∞ if c(x, y) − ϕ(x) + ψ(y) < 0 for some
x, y (and is equal to 0 otherwise). This enforces the constraint ϕ(x)− ψ(y) 6 c(x, y). Hence
one has

(KP) = sup
ϕ−ψ6c

∑
x∈X

µxϕ(x)−
∑
y∈Y

νyψ(y).

We therefore have the following definition
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Definition 8 (Kantorovitch dual). The dual problem is given by

(DP) = supϕ,ψ
∑
x∈X

ϕ(x)µx −
∑
y∈Y

ψ(y)νy,

where ϕ : X → R and ψ : Y → R are function satisfying ϕ(x)− ψ(y) 6 c(x, y).

2.4. Strong duality.

Proposition 4. Weak duality holds.
(KP) > (KD)

Proof. Let γ ∈ Γ(µ, ν) and ϕ and ψ be such that ϕ(x)− ψ(y) 6 c(x, y).∑
x∈X,y∈Y

c(x, y)γxy >
∑

x∈X,y∈Y
(ϕ(x)− ψ(y))γxy

=
∑
x∈X

ϕ(x)
∑
y∈Y

γxy −
∑
y∈Y

ψ(y)
∑
x∈X

γxy

=
∑
x∈X

ϕ(x)µx −
∑
y∈Y

ψ(y)νy

�

We now need to define the notion of c-transform:

Definition 9 (c-Transform). The c-transform of a function ψ : Y → R ∪ {+∞} (resp.
ϕ : X → R ∪ {+∞}) is defined as

ψc : x ∈ X 7→ inf
y∈Y

c(x, y) + ψ(y)(2.2)

ϕc : y ∈ Y 7→ sup
x∈X
−c(x, y) + ϕ(x)(2.3)

Theorem 5 (Kantorovitch duality).
• Strong duality holds

(KP) = (KD)
• The dual problem is reached for a pair of functions (ϕ,ψ) that satisfies ϕ = ψc and
ψ = ϕc

Economic interpretation (Mines and Factories). Let us consider again the example
of Mines and factories. To understand the dual problem, one considers that the operator is
outsourcing the transport to an external seller. The seller is in contact with each warehouse
xi and each factory yj . For a given unity of material the vendor fixes a price of pickery ϕi to
a warehouse and a price of delivery ψj to the factory.
The goal of the seller is obviously to maximize its profit 〈ϕ|µ〉+ 〈ψ|ν〉.

The operator wants to be sure that the price of the seller is not too expensive. To do so,
he should solve the optimal problem and compare it to the outcome of the seller. However
it is too complicated, so he only does it for each delivery between xi and yj . He checks that
the price of the seller ϕi + ψj is less than what it costs to him Ci,j . So the operator adds a
constraint ϕi + ψj 6 Ci,j , and we assume that the seller is aware of this constraint. So the
goal of the seller is exactly to solve the dual problem.
We change put ψ := −ψ and get the same result.
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We now turn to the proof of the Kantorovitch duality.

Proposition 6. Let γ ∈ Γ(µ, ν) and let (ϕ,ψ) ∈ C0(X) × C0(Y ) such that ϕ(x) − ψ(y) 6
c(x, y). Then, the following statements are equivalent:

• γxy 6= 0⇒ ϕ(x)− ψ(y) = c(x, y)
• γ minimizes (KP), (ϕ,ψ) maximizes (DP) and (KP) = (DP).

Proof. Assume that ϕ	 ψ = c γ-a.e. Then,

(KP) 6
∑
x,y

c(x, y)γx,y =
∑
x,y

(ϕ(x)− ψ(y))γx,y =
∑
x

ϕ(x)µx −
∑
y

ψ(y)νy 6 (DP)

Since in addition (KP) > (DP), all inequalities are equalities, which implies that (KP) =
(DP), γ miminizes (KP) and (ϕ,ψ) maximizes (DP). Conversely, if (KP) = (DP), γ miminizes
(KP) and (ϕ,ψ) maximizes (DP), then

〈ϕ|µ〉 − 〈ψ|ν〉 = (DP) = (KP) = 〈c|γ〉 > 〈ϕ	 ψ|γ〉 = 〈ϕ|µ〉 − 〈ψ|ν〉,

implying that ϕ	 ψ = c γ a.e. �

We first recall Karush-Kuhn-Tucken
Theorem 7 (KKT). Let f : Rd → R be convexe C1, gi and hj be N affine constraints and
K = {x ∈ Rd, gi(x) 6 0 hj(x) = 0}. Then x is a minimizer of f on K iff there exists
Lagrange multipliers ai and bj such that

x ∈ K

−∇f(x) =
∑
i

ai∇gi(x) +
∑
j

bjhj(x)

ai > 0
aigi(x) = 0.

Proof of Theorem 5. The primal problem is the linear programming problem

(KP) = min

∑
i,j

γijc(xi, yj) | γij > 0,
∑
j

γij = µi,
∑
i

γij = νj

 ,
which admits a solution which we denote γ. By Karush-Kuhn-Tucker theorem, there exists
Lagrange multipliers (ϕi)16i6N , (ψj)16j6M and (πij)16i6N,16j6M such that

ϕi − ψj − c(xi, yj) = πij

γijπij = 0
πij 6 0

In particular, ϕi − ψj 6 c(xi, yj) with equality if γij > 0. Now, define ϕ(xi) = ϕi and
ψ(yj) = ψj . Then one has ϕ(x) − ψ(y) 6 c(x, y) with equality when γxy 6= 0, so that
(KP) = (DP) by Proposition 6.
Step 2. Let i ∈ {1, · · · , N}. Since µi =

∑
j γij 6= 0, there exists j ∈ {1, . . . ,M} such that

γij > 0. Using γijπij = 0, we deduce that so that ϕi − ψj = c(xi, yj), giving

ϕ(xi) = c(xi, yj) + ψj = min
k∈{1,...,N}

c(xi, yk) + ψk = ψc(xi)
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Similarly, since νj 6= 0, one also has the existence of i such that
ψ(yj) = −c(xi, yj) + ϕ(xi) = max

k∈{1,...,N}
−c(xk, yj) + ϕ(xk) = ϕc(yj)

�

2.5. Kantorovitch functional. Since the dual problem is reached for a pair of functions
(ψc, ψ), one introduces the Kantorovitch functional

Definition 10 (Kantorovitch functional).

K(ψ) :=
∑
x∈X

min
y∈Y

(c(x, y) + ψ(y))µx −
∑
y∈Y

ψ(y)νy,

where ψ : Y → R is any function.

Solving an optimal transport problem amounts to fining the maximum of the Kantorovitch
functional K.

(KP) = (KD) = max
ψ:Y→R

K(ψ).

Remark 4 (Numerical interest).
• (KP) amounts to minimize a function of N2 variables with 2N constraints.
• (KD) amounts to maximize of function of 2N variables with N2 constraints.
• There is no constraint in the maximization of K and N variables. However, the
constraints are hidden in ψc.

3. Semi-discrete setting in the quadratic case

In the semi-discrete setting, we suppose that the source is continuous and the target
discrete. More precisely, we assume X ⊂ Rd is a compact set (it can be more general), that
µ(x) = ρ(x)dx is an absolutely continuous measure with respect to the Lebesgue measure.
The set Y = {y1, · · · ym} is discrete with a measure ν =

∑
i δyiνi. For convenience, we assume

here that the cost is quadratic, namely c(x, y) = ‖x − y‖2, but the results hold in a more
general setting.

3.1. Monge problem. We recall that the Monge problem reads

min
T

∑
i

∫
T−1(yi)

c(x, yi)ρ(x)dx under the constraint T]µ = ν.

3.2. Laguerre cells and transport maps. To introduce the notions, let us use again the
example of bakeries, but we motivate by looking at the interest of people. Suppose that all
the bread prices ψ(yi) are the same. If someone leaves a location x, its interest is to go to
the closest bakery, hence to look for the bakery argmini ‖x−yi‖2. This naturally decomposes
the space X into Voronoi cells

Vor(yi) := {x ∈ X, ‖x− yi‖2 6 ‖x− yj‖2∀j}.
The set of Voronoi cells is called a Voronoi diagram.

Proposition 8 (Reminder on Voronoi diagrams).
• The Voronoi diagram forms a partition of the space Rd almost everywhere.
• Each cell Vor(yi) is a convex polyedron.
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In particular, the amount of people going to a bakery yi is exactly µ(Vor(yi)) =
∫

Vor(yi) ρ(x)dx.
Unfortunately, there is no reason why this quantity is exactly equal to the bread capacity νi.
If a bakery receives to many people, its interest is to increase the Bread price ψ(yi), and the
interest of people leaving at a location x is to minimize the the cost of transport plus the
cost of bread , hence to look for argmini ‖x − yi‖2 + ψ(yi). This naturally decomposes the
space X into Laguerre cells

Lagyi(ψ) := {x ∈ X, ‖x− yi‖2 + ψi 6 ‖x− yj‖2 + ψj∀j}.

Proposition 9 (Reminder on Laguerre diagrams).
• The Laguerre diagram forms a partition of the space Rd almost everywhere.
• Each cell Lagyi(ψ) is a convex polyedron.

We denote by Tψ : X → Y the map that associates to a location x ∈ Lagyi(ψ) the most
interesting bakery yi.

Proposition 10.
- The map Tψ is defined almost everywhere on X.
- The map Tψ is an optimal transport map between X and Y for the measures µ and Tψ]µ.

Proof.
− Clearly, Tψ is defined, except at x that belong to two Laguerre cells.

x ∈ Lagyi(ψ) ∩ Lagyj (ψ) ⇐⇒ ‖x− yi‖2 + ψi = ‖x− yj‖2 + ψj
⇐⇒ 2〈yj − yi|x〉 = ψj − ψi + ‖yj‖2 − ‖yi‖2

This set is an hyperplane, thus is of dimension d− 1, hence is negligible.

− By definition, Tψ is a transport map for the measures µ and Tψ]µ. Let us show that it is
optimal. Let T : X → Y be any transport plan. Then by definition of the Laguerre cells

∀x ∈ X‖x− Tψ(x)‖2 + ψ(Tψ(x)) 6 ‖x− T (x)‖2 + ψ(T (x))

By integrating over, one has:∫
X
‖x− Tψ(x)‖2 + ψ(Tψ(x))dµ(x) 6

∫
X
‖x− T (x)‖2 + ψ(T (x))dµ(x)

Since T]µ = ν, the change of variable formula gives∫
X
ψ(Tψ(x))dµ(x) =

∫
Y
ψ(y)dν(y).

This can also be done directly. Indeed∫
X
ψ(Tψ(x))dµ(x) =

n∑
i=1

∫
Lagyi

ψ(yi)dµ =
n∑
i=1

ψ(yi)µ(Lagyi) =
n∑
i=1

ψ(yi)νi.

This is also true for the map T , so we get∫
X
‖x− Tψ(x)‖2dµ(x) 6

∫
X
‖x− T (x)‖2dµ(x).

which shows that Tψ is optimal. �
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The optimal transport problem amounts to solve the reverse:

OT problem. Let (X,µ) and (Y, ν). The OT problem amounts to
finding an optimal transport plan T = Tψ such that T]µ = ν.

This is done in the following subsection.

3.3. Dual formulation. The following theorem gives directly the concave formulation of the
Kantorovitch duality. It ensures that any semi-discrete optimal transport problem admits
such a solution. In other words, for any continuous probability measure µ(x) = ρ(x)dx on X
and any probability measures µ on Y there exists a function ψ on Y such that Tψ#µ = ν. The
proof of this theorem was first given in [1] for the quadratic cost, but has been generalized
to other costs [5].

Theorem 11. Let X ⊂ Rd be a compact set, µ(x) = ρ(x)dx an absolutely continuous measure
whose density ρ is continuous, ν =

∑
i δyiνi a probability measure on Y = {y1, · · · ym}, and

c(x, y) = ‖x− y‖2 the quadratic cost. Then, the function

K(ψ) :=
∫
X

(min
y∈Y

c(x, y) + ψ(y))ρ(x)dx−
∑
y∈Y

ψ(y)νy

=
∑
y∈Y

∫
Lagy(ψ)

(c(x, y) + ψ(y))ρ(x)dx−
∑
y∈Y

ψ(y)νy(3.4)

is concave, C1-smooth, and its gradient is

(3.5) ∇K(ψ) =
(
µ(Lagyi(ψ))− νi

)
16i6m

This functional is also called the Kantorovitch functional.
Corollary 12. The following statements are equivalent:

(i) ψ : Y → R is a global maximizer of K ;
(ii) Tψ is an optimal transport map between ρ and ν ;
(iii) Tψ#µ = ν, or equivalently,

(MA) ∀yi ∈ Y, µ(LagψY (yi)) = νi

Proof. Since K is concave and C1, one has
ψ is a maximum ⇔ ∇K(ψ) = 0

⇔ µ(Lagyi(ψ)) = νi ∀i
⇔ Tψ#µ = ν
⇔ Tψ is an optimal transport map between µ and ν

�

Remark 5. Note that both this functional and its gradient are invariant by addition of a
constant.

K(ψ + t1Y ) = K(ψ) and ∇K(ψ + t1Y ) = ∇K(ψ)

The end of this subsection is devoted to the proof of this theorem. For that, we just need
some ingredients of convex analysis.

3.4. Proof of Theorem 11.
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Figure 2. Concave functions:

Reminder of properties of concave functions.
• An infimum of linear functions is concave.
• A concave function is differentiable almost everywhere.
• The Supdifferentials of a function K : Rd → R is defined by

∂+K(ψ) = {v ∈ Rd, K(ϕ) 6 K(ψ) + 〈ϕ− ψ|v〉 ∀ϕ ∈ Rd}.

• The function K is concave iff

∀ψ ∈ Rd ∂+K(ψ) 6= ∅.

• If K is differentiable at ψ iff ∂+K(ψ) = {∇K(ψ)}.
• ψ maximum of K ⇔ 0 ∈ ∂+K(ψ)
•The supergradient ∂+K(ϕ) of a concave function is characterized by [8, Theorem 25.6]

∂+K(ϕ) = conv
{

lim
n→∞

∇K(ϕn) | (ϕn) ∈ S
}
,

where conv denotes the convex envelope and S the set of sequences (ϕn) converging to ϕ such
that K is differentiable at ϕn.

Continuity of the area of Laguerre cells. We first denote by G(ψ) := (µ(Lagyi(ψ))16i6m the
area vector of the Laguerre cells.

Lemma 13. The function G : Rm → Rm is continuous. More precisely, each Gi : Rm → R
is L-Lipschitz with

L = N
diam(X)d−1Vol(Bd−1(1))‖ρ‖∞

2 infi 6=j ‖yi − yj‖
.

Proof. Let us show the continuity of Gi. Let ψ ∈ Rm and ϕ = ψ + ejε (we just change the
jth coordinate). Then the symmetric difference D := Lagyi(ψ)∆Lagyi(ϕ) lies in set delimited
by two parallel hyperplanes. Let us bound its volume.

x ∈ Lagyi(ψ) ∩ Lagyj (ψ) ⇒ 2〈yj − yi|x〉 = ψj − ψi + ‖yj‖2 − ‖yi‖2
x′ ∈ Lagyi(ϕ) ∩ Lagyj (ϕ) ⇒ 2〈yj − yi|x′〉 = ψj − ψi + ‖yj‖2 − ‖yi‖2 + ε

This implies that 2〈yj − yi|x− x′〉 = ε and that the distance δ between the two hyperplanes
satisfies δ = ε/(2‖yi − yj‖), and then

Vol(D) 6 ε

2‖yi − yj‖
diam(X)d−1Vol(Bd−1(1)).
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We then have

|Gi(ψ)−Gi(ψ + ejε)| 6
diam(X)d−1Vol(Bd−1(1))‖ρ‖∞

2 infi 6=j ‖yi − yj‖
ε.

Doing the same thing with all the j ∈ {1, · · · ,m}, and using the triangular inequality wet
get the same result for any ψ and the Lipschitz constant for Gi. �

Proof of concavity. We consider the following function Ψ:

Ψ(ψ) :=
∑
yi∈Y

∫
Lagyi (ψ)

(‖x− yi‖2 + ψ(yi))dµ(x).

For every map T : X → Y , one has by definition of the Laguerre cells that

Ψ(ψ) 6 ΨT (ψ) :=
∫
R2

(‖x− T (x)‖2 + ψ(T (x)))dµ(x).

Furthermore, the infimum is reached: Ψ(ψ) = ΨTψ(ψ). Therefore ΨT is linear in ψ and that
Ψ(ψ) = infT :X→Y ΨT (ψ). The functional Ψ is thus a minimum of linear function, hence is
concave and differentiable almost everywhere. Since K only defers from Ψ by a linear term,
it is also concave and differentiable almost everywhere.

Proof of regularity and gradient. Note that at the point ψ one has Ψ(ψ) = ΨTψ(ψ). Let now
take any function ϕ : Y → R. From the previous inequality with T = Tϕ, one gets

Ψ(ψ) 6 ΨTϕ(ψ)
=
∫
R2(‖x− Tϕ(x)‖2 + ψ(Tϕ(x)))dµ(x)

=
∫
R2(‖x− Tϕ(x)‖2 + ϕ(Tϕ(x)))dµ(x) +

∫
R2 ψ(Tϕ(x)))− ϕ(Tϕ(x)))dµ(x)

= Ψ(ϕ) +
∑n
i=1

∫
Lagyi (ϕ) ψ(yi)− ϕ(yi)dµ(x)

= Ψ(ϕ) +
∑n
i=1Gi(ϕ)(ψi − ϕi)

= Ψ(ϕ) + 〈G(ϕ)|ψ − ϕ〉

Using the fact K(ψ) = Ψ(ψ)− 〈ψ|ν〉 and K(ϕ) = Ψ(ϕ)− 〈ϕ|ν〉, one gets

K(ψ) 6 K(ϕ) + 〈G(ϕ)− µ|ψ − ϕ〉

This proves that the superdifferential ∂+K(ϕ) of K at ϕ contains G(ϕ) − ν, thus establish-
ing again the concavity. By Lemma 13, the map G is continuous, meaning that we have
constructed a continuous selection of a supergradient in the superdifferential of the concave
function K. Using standard arguments from convex analysis (mentioned above), this proves
that

∂+K(ϕ) = conv
{

lim
n→∞

∇K(ϕn)
}

= conv
{

lim
n→∞

G(ϕn)− ν
}

= {G(ϕ)− ν}.

This proves that K is C1, and that ∇K(ϕ) = G(ϕ)− ν.

Remark 6. It could formally happen that the gradient of the concave function does not vanish
(think of the concave function x 7→ −ex), but in any case this equivalence still holds.

4. General case

The goal here is just to give an overview that optimal transport can be stated in a more
general setting. We consider here X ⊂ Rd and Y ⊂ Rd′ two compact sets.
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4.1. Duality in the general case.

Theorem 14. [Kantorovitch duality] Let µ and ν be two probability measures on two compact
sets X ⊂ Rd and Y = Rd′ and c : X × Y → R+ ∪ {+∞} a continuous cost function. Then

inf
γ∈Γ(µ,ν)

∫
X×Y

c(x, y) dγ(x, y) = sup
(ϕ,ψ)

∫
X
ϕdµ +

∫
Y
ψdν,

where (ϕ,ψ) ∈ C0(X)× C0(Y ) satisfies ϕ(x) + ψ(y) 6 c(x, y).

The existence of solutions is obtained in a very general framework. The solutions corresponds
to pairs of c-concave functions that satisfy the dual problem.

4.2. About c-concave functions.

Definition 11 (c-transform).
− The c-transform of a function ϕ : X → R is the function ϕc : Y → R defined by

ϕc(y) = sup
x∈X
−c(x, y) + ϕ(x).

− The c-transform of a function ψ : Y → R is the function ψc : X → R defined by

ψc(x) = inf
y∈Y

c(x, y) + ψ(y).

This leads to the following definition

Definition 12.
− A function ϕ : X → R is c-concave if there exists ψ : Y → R such that ϕ = ψc.
− A function ψ : Y → R is c-concave if there exists ϕ : Y → R such that ψ = ϕc.

Proposition 15.
• ϕcc > ϕ
• ϕccc = ϕc

• ϕcc = ϕ iff ϕ is c-concave.

Definition 13 (c-superdifferential).
• The c-superdifferential of a c-concave function ϕ is

∂cϕ :=
{

(x, y) ∈ X × Y, ∀z ∈ X ϕ(z) 6 ϕ(x) + [c(z, y)− c(x, y)]
}

• The c-superdifferential of a c-concave function ϕ at x is

∂cϕ(x) :=
{
y ∈ Y, (x, y) ∈ ∂cϕ

}
These definitions are symmetric in X and Y .

4.3. Relation between Kantorovitch dual and transport plan. Dans un cas assez
général, on a existence d’une solution qui s’exprime comme une paire de fonctions c-concaves.
Par ailleurs, les plans de transport optimaux sont caractérisés par leur support ! Interestingly,
the knowledge of a Kantorovitch function (also Kantorovitch potential) allows to recover (at
least partially) transport plan. As in the discrete and semi-discrete setting, we define
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Theorem 16. Under the same assumptions of Theorem 14, we have
• A maximizer (ϕ,ψ) of the dual Kantorovitch problem is of the form (ϕ,ϕc) or (ψc, ψ).
• An optimal transport plan γ is supported on the set

{(x, y) ∈ X × Y, ϕ(x)− ψ(y) = c(x, y)}.

Support of a measure. We recall that the support of a measure µ is given by

spt(µ) :=
⋂
{A ⊆ X | A closed and µ(X \A) = 0}.

A point x belongs to spt(µ) iff for every r > 0 one has µ(B(x, r)) > 0.

Remark 7. We consider the couple (ϕ,ψ) solution of the dual problem, with ϕ(x) := ψc(x) =
minz∈Y (c(x, z) + ψ(z)) and the transport plan γ solution to the primal problem. According
to Theorem 16,

(x, y) belongs to the support of γ ⇐⇒ y ∈ argminz∈Y (c(x, z) + ψ(z))
⇐⇒ (x, y) ∈ ∂cϕ
⇐⇒ y ∈ ∂cϕ(x)
⇐⇒ x ∈ ∂cψ(y)

In the semi-discrete setting T = ∂cϕ is to the optimal transport plan and ∂cψ is the Laguerre
cell.

4.4. Brenier theorem in the quadratic case.

Theorem 17 (Brenier theorem). Let µ and ν be two probability measures on Rd, c(x, y) =
1
2‖x− y‖

2 and µ be absolutely continuous. Then
• There exists a unique (a.e.) measurable map T : X → Y such T = ∇f where
f : X → R is a convex function and T]µ = ν.
• Such a map is the unique optimal transport map between µ and ν (and γT is the
unique transport plan).

Such a map is called a Brenier map. The initial Brenier result was assuming that both µ and
ν had moments of order two finite. This results was refined later on by Mc Cann without
that assumption.

Remark 8 (Monge Ampère equation). In the continuous setting (µ and ν are absolutely
continuous), the fact of having a transport map corresponds to

g(T (x))| det(DT (x))| = f(x).

The fact of having a map that is optimal gives T = ∇h which leads to

g(∇h(x))|det(∇2h(x))| = f(x).

4.5. Wasserstein distance. For this part, the best is probably to look at Filippo’s book [9].
Let X ⊂ Rd be any compact set, p ∈ [1,+∞[. We define for any probability measure µ and
ν on X

Wp(µ, ν) :=
(

inf
γ∈Γ(µ,ν)

∫
X×X

‖x− y‖pdγ(x, y)
) 1
p

Proposition 18. For any p > 0, Wp is a distance on the set of probability measures.
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The notion of weak convergence is associated to a space of functions, usually the set of
continuous functions f : X → R that vanish at infinity and denoted Cc(X). Since X is
compact, we do not need such an assumption here.

Definition 14 (Weak convergence). A sequence of probability measures µn weakly converges
to a probability measure µ, and we denote µn ⇀ µ if

∀f :∈ Cc(X) lim
n→∞

∫
X
fdµn =

∫
X
fdµ.

Proposition 19. Let X ⊂ Rd be a compact set and p ∈ [1,+∞[.

µn ⇀ µ⇔ lim
n→∞

Wp(µn, µ) = 0.

4.6. Mac Cann interpolation. Reminder on geodesics.
Make a drawing with a surface, show the example of segments in the plane and great circles
on spheres.

Proposition 20. Let µ and ν be two probabilities measures on the compact set X ⊂ Rd and
let T : X → Y be a transport map for the cost c(x, y) = ‖x− y‖p (p ∈ [0,+∞[). Then

• The probability measures µt = Tt]µ (with t ∈ [0, 1]) is a geodesic in the set of proba-
bility measures, where Tt := (1− t)Id+ tT .
• The map Tt : X → X is an optimal transport map for the cost c.

Remark 9 (Discrete case). Let us look at the Mac Cann interpolation in the discrete setting
for the quadratic cost. Here clearly, the mass is sent through segments that do not cross.

Remark 10 (Semi-discrete case). Let us look at the Mac Cann interpolation in the semi-
discrete setting. Let yi ∈ Y . We know that Lagyi(ψ) = T−1(yi). We get

Tt(Lagyi) = {(1− t)x+ tyi, x ∈ Lagyi(ψ)}.

In practice, if we suppose in addition that ν is an absolutely continuous measure on X. We
consider a point set Y ⊂ X and choose to discretize ν by setting νy = ν(Vory). Therefore a
Laguerre cell is transformed in a point yi then spread into a Voronoi cell Voryi . The underlying
idea is therefore to directly go from the Laguerre cell to the Voronoi cell by interpolating the
weights.

Figure 3. Mac Cann interpolation between Monge and Riemann
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5. Gradient of Kantorovitch functional in the discrete case

Proposition 21. Let X be a compact space, Y be finite, c ∈ C0(X × Y ) and µ ∈ P(X) and
ν ∈ P(Y ). Then, for all ψ0 ∈ RY ,

(5.6) ∂+K(ψ0) = {ΠY#γ − ν | γ ∈ Γψ0(µ)} with ΠX#γ =
(∑

x

γx,y
)
y∈Y

where Γψ0(µ) is the set of probability measures on X ×Y with first marginal µ and supported
on the c-subdifferential ∂cψ0, i.e.
(5.7) Γψ0(µ) = {γ ∈ P(X × Y ) | ΠX#γ = µ and spt(γ) ⊆ ∂cψ0}

Proof. Let γ ∈ Γψ0(µ). Then, for all ψ ∈ RY ,

K(ψ) =
∑
x

ψc(x)µx −
∑
y

ψ(y)νy

=
∑
x,y

ψc(x)γx,y −
∑
y

ψ(y)νy

6
∑
x,y

c(x, y) + ψ(y)γx,y −
∑
y

ψ(y)νy,

where we used ΠX#γ = µ to get the first equality and ψc(x) 6 c(x, y) + ψ(y) to get the
first inequality. Note also that equality holds if ψ = ψ0, by assumption on the support of γ.
Hence,

K(ψ) 6 K(ψ0) +
∑
x,y

(ψ(y)− ψ0(y))γx,y −
∑
y

(ψ(y)− ψ0(y))νy

= K(ψ0) +
∑
y

(
∑
x

γx,y − νy)(ψ(y)− ψ0(y))

= K(ψ0) + 〈ΠY#γ − ν|ψ − ψ0〉.

This implies by definition that ΠY#γ − ν lies in the superdifferential ∂+K(ψ0), giving us the
inclusion

D(ψ0) := {ΠY#γ − ν | γ ∈ Γψ0(µ)} ⊆ ∂+K(ψ0).
Note also that the superdifferential of K is non-empty at any ψ0 ∈ RY , so that K is concave.
As a concave function, K is differentiable almost everywhere and one has ∂K+(ψ) = {∇K(ψ)}
at differentiability points.

We now show that ∂K+(ψ0) ⊂ D(ψ0), using the characterization of the subdifferential
recalled in the Appendix:

∂K+(ψ0) = conv
{

lim
n→∞

∇K(ψn) | (ψn)n∈N ∈ S
}
,

where S is the set of sequences (ψn)n∈N that converge to ψ0, such that ∇K(ψn) exist and
admit a limit as n → +∞. Let v = limn→∞∇K(ψn) , where (ψn)n∈N belongs to the set S.
For every n, there exists γn ∈ Γψn(µ) such that ∇K(ψn) = vn := ΠY#γ

n−ν. By compactness
of P(X × Y ), one can assume (taking a subsequence if necessary) that γn weakly converges
to some γ, and it is not difficult to check that γ ∈ Γψ0(µ), ensuring that the sequence vn
converges to some v ∈ D(ψ0). Thus,{

lim
n→∞

∇K(ψn) | (ψn)n∈N ∈ S
}
⊆ D(ψ0).

Taking the convex hull and using the convexity of D(ψ0), we get ∂+K(ψ0) ⊆ D(ψ0) as
desired. �
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As a corollary, we obtain an explicit expression for the left and right partial deriatives of K,
and a characterization of its differentiability. Using the terminology used in the semi-discrete
setting, we will refer to the c-subdifferential at y ∈ Y as Laguerre cell associated to y and we
will denote it by Lagy(ψ).

Lagy(ψ) := {x ∈ X | ∀z ∈ Y, c(x, y) + ψ(y) 6 c(x, z) + ψ(z)}.
We also need to introduce the strict Laguerre cell SLagy(ψ):

SLagy(ψ) := {x ∈ X | ∀z ∈ Y, c(x, y) + ψ(y) < c(x, z) + ψ(z)}.

Corollary 22 (Directional derivatives of K). Let ψ ∈ RY , y ∈ Y and define κ(t) = K(ψt)
where ψt = ψ + t1y. Then, κ is concave and

∂+κ(t) = [µ(SLagy(ψt))− νy, µ(Lagy(ψt))− νy)]

In particular K is differentiable at ψ ∈ RY iff µ(Lagy(ψ) \ SLagy(ψ)) for all y ∈ Y , and in
this case

∇K(ψ) =
(
µ(Lagy(ψ))− νy

)
y∈Y

.

Proof. Using Hahn-Banach’s theorem, one can easily relate the super-differential of κ to the
one of K: ∂+κ(t) =

{
〈π|1y〉 | π ∈ ∂+K(ψt)

}
. Combining with the previous proposition we

get
∂+κ(t) =

{
〈ΠX#γ − ν|1y〉 | γ ∈ Γψt(µ)

}
=
{∑

x

γx,y − νy | γ ∈ Γψt(µ)
}

Let γ ∈ Γψ+(µ).
Step 1. We first remark that x ∈ SLagy(ψ+) then γx,y = µx.

∀z 6= y γx,z = 0

⇒ γx,y =
∑
z

γx,z = νx since Π]γ = µ.

We deduce that ∑
x∈SLagy(ψ+)

γx,y = µ(SLagy(ψ+)).

Step 2. We also remark that x ∈ Lagy(ψ) \ SLagy(ψ+) then γx,y can take any value in
[0, µx]. This implies that{∑

x

γx,y | γ ∈ Γψt(µ)
}

= [0, µ(Lagy(ψ) \ SLagy(ψ+))].

Conclusion. We conclude since if x /∈ Lagy(ψ), the γx,y = 0. �

Part 2. Numerical optimal transport

6. Overview of some methods

Continuous methods I will not speak about these methods here.
• Benamou-Brenier algorithm
• stencil methods.
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Discrete methods
• Linear programming methods: simplex method (cubic complexity),...
• Bertseka’s auction algorithm (quite efficient, even costly) ; Studied
• Entropic regularization (simple algorithm, very efficient in some cases, solves an ap-
proximation of the result) ; Studied

Semi-discrete methods
• Oliker-Prussner algorithm : 1990’s, analysis of convergence but slow (complexity
cubic) ; Studied
• Quasi Newton (efficient, but no analyses)
• Damped newton algorithm (more recent, fast and certified) ; Studied

7. Auction algorithm for linear assignment method

The Bertsekas Auction’s algorithm [3] is a primal dual method that allows to solve linear
assignment problem when the cost has integer values. This algorithm remains one of the
most performant for assignment problems. More precisely, its complexity is O(N3C), where
C = max c(x, y) and N = |X| = |Y | [2]. There also exists a scaled version which is fast and
well used in practice.

7.1. Problem and its dual formulation. We recall that the linear assignment problem
amounts to finding a bijection γ : X → Y that minimizes

min
γ:X→Y

∑
x∈X

c(x, γ(x)).

The idea of Auctions’ algorithm is to use the dual formulation of the Kantorovitch functional

K(ψ) := 1
N

∑
x∈X

min
y∈Y

(c(x, y) + ψ(y))−
∑
y∈Y

ψ(y)

 .
We following proposition is just a recast of the Kantorovitch duality theorem.

Proposition 23. The following statements are equivalent
• ψ is a global maximizer of the Kantorovitch functional K
• There exists a bijection γ : X → Y that satisfies

∀x ∈ X c(x, γ(x)) + ψ(γ(x)) = min
y∈Y

c(x, y) + ψ(y).

Moreover a bijection γ satisfying this last equation is a solution to the linear assignment
problem.

The idea of Auction algorithm is to
(1) increase iteratively the weights ψ(y) so as to reach a maximizer of K. It is therefore

a coordinate-wise ascent for K. It is well known that in such a case, one can get
stuck at points that are not maximizers. A local increment will allow to tackle this
problem.

(2) Furthermore, the idea is to build an injective map γ : S ⊂ X → Y (partial matching)
that will converge to a bijection.
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7.2. Best bid (increase of price). The idea is to modify the prices one after another in
order to reach a maximum of the function K. Remark that for a given y ∈ Y , when we
increase its price ψ(y), then its Laguerre cell reduces. Since we want a matching, we need its
Laguerre cell to be non empty. We can increase K if we increase ψ(y) without emptying the
Laguerre cell. The best price is given by the following lemma [6].

Lemma 24. Let ψ : Y → R be a price function and y ∈ Y . We assume that the (discrete)
Laguerre cell Lagy(ψ) = {x ∈ X, y ∈ argminz∈Y c(x, z) + ψ(z)} is not empty. Then the
maximum of the function t→ K(ψ + t1y) is reached at

py = max{bidx, x ∈ Lagy(ψ)}, where bidx :=
(

min
z∈Y \y

c(x, z) + ψ(z)
)
− (c(x, y) + ψ(y)).

Economic interpretation. Assume that Y is a set of houses owned by one seller and X
is a set of customers that want to buy a house. Let y0 be a given house. The cost c(x, y)
represents the interest for x to have the house y (independently of its price). The customer x
wants to minimize c(x, y) + ψ(y). The seller wants to maximize his profit, hence to increase
ψ(y) as much as possible. Suppose that one customer x is already interested, meaning that
x ∈ Lagy0(ψ). The second best house for x is y1 ∈ argminz 6=y0(c(x, z) +ψ(z)). The difference
of interest between the two houses is exactly bidx. Since the seller wants only one customer,
the best increase of price he can take is exactly py0 .

Proof of Lemma 24.
• We have Lagy(ψ) 6= ∅. When we increase a price ψ(y), the its Laguerre cell Lagy(ψ)
decreases. More precisely one has for t > 0 Lagy(ψ + t1y) ⊂ Lagy(ψ).
• Remark also that for x ∈ Lagy(ψ), one has

x ∈ Lagy(ψ + t1y) ⇔ ∀z 6= y c(x, y) + ψ(y) + t 6 c(x, z) + ψ(z)
⇔ t 6

(
minz∈Y \y c(x, z) + ψ(z)

)
− (c(x, y) + ψ(y))

⇔ t 6 bidx

This implies that
Lagy(ψ + t1y) 6= ∅ ⇔ t 6 py = max

x
bidx.

• Therefore, when 0 6 t 6 py increases, since the Laguerre cell contains at least one element
x, then K(ψ + t1y) does not decrease. When t > py, then it strictly decreases (because the
first sum does not vary). This implies the result. �

Alternate proof of Lemma 24-third bullet.
• By Corollary 22, the upper-bound of the superdifferential ∂+κ(t) of the function κ(t) =
K(ψ + t1y) is µ(Lagy(ψt)) − 1

N . It is > 0 (non-negative) for t ∈ [0,bidy(ψ)] and < 0 for
t > bidy(ψ). This directly implies (for instance using the same characterization at the limit)
that 0 ∈ ∂+κ(bidy0(ψ)), so that the largest maximizer of κ is bidy0(ψ).

�

7.3. Bertsekas (original) Auction’s algorithm. We first need the following definitions
• A partial assignment is a pair (γ, S) where S ⊂ X and γ : S → Y is injective.
• A partial assignment (γ, S) and a vector price ψ satisfy the ε-complementary slackness
condition if

c(x, γ(x)) + ψ(γ(x) 6 min
y∈Y

c(x, y) + ψ(y) + ε
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Remark 11. If the cost is integer-valued, if (γ, S = X) is a partial assignment (bijective)
that satisfies the ε-complementary slackness condition, and if ε < 1/N , then γ : X → Y is a
optimal matching. Indeed∑

x∈X
c(x, γ(x)) 6 min

σpermutation
∑
x∈X

c(x, σ(x)) +Nε.

The goal of Auction algorithm is to increase the prices by the bids, and to maintain a partial
matching "that increases".

Auctions algorithm (let ε > 0) :
• Initialization. S = ∅ ⊂ X (no point of X is assigned)

ψ(y) = 0 (prices are equal to 0).
• Step 1. We pick x ∈ X \ S and calculate

y0 ← argminy∈Y c(x, y) + ψ(y) house that minimizes the cost
y1 ← argminy∈Y \y0 c(x, y) + ψ(y) second best house

• Step 2. if y0 was already assigned to x′, then S ← S \ {x′}
• Step 3. Update:

– ψ(y0)← ψ(y0)+(c(x, y1)+ψ(y1))−(c(x, y0)+ψ(y0))+ε (increase the price of the bidx + ε)
– S ← S ∪ {x}.
– We assign x to y0 (γ(x) = y0).

If S 6= X, we go to Step 1.

7.4. Analyses. The following lemma is by construction.

Lemma 25. Along the algorithm, one has
• The image π(S) is increasing.
• (π, S), ψ satisfies the ε-complementary slackness condition
• the price increments in ψ(Y ) are at least of ε.

Proof. Step 2 ensures that we have an injective map.
Step 3 ensures an increment of at least ε.
Note that the image π(S) is not strictly increasing. �

Proposition 26. The number of steps in Auction algorithm is at most N(C/ε + 1), where
C = maxx,y c(x, y).

Proof. For simplicity, we assume that the cost is positive.
• Suppose that after i step, the algorithm has not stopped (the prices are denoted ψi(y).
Then it means that there exists y0 that does not belong to π(S) (since π : S → Y injective).
Therefore ψi(y0) = 0.
• Suppose that there exists y1 whose price has been raised more than n > C/ε+ 1. Then for
every x ∈ X

ψi(y0) + c(x, y0) = c(x, y0) 6 C < (n− 1)ε = nε− ε 6 ψi(y1)− ε 6 ψi(y1) + c(x, y1)− ε

This contradicts the fact the price ψl(y1) 6 ψi(y1) − ε was raised at a previous iteration l.
Indeed if it was the case, then we had to have

∃x ∈ X, s.t. ψl(y1) + c(x, y1) 6 ψi(y1)− ε+ c(x, y1) 6 ψl(y0) + c(x, y0) = c(x, y0),
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which is not true.
•We deduce that the prices of each y has been raised at most C/ε+ 1 times. Since there are
N such y, we conclude. �

Using the remark before, in order to solve the assignment problem, we need to put ε =
1/(N+1). There are O(N/ε) steps. The complexity of each step is O(N) (a loop to determine
y0 and y1). We then get

Theorem 27. The (worst case) complexity of Auction’s algorithm is O(N3C), where C =
maxx,y c(x, y).

7.5. Scaling technique. The idea of scaling is used in several algorithms and usually speeds
up drastically the time. In the case of Auction’s algorithm, it is as follows. We denote by
Auction(ψk, εk) the Auction algorithm with input error εk and intial weights ψk and that
output the final weights ψk+1. The algorithm just consist in starting with ψ0 = 0 and the
computing recursively ψk+1 = Auction(ψk, C/2k).
Theorem 28. The (worst case) complexity of the scaled Auction’s algorithm is
O(N3 log(NC)), where C = maxx,y c(x, y).

Proof. ADMITTED. �

8. Semi-discrete case

8.1. Problem and Kantorovitch functional in the quadratic case. We recall that the
Kantorovicth functional is the function

K(ψ) =
∑
y∈Y

∫
Lagy(ψ)

(c(x, y) + ψ(y))ρ(x)dx−
∑
y∈Y

ψ(y)νy

and that we have the following corollary:
Corollary 29. The following statements are equivalent:

(i) ψ : Y → R is a global maximizer of K ;
(ii) Tψ is an optimal transport map between ρ and ν ;
(iii) Tψ#µ = ν, or equivalently,

(MA) ∀yi ∈ Y, µ(Lagyi(ψ)) = νi

8.2. Oliker-Prussner algorithm. The Oliker-Prussner algorithm is an increment-wise al-
gorithm (such as Auction’s algorithm) whose goal is to obtain (iii). It is also based on the
observation that when a price ψ(yi) decreases, then its Laguerre cell Lagyi(ψ) = {x, ‖x −
yi‖+ψ(yi) 6 ‖x− yj‖+ψ(yj)} increases. The idea is to start with all the prices that are too
small, except for y0, and to iteratively increase the prices of the yi 6= y.

Oliker-Prussner algorithm
• Input.
- Two probability measures µ(x) = ρ(x)dx and ν =

∑
y∈Y νyδy.

- Parameter δ > 0
• Initialization of the weights.
- ψ0(y0) = 0
- ψ0(yi) = maxx,y c(x, y)−minx,y c(x, y) for every i 6= 0.
- k = 0.
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• While there exists yi ∈ Y \ {y0} such that µ(Lagyi(ψk) 6 νi − δ
- Calculate ti > 0 so that µ(Lagyi(ψk − tiei)) ∈ [νi, νi + δ]
- Calculate the new price ψk+1 = ψk − tiei.
- k = k + 1.

Remark 12. At the end of the algorithm, one has
∀yi ∈ Y \ {y0} µ(Lagyi(ψk)) ∈ [νi, νi + δ].

Therefore, since we have two probability measures, if one takes δ = ε/N , where N = ]Y , one
has

|ν0 − µ(Lagy0(ψk))| 6
∣∣∣∣∣∑
i

νi − µ(Lagyi(ψk))
∣∣∣∣∣ 6 δN = ε.

This implies that at the end of the algorithm, one has

∀yi ∈ Y
∣∣∣νi − µ(Lagyi(ψk))

∣∣∣ 6 ε.
8.3. Analysis of Oliker-Prussner algorithm. Remark that the algorithm will terminate
in a finite number of steps if there is a minimal increment on the tis. This will be the case
if the functions Gi(ψ) := Lagyi(ψ) are Lipschitz. We recall that in Lemma 13, we show that
the functions Gi are L-Lipschitz with L = O(N).

Theorem 30. Let ε > 0. The Oliker-Prussner with δ = ε/N converges in 0(N3/ε) steps.

Proof. We assume that the algorithm stops at step k.
• Since there exists x ∈ Lagy0(ψ), one has

‖x− y0‖2 = ‖x− y0‖2 + ψk(y0) 6 ‖x− yi‖2 + ψk(yi),
which implies that ψk(yi) > −C where C = maxx,y c(x, y).
• Now, for a given yi, since Gi is L-Lipschitz (see Lemma 13), one has

δ 6 |Gi(ψk + tiei)−Gi(ψk)| 6 Lti,
hence one has ti > δ/L. Let N i

s be the number of times the price of yi has changed. One has

N i
s

δ

L
6 variation of ψ(yi) 6 C,

which leads to N i
s 6 CL/δ. Since there are N points yi the total number of steps is

Ns 6 N
CL

δ
6 N2CL

ε

using δ = ε/N .
• We conclude by using the fact that the Lipschitz constant is O(N). �

8.4. Hessian of Kantorovitch functional. In order to use a Newton method, one needs
to evaluate the Hessian of the Kantorovitch functional and to show its C2-continuity. For
this purpose, we also need the following notion of genericity.

Definition 15.
• A set Y is said to be in generic position if it does not contain any triplet of aligned
points.
• Y is said to be generic with respect to X if it is generic and if for any yi and yj in Y
and any hyperplane H orthogonal to yi − yj H ∩ ∂X is Lebesgues negligible.
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Theorem 31. Suppose that the density ρ : X → R is continuous and that Y is in generic
position with respect to X. Then the Kantorovitch functional is of class C2 one has

∂2K
∂ψiψj

(ψ) =
∫

Lagi,j(ψ)

ρ(x)
2‖yi − yj‖

dx.

where Lagi,j(ψ) = Lagyi(ψ) ∩ Lagyj (ψ). Moreover

∂2K
∂ψ2

i

(ψ) = −
∑
j 6=i

∫
Lagi,j(ψ)

ρ(x)
2‖yi − yj‖

dx.

Remark 13. Note that the genericity condition allows to show that Ψ is of class C2 on the
whole RN . It can be replaced by imposing that the Laguerre cells have positive mass and
belong to the set [5].

K+ = {ψ : Y → R, µ(Lagyi(ψ)) > 0 ∀yi ∈ Y }

Remark 14. Note that∇K = G is invariant by addition of a constant, namelyG(ψ+cste1N ) =
G(ψ), where Gi(ψ) = µ(Lagyi(ψ)). This implies that 1N = (1, · · · , 1) belongs to the Kernel
of DG(ψ), hence to the Hessian of K at ψ. In particular, the Hessian is not invertible.

Remark 15. Let µ be the uniform probability measure onX = [0, 1]2 ⊆ R2, and let y1 = (1
2 , 0),

y2 = (−1
2 , 0) and y3 = (1, 0). Set ψt = (0, t, 0). Then,

∂G1
∂ψ3

(ψt) = length(K ∩ Lag1(ψt) ∩ Lag3(ψt)) =
{

0 when t > −6
4

1 when t < −6
4 ,

thus showing that G is not globally C1.

Remark 16. We see that if a Laguerre Lagyi(ψ) cell is empty, then ∂Gi
∂ψ−j (ψ) = 0 for every j,

meaning than the correspondin raws and columns in DG(ψ) vanishes.

8.5. Reminder on Coarea formula. We consider two Riemannian sub-manifolds M and
N , respectively of dimensions m and n, of two Euclidean spaces and assume that n 6 m. Let
Φ : M → N be a function of class C1 between the two manifolds. The Jacobian determinant
of Φ : E ⊆M → N at x is defined by

(8.8) JΦ(x) =
√

det(DΦ(x)DΦ(x)T )

Note that if M = Rm, N = Rn and Φ = (Φ1, . . . ,Φn), one has

DΦ(x)DΦ(x)T = (〈∇Φi(x)|∇Φj(x)〉)16i,j6n .

In particular, for n = 1, one has JΦ(x) = ‖∇Φ1(x)‖, and for n = 2 one gets

JΦ(x)2 = ‖∇Φ1(x)‖2 ‖∇Φ2(x)‖2 − 〈∇Φ1(x)|∇Φ2(x)〉2

which by Cauchy-Schwarz’s inequality is always non-negative and vanishes iff ∇Φ1(x) and
∇Φ2(x) are collinear.
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Theorem 32 (Coarea formula). Let Φ : M → N be a function of class C1. For every
Hm-measurable function u : M → R, one has∫

M
u(x)JΦ(x)dHm(x) =

∫
N

∫
Φ−1(y)

u(x)dHm−n(x)dHn(y).

If JΦ(x) does not vanish on a measurable subset E ⊂M , then

(8.9)
∫
M
u(x)dHm(x) =

∫
N

∫
Φ−1(y)

u(x)
JΦ(x)dHm−n(x)dHn(y).

In particular, if m = n and Φ : M → N is an homeomorphism of class C1, letting
v = u ◦ Φ−1 : N → R, one recovers the change of variable formula

(8.10)
∫
M
v(Φ(x))JΦ(x)dHm(x) =

∫
N
v(y)dHn(y).

8.6. Proof of the C2-continuity of K (Theorem 31). We recall that the Kantorovitch
functional K is of class C1 and that one has ∇K = (Gi)16i6n where Gi(ψ) =

∫
Lagyi (ψ) ρ(x)dx.

Step 1. We want to show that
∂Gi
∂ψj

=
∫

Lagi,j(ψ)

ρ(x)
2‖yi − yj‖

dx.

We introduce the set
L := Lyi(ψ) := {x ∈ Rd, ∀k 6= j‖x− yi‖2 + ψi 6 ‖x− yk‖2 + ψk} ⊃ Lagyi(ψ).

Note that the boundary of this set coincides with the one of Lagyi(ψ) except along Lagi,j(ψ).
First recall that

x ∈ Lagi,j(ψ + tej) ⇐⇒ ‖x− yi‖2 + ψi = ‖x− yj‖2 + ψj + t
⇐⇒ u(x) := 2〈yj − yi|x〉 − ψj + ψi − ‖yj‖2 + ‖yi‖2 = t

Suppose t > 0. Therefore, by construction one has
Lagyi(ψ + tej)∆Lagyi(ψ) = L ∩ u−1(]0, t]).

This implies by the Coarea formula that
G(ψ+tej)−G(ψ)

t = 1
t

∫
L∩u−1([0,t]) ρ(x)dx

= 1
t

∫ t
0
∫
L∩u−1(s)

ρ(x)
‖∇u(s)‖dxds

= 1
t

∫ t
0
∫

Lagi,j(ψ+sej)
ρ(x)
‖∇u(s)‖dxds

= 1
t

∫ t
0 gi,j(ψ + sej)ds

where we introduced the map

gi,j(ψ) := 1
2‖yi − yj‖

∫
Lagi,j(ψ)

ρ(x)dx

We show below in Lemma 33 that gi,j is continuous. By the fundamental theorem of calculus,
one has

∂Gi
∂ψj

(ψ) = gi,j(ψ) =
∫

Lagi,j(ψ)

ρ(x)
2‖yi − yj‖

dx.

Step 2. Since Gi(ψ) = 1 −
∑
j 6=iGj(ψ), we know that Gi is also differentiable with respect

to ψi and that we have the required formula. This implies that the partial derivatives are
continuous, so that ∇K is of class C1.
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Lemma 33. Assume that Y is generic with respect to ∂X. Then, for any i 6= j, the function
gi,j defined above is continuous.

Proof of Lemma 33. Let f : ΩX → R defined by f(x) = ‖x−yi‖2−‖x−yj‖2 = 2〈yj−yi|x〉−
‖yj‖2 + ‖yi‖2.
Step 1 (Flow). We consider the vector field X = ∇f(x)/‖∇f(x)‖2 on ΩX . Let Ω1

X ⊂ ΩX

be an open set containing X. By Cauchy-Lipschitz’s theory, one can construct a flow Φ :
[−ε, ε]× Ω1

X → ΩX , where ε > 0, such that

(8.11)

Φ(0, x) = x

Φ̇(t, x) = ∇f(Φ(t,x))
‖∇f(Φ(t,x))‖2 ,

where Φ̇ is the derivative with respect to t.

∂

∂t
f(Φ(t, x)) = ∇f(Φ(t, x)) · ∇f(Φ(t, x))

‖∇f(Φ(t, x))‖2
= 1.

This implies that f(Φ(t, x)) = f(Φ(0, x)) + t. Moreover, since X = ∇f/ ‖∇f‖ is of class C1

on ΩX , then Ft := Φ(t, ·) simply converges to the identity andDFt simply converges to the identity,
as t→ 0.
Step 2 (Sending the Laguerre cells on f−1(0)).

f−1(a)

f−1(an)

L∞ = Lagi,j(ψ
∞)

Lagi,j(ψ
n)

Ln = Φ(−tn,Lagi,j(ψ
n))

Figure 4. Proof of continuity of gi,j : Fn := Φ(tn, ·)|Ln : Ln → Lagi,j(ψn) is
such that Fn(Ln) = Lagi,j(ψn)

Let (ψn) be a sequence in RY converging to some ψ∞ ∈ RY . We put an = ψnj − ψni ,
a = ψ∞j − ψ∞i and tn = an − a and define

Ln = Φ(−tn,Lagij(ψn)) and L∞ = Lagij(ψ∞).

By definition, one has f(Lagij(ψn)) = an and f(Lagij(ψ∞)) = a. Using the flow property,
one gets that both Ln and L∞ are subsets of the hypersurface H = f−1(a). Denoting Fn the
restriction of Φ(tn, ·) to H, one has Lagij(ψn) = Fn(Ln). Since the flow is transverse to the
hypersurfaces f−1(cste), Fn : LN → Lagij(ψn) is a C1 diffeomorphism.
Step 2 (Comparing on f−1(0)). We now need to consider a continuous extension ρ of
ρ|X onto ΩX , since Ln may not be included in X. By a change of variable (see (8.10) for
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instance), one gets

gn := gi,j(ψn) =
∫

Lagij(ψn)

ρ(y)
2 ‖yi − yj‖

dHd−1(y)

=
∫

Lagij(ψn)

ρ(y)
2 ‖yi − yj‖

χX(y)dHd−1(y)

=
∫
H

ρ(Fn(x))
2 ‖yi − yj‖

JFn(x)χLn(x)χX(Fn(x))dHd−1(x),

where χA is the indicator function of A. Moreover,

g∞ := gi,j(ψ∞) =
∫
H

ρ(x)
2 ‖yi − yj‖

χL∞∩X(x)dHd−1(x).

Step 3 (Simply convergence of the integrands). By Lebesgue’s dominated convergence
theorem, to prove that (gn)n>0 converges to g∞, it suffices to prove that the integrand of
gn (seen as a function on H) tends to the integrand of g∞ Hd−1-almost everywhere. Since
Fn converges to the identity in a C1 sense and ρ is continuous, it remains to show that
limn→∞ χLn(x)χX(Fn(x)) = χL∞∩X(x) for almost every x ∈ H (for the (d − 1) Hausdorff
measure).
• We first prove that lim supn→∞ χLn(x)χX(Fn(x)) 6 χL∞∩X(x) for every x ∈ H. The
limsup is non-zero if and only if there exists a subsequence σ(n) such that x ∈ Lσ(n) and
Fn(x) ∈ X. Then, since Fσ(n)(Lσ(n)) = Lagij(ψσ(n)) we get{

‖Fσ(n)(x)− yi‖2 + ψσ(n)(yi) 6 ‖Fσ(n)(x)− yk‖2 + ψσ(n)(yk) ∀k
‖Fσ(n)(x)− yi‖2 + ψσ(n)(yi) = ‖Fσ(n)(x)− yj‖2 + ψσ(n)(yj).

Passing to the limit n → +∞, we see that x belongs to Lagij(ψ∞) = L∞ and to X, thus
ensuring

lim sup
n→+∞

χLn(x)χX(Fn(x)) 6 χL∞∩X(x).

• We now pass to the liminf inequality. Denote

S =

 ⋃
k 6=i,j

Hijk(ψ∞)

 ∪ (Hij(ψ) ∩ ∂X) ,

where Hij(ψ) = {x ∈ ΩX , ‖x − yi‖2 + ψi = ‖x − yj‖2 + ψj}, Hijk(ψ) := Hij(ψ) ∩ Hjk(ψ)
which by assumption has zero (d− 1) Hausdorff measure.
We now prove that lim infn→∞(x)χLnχX(Fn(x)) > χL∞∩X on H \ S. If x 6∈ L∞∩X, χL∞∩X(x) =
0 and there is nothing to prove. We therefore consider x ∈ (L∞∩X)\S, meaning by definition
of S that x belongs to the interior int(X) and that

∀k 6= i, j ‖x− yi‖2 + ψ∞i < ‖x− yk‖2 + ψ∞k .

Since Fn(x) converges to x, this implies that for n large enough one has Fn(x) ∈ int(X) and
∀k 6= i, j ‖Fn(x)− yi‖2 + ψ∞i < ‖Fn(x)− yk‖2 + ψ∞k .

By definition, this means that Fn(x) belongs to Lagij(ψn), and therefore x ∈ Ln by definition
of Ln. Thus

lim inf
n→+∞

χLn(x)χX(Fn(x)) = 1 > χL∞∩X(x)

�
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8.7. Strict concavity of K. We denote by
K+ = {ψ : Y → R, µ(Lagyi(ψ)) > 0 ∀yi ∈ Y }.

Theorem 34. We assume that X is a convex compact domain of Rd, that ρ : X → R is
continuous spt(ρ) = int(X) and that Y is generic with respect to X and ρ(∂X) = 0. The
Kantorovitch K is strictly concave in the sense that

∀ψ ∈ K+, ∀v ∈ {1N}⊥ 〈DG(ψ).v|v〉 < 0

Figure 5. Simplex soup where the set of points y1, y2 such that
µ(Lag1,2(ψ)) = 0 has not a zero measure.

Remark 17. The assumption can be much more general on X. Some connectedness conditions
are required. Let us illustrate the fact that the connectedness of X is not sufficient (i.e. why
we require that it is impossible to disconnect the support X of µ by removing a finite number
of points). Consider the case where X is made of the two 2-dimensional simplices embedded
in R2, and displayed in grey in Figure 5. We assume that µ is the restriction of the Lebesgue
measure to X and that Y = {y1, y2}. Then, the matrix of the differential of G at ψ is the
2-by-2 matrix given by

DG(ψ) =
(
−a a
a −a

)
where a = 1

2‖y1 − y2‖
length1(Lag1,2(ψ) ∩X).

If we fix y1 ∈ R2, it is easy to see that for any y2 in the blue domain, there exists weights ψ1
and ψ2 such that the interface Lag1,2(ψ) (in red) passes through the common vertex between
the two simplices, thus implying that a = 0, hence DG(ψ) = 0. In such setting, G is not
strictly monotone, the conclusion of Theorem 34 does not hold.

Proof. This theorem will follow using standard arguments, once one has established the con-
nectedness of the graph induced by the Jacobian matrix. Let ψ ∈ K+, H := DG(ψ). Since
K is concave with gradient ∇K = G, we know that H is symmetric. We have to show that
Ker(H) = vect({cst}).
Step 1. We consider the graph G supported on the set of vertices V = {1, . . . , N} and with
edges

E(G) := {(i, j) ∈ V 2 | i 6= j and Hi,j(ψ) > 0}.

Lemma 35. The graph G is connected.
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Proof.
Step 1: We show here that for all i ∈ {1, . . . , N}, int(Lagyi(ψ)∩X) contains at least a point
which we denote xi.
Indeed, since ψ ∈ K+, we know that ρ(Lagyi(ψ)) > 0. In addition, ρ(Lagyi(ψ)∩Lagyj (ψ)) = 0
for all j 6= i, and ρ(∂X) = 0 by assumption.
Step 2: Let S the union of facets that are common to at least three distinct Laguerre cells,
i.e.

S =
⋃

y1,y2,y3distinct
Lagy1,y2,y3(ψ).

Then, int(X) \ S is open and path-connected. Indeed, by the genericity assumption, we al-
ready know that Hd−1(S) = 0, and Lemma of chapter (ADMIS) then implies that int(X) \S
is path-connected.
Step 3: Let x ∈ int(X) \ S be such that x ∈ Lagyi(ψ) ∩ Lagyj (ψ) for i 6= j. Then, Hij > 0. To
see this, we note that since x belongs to the complement of S,{

c(x, yi) + ψ(yi) = c(x, yj) + ψ(yj),
∀k 6∈ {i, j}, c(x, yi) + ψ(yi) < c(x, yk) + ψ(yk).

This implies that there exists a ball with radius r > 0 around x such that

∀x′ ∈ B(x, r),∀k 6∈ {i, j}, c(x, yi) + ψ(yi) < c(x, yk) + ψ(yk),

directly implying that
Hyy′(ψ) ∩ B(x, r) ⊆ Lagyiyj (ψ).

By the twist hypothesis and the inverse function theorem, Hyy′(ψ) is a (d − 1)-dimensional
submanifold. In addition, ρ(x) > 0 because x belongs to Z. This implies that

Hij =
∫

Lagyiyj (ψ)

ρ(x′)
‖∇xc(x′, yi)−∇xc(x′, yj)‖

dHd−1(x′)

>
∫
Hyiyj (ψ)∩B(x,r)

ρ(x′)
‖∇xc(x′, yi)−∇xc(x′, yj)‖

dHd−1(x′) > 0.

Step 4: We now fix i 6= j ∈ {1, . . . , N} and the points xi, xj whose existence is established
in Step 1:

xi ∈ int(Lagyi(ψ) ∩X), xj ∈ int(Lagyj (ψ) ∩X),
so that in particular xi, xj belongs to int(X) \ S. By Step 2, we get the existence of a
continuous path γ ∈ C0([0, 1], int(X) \ S) such that γ(0) = xi and γ(1) = xj . We define a
sequence ik ∈ {1, . . . , N} of indices by induction, starting from i0 = i. For k > 0 we define
tk = max{t ∈ [0, 1] | γ(t) ∈ Lagyik}. If tk = 1 we are done. If not, γ(tk) belongs to exactly
two distinct Laguerre cells, and we define ik+1 6= ik so that γ(tk) ∈ Lagyik (ψ) ∩ Lagyik+1

(ψ).
By definition of ti as a maximum, the points y1, . . . , yk must be distinct, so that t` = 1 after
a finite number of iterations and then i` = j. By Step 3, we get that Hyikyik+1

> 0 for any
k ∈ {0, `− 1}, proving that the matrix H is irreducible, thus the graph G is connected.

�

Step 2. We now want to show that Ker(H) = vect({cst}). Let v ∈ Ker(H) and let i0 be
an index where v attains its maximum, i.e. i0 ∈ argmax16i6nvi. Then using Hv = 0, hence
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(Hv)i0 = 0, one has

0 =
∑
i 6=i0

Hi,i0vi +Hi0,i0vi0 =
∑
i 6=i0

Hi,i0vi −
∑
i 6=i0

Hi,i0vi0 =
∑
i 6=i0

Hi,i0(vi − vi0).

This follows from Hi0,i0 = −
∑
i 6=i0 Hi,i0 . Since for every i 6= i0, one has Hi,i0 > 0 and

vi0 − vi > 0, this implies that vi = vi0 for every i such that Hi,i0 6= 0. By induction and
using the connectedness of the graph G, this shows that v has to be constant, i.e. Ker(H) =
vect({cst}). �

8.8. Newton’s method. Let ε > 0. We denote by

Kε = {ψ : Y → R, µ(Lagyi(ψ)) > ε ∀yi ∈ Y } ⊂ K+ := K0.

The idea of the Damped Newton algorithm is to choose a step parameter so as to stay all
way long in the admissible set Kε.

Algorithm 1 Damped Newton algorithm
Input: A tolerance η > 0 and an initial ψ0 ∈ RY (of mean value 0) such that

(8.12) ε := 1
2 min

[
min
y∈Y

Gy(ψ0), min
y∈Y

νy

]
> 0.

While:
∥∥∥G(ψk)− ν

∥∥∥
∞
> η

Step 1: Compute the direction dk satisfyingDG(ψk)dk = −
(
G(ψk)− ν

)
∑
y∈Y d

k(y) = 0

Step 2: Determine the minimum ` ∈ N such that ψk,` := ψk + 2−`dk satisfies∀y ∈ Y,Gy(ψ
k,`) > ε∥∥∥G(ψk,`)− µ
∥∥∥ 6 (1− 2−(`+1))

∥∥∥G(ψk)− µ
∥∥∥

Step 3: Set ψk+1 = ψk + 2−`dk and k ← k + 1.
Output: A vector ψk that satisfies

∥∥∥G(ψk)− ν
∥∥∥
∞
6 η.

Remark 18. We assume that ψ0 ∈ RN ∩ {1}⊥ is chosen so that

ε = 1
2 min

(
min
i
Gi(ψ0),min

i
νi

)
> 0,

and we let S := Sε ∩ {1}⊥. Let ψ ∈ S. By Theorem 34, the matrix DG(ψ) is symmetric
non-positive, and its kernel is the one-dimensional space R1. Thus, the equation{

DG(ψ)d = ν −G(ψ),∑
i di = 0,

has a unique solution, which we denote d(ψ), and we let ψτ = ψ + τd(ψ).
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Theorem 36 (Kitagawa, Mérigot, Thibert). We assume that X is a convex compact domain
of Rd, that ρ : X → R is continuous spt(ρ) = int(X) (this assumption can be much more
general) and that Y is generic with respect to X and ρ(∂X) = 0. Then the damped Newton
algorithm converges with linear rate. There exists τ∗ ∈]0, 1] such that at every step, one has∥∥∥G(ψk+1)− ν

∥∥∥ 6 (1− τ∗

2

)∥∥∥G(ψk)− ν
∥∥∥

8.9. Proof of Theorem 36. The proof of this theorem relies on the regularity and properties
of strict concavity of the Kantorovitch functional.
Estimates. By continuity of DG(ψ) over the compact domain S = Sε ∩ {1}⊥, the non-zero
eigenvalues of −DG(ψ) lie in [a,A] for some 0 < a 6 A < +∞. In particular, there exists a
constant M > 0 such that for all ψ ∈ S, one has

a‖d(ψ)‖ 6 ‖DG(ψ)d(ψ)‖ = ‖G(ψ)− ν‖ = ‖DG(ψ)d(ψ)‖ 6 A‖d(ψ)‖
which implies

(8.13) ‖G(ψ)− ν‖
A

6 ‖d(ψ)‖ 6 ‖G(ψ)− ν‖
a

6M.

In particular, the function F : (ψ, τ) ∈ S × [0, 1] 7→ ψτ = ψ + τd(ψ) is continuous. Since
S × [0, 1] is compact, K := F (S × [0, 1]) is also compact. Then, by uniform continuity of
DG over K, we see that there exists an increasing function ω such that limt→0 ω(t) = 0
and ‖DG(ψ)−DG(ψ′)‖ 6 ω(‖ψ − ψ′‖) for all ψ,ψ′ ∈ K. Since G is of class C1, a Taylor
expansion in τ gives

G(ψτ ) = G(ψ + τd(ψ))
= G(ψ) + τDG(ψ)d(ψ) +R(τ)
= G(ψ) + τ(ν −G(ψ)) +R(τ)
= (1− τ)G(ψ) + τν +R(τ),(8.14)

where R(τ) =
∫ τ

0 (DG(ψt) − DG(ψ))d(ψ)dt is the integral remainder. Then, we can bound
the norm of R(τ) for τ ∈ [0, 1]:

‖R(τ)‖ =
∥∥∥∥∫ τ

0
(DG(ψt)−DG(ψ))d(ψ)dt

∥∥∥∥
6 ‖d(ψ)‖

∫ τ

0
ω(‖ψt − ψ‖)dt

6 ‖d(ψ)‖ τ ω(τ ‖d(ψ)‖)
6Mτ ω(τM).(8.15)

To establish the first inequality, we used that ψ and ψt belong to the compact set K and for
the second one that ω is increasing and that t ∈ [0, τ ].

Linear convergence. We first show the existence of τ∗1 > 0 such that for all ψ ∈ S and
τ ∈ (0, τ∗1 ), one has ψτ ∈ S. By definition of ε, for every i ∈ {1, . . . , N} one has νi > 2ε and
Gi(ψ) > ε. Using (8.14) and (8.15), one deduces a lower bound on Gi(ψτ ):

Gi(ψτ ) > (1− τ)Gi(ψ) + τνi +Ri(τ)
> (1 + τ)ε− ‖R(τ)‖
> ε+ τ(ε−Mω(τM)).
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If we choose τ∗1 > 0 small enough so that Mω(τ∗1M) 6 ε, this implies that ψτ ∈ S for all
ψ ∈ S and τ ∈ [0, τ∗1 ].
We now prove:

∃τ∗2 > 0, ∀τ ∈ [0, τ∗2 ], ‖G(ψτ )− ν‖ 6 (1− τ/2) ‖G(ψ)− ν‖ .

Let τ∗2 > 0 be such that for every τ 6 τ∗2 one has ω(τM)/a 6 1/2. With the upper bound on
R(τ) given in Equation (8.15) combined with the two bounds on ‖d(ψ)‖ of Equation (8.13),
one gets

‖R(τ)‖ 6 ‖d(ψ)‖τ ω(τ‖d(ψ)‖) 6 ‖G(ψ)− ν‖
a

τω(τM) 6 τ

2 ‖G(ψ)− ν‖

From Equation (8.14), we have G(ψτ )− ν = (1− τ)(G(ψ)− ν) +R(τ), and therefore

‖G(ψτ )− ν‖ 6 (1− τ)‖G(ψ)− ν‖+ τ

2 ‖G(ψ)− ν‖ 6 (1− τ/2) ‖G(ψ)− ν‖ .

These two bounds directly imply that the τ (k) chosen in Algorithm 1 always satisfy τ (k) > τ∗

with τ∗ = 1
2 min(τ∗1 , τ∗2 ), so that∥∥∥G(ψ(k+1))− ν

∥∥∥ 6 (1− τ∗

2

)∥∥∥G(ψ(k+1))− ν
∥∥∥ .

This establishes the linear convergence of Algorithm 1.

8.10. Numerics.

9. Entropic regularization

9.1. Formulation. In the discrete optimal transport problem, the idea is just to add a
regularization term. This term is the entropy function. Let ε > 0. The regularized problem
that is considered here is the following

(9.16) (KP)ε := min
γ

∑
x∈X,y∈Y

c(x, y)γxy + ε
∑

x∈X,y∈Y
h(γx,y),

where γ : X × Y → R ∈ Γ(µ, ν) satisfies the constraints

∀x ∈ X
∑
y∈Y

γxy = νx and ∀y ∈ Y
∑
x∈X

γxy = µy.

and h : R→ R is the entropy defined by

h(t) =


t(ln(t)− 1) if t > 0

0 if t = 0
∞ if t 6 0

Remark that an optimal solution has a finite entropy, which directly implies that γx,y > 0.
That is why this condition is dropped in the constraints.
Theorem 37. The problem (KPη) has a unique solution γ, which belongs to Γ(µ, ν). More-
over, if minx∈X µx > 0 and miny∈Y µy > 0, then

∀(x, y) ∈ X × Y, γx,y > 0.

Lemma 38. H : γ ∈ (R+)X×Y 7→
∑
x,y h(γx,y) is 1-strongly convex.
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Figure 6. Evolution of the Laguerre cells during the execution of the damped
Newton algorithm for semi-discrete optimal transport. (Top) The source den-
sity ρ is piecewise linear over the domain X = [0, 3]3 over the displayed trian-
gulation: it takes value 1 on the boundary of the square [0, 3]2 and 0 on the
boundary of [1, 2]2. The target measure is uniform over a 302 uniform grid in
[0, 1]2. (Bottom) Laguerre cells at steps k = 0, 2, 6, 9, 12, 15, 18, 21 and 25.

Proof. Seeing matrices as vectors of Rnm, we have H : Rnm → R. From h′(t) = ln(t), one
gets

∂H

∂γx,y
(γ) = h′(γx,y) = ln(γx,y).

We deduce that the Hessian of H is diagonal with diagonal coefficients given by
∂2H

∂γ2
x,y

(γ) = ln′(γx,y) = 1/γx,y > 1.

since γx,y ∈]0, 1]. �

Proof.
• First remark that in the regularized problem (KPη), the minimum can be taken over
Γ(µ, ν) ∩ [0,∞)X×Y instead of Γ(µ, ν). By the previous lemma, the regularized problem
(KPη) amounts to minimizing a coercive and strictly convex function over a closed convex
set, thus showing existence and uniqueness.
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• Let us denote by γ∗ the solution of (KPη). Then, γ∗ has a finite entropy, so that it satisfies
the constraint γ∗x,y > 0. This implies that γ∗ is a transport map between µ and ν. We now
prove by contradiction that the set Z := {(x, y) | γ∗x,y = 0} is empty. For this purpose, we
define a new transport map γε ∈ Γ(µ, ν) by γε = (1 − ε)γ∗ + εµ ⊗ ν, and we give an upper
bound on the energy of γε.
1) Let (x, y) ∈ Z. Introducing C = minx,y µxνy, which is strictly positive by assumption, we
have (with ε log ε 6 0)

h(γεx,y) = h(εµxνy)
= µxνyε(log ε+ log(µxµy))− µxνyε
6 Cε log ε+O(ε)
= h(γ∗x,y) + Cε log ε+O(ε)

We then get (setting n = Card(Z))∑
(x,y)∈Z

h(γεx,y) 6
∑

(x,y)∈Z
h(γ∗x,y) + nCε log ε+O(ε)

2) We observe that by convexity of h : r 7→ r(log r − 1), one has

h(γεx,y) 6 (1− ε)h(γ∗x,y) + εh(µxνy) 6 h(γ∗x,y) +O(ε),

which implies ∑
(x,y)/∈Z

h(γεx,y) 6
∑

(x,y)/∈Z
h(γ∗x,y) +O(ε)

Summing the two previous estimates over Z and (X × Y ) \ Z, we get

H(γε) 6 H(γ∗) + Cnε log ε+O(ε).

Since in addition we have by linearity 〈c|γε〉 6 〈c|γ∗〉+O(ε), we get

〈c|γ∗〉+H(γ∗) 6 〈c|γε〉+H(γε) 6 〈c|γ∗〉+H(γ∗) + Cnε log ε+O(ε),

where the lower bound comes from the optimality of γ∗. Thus, Cnε log ε+ O(ε) > 0, which
is possible if and only if n = Card(Z) vanishes, implying the strict positivity of γ∗. �

Proposition 39 (Convergence).
• The solution γε of (9.16) converges when ε tends to zero to the optimal transport map
that minimizes the entropy (among the set of optimal transport plans).

γε−→ε→0 arg min
γ
{H(γ), γ is an optimal transport plan }.

• When ε tends to infinity, the solution tends to the transport plan that minimizes the
entropy

γε−→ε→∞(µxνy)x∈X,y∈Y

Proof. The proof of this results can be found in [4]. �

This result was first proved in Sharify 2013 and then Carlier et al showed Γ-convergence
in 2017.
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9.2. Derivation of the dual problem. The Lagrangian of the primal problem is given by

L(ϕ,ψ) =
∑
x,y

(
γx,yc(x, y) + εh(γx,y)

)
+
∑
x∈X

ϕ(x)
(
µx −

∑
y∈Y

γx,y
)
−
∑
y∈Y

ψ(y)
(
νy −

∑
x∈X

γx,y
)

=
∑
x,y

γx,y
(
c(x, y)− ϕ(x) + ψ(y)

)
+ εh(γx,y) +

∑
x∈X

ϕ(x)µx −
∑
y∈Y

ψ(y)νy

This follows from
∑
x ϕ(x)

∑
y γx,y =

∑
x,y ϕ(x)γx,y. Denoting P the primal cost

P = min
γ

sup
ϕ,ψ

L(ϕ,ψ) = sup
ϕ,ψ

min
γ
L(ϕ,ψ)

The function γ 7→ L(ϕ,ψ) is strongly convex (affine term minus the entropy). The minimum
is reached when its gradient vanishes. Using the fact that h′(t) = ln(t), one gets

γ is the minimum⇔ ∀γx,y c(x, y)− ϕ(x) + ψ(y) + ε ln(γx,y) = 0
⇔ ∀γx,y γx,y = e

−c(x,y)+ϕ(x)−ψ(y)
ε .

Let Kε(ϕ,ψ) be the evaluation of the Lagragian at this minimum. By using the last equation
twice, we have

Kε(ϕ,ψ) =
∑
x,y −εγx,y ln(γx,y) + εh(γx,y) +

∑
x∈X ϕ(x)µx −

∑
y∈Y ψ(y)νy

=
∑
x,y −εγx,y +

∑
x∈X ϕ(x)µx −

∑
y∈Y ψ(y)νy

=
∑
x,y −εe

−c(x,y)+ϕ(x)−ψ(y)
ε +

∑
x∈X ϕ(x)µx −

∑
y∈Y ψ(y)νy

Definition 16. The dual problem is defined by
(DP)ε := sup

ϕ,ψ
Kε(ϕ,ψ),

where
Kε(ϕ,ψ) = −

∑
x,y

εe
ϕ(x)−ψ(y)−c(x,y)

ε +
∑
x∈X

ϕ(x)µx −
∑
y∈Y

ψ(y)νy

Remark 19. Remark that in this dual formulation, similarly to the primal formulation, the
exponential is a barrier function that imposes when ε tends to zero

ϕ(x)− ψ(y) 6 c(x, y)

9.3. Strong duality.
Theorem 40 (Strong duality and existence of duals).

• There exists ϕ and ψ such that
(KP)ε = (DP)ε = Kε(ϕ,ψ).

• A maximizer (ϕ,ψ) allows to recover an optimal solution γε by the formula

γx,y = e
ϕ(x)−ψ(y)−c(x,y)

ε .

Proof.
• Weak duality (KPη) > (DPη) always hold. To prove the strong duality, we denote by γ∗
the solution to (KPη), and we note that by Theorem 37, γ∗xy > 0 for all (x, y) ∈ X × Y .
This implies that the optimized functional γ 7→ 〈c|γ〉+ ηH(γ) is C1 in a neighborhood of γ∗.
Thus, there exists Lagrange multipliers for the equality constrained problem, i.e. ϕ̃ ∈ RX
and ψ̃ ∈ RY such that

∇γL(γ∗, ϕ̃, ψ̃) = 0.
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Since the function L(·, ϕ̃, ψ̃) is convex, this implies that γ∗ = argminγ L(γ, ϕ̃, ψ̃). Hence

(DPη) = sup
ϕ,ψ

min
γ
L(γ, ϕ, ψ) > min

γ
L(γ, ϕ̃, ψ̃) = L(γ∗, ϕ̃, ψ̃) = (KPη).

The last equality follows from the fact that γ∗ satisfies the constraints and is a solution to
(KPη). Thus (DPη) = (KPη).

• The second point has already been proved. �

9.4. Sinkorn algorithm. Tne numerical resolution of this problem has been addressed by
Bregman in 1967 to solve a strictly convex problem by iteratively projecting on two convex
sets, by Sinkor and Knopp in 1967 who proposed a converging diagonal scaling technique,
and by Cuturi in 2013 who applied these algorithms to the regularized optimal transport
problem.

The goal is to optimize the function Kε, Sinkorn’s algorithm is going to increase it by
iteratively changing the dual variables ϕ and ψ.

Proposition 41. Let u(x) = e
ϕ(x)
ε , v(y) = e

−ψ(y)
ε and the Gibbs Kernel K(x, y) = e

−c(x,y)
ε .

1) ϕ maximizes Kε(·, ψ) ⇔ ∀x u(x) = µx∑
yK(x, y)v(y)

2) ψ maximizes Kε(ϕ, ·) ⇔ ∀y v(y) = νy∑
xK(x, y)u(x)

3) (ϕ,ψ) maximizes Kε ⇔ ∀x, y γx,y = u(x)K(x, y)v(y).

Proof. Recall that Kε is given by

Kε(ϕ,ψ) = −ε
(∑

x

e
ϕ(x)
ε

∑
y

e
−ψ(y)−c(x,y)

ε +
∑
x∈X

ϕ(x)µx −
∑
y∈Y

ψ(y)νy
)

So its gradient with respect to ϕx = ϕ(x) is given by
∂Kε
∂ϕx

(ϕ,ψ) = −e
ϕ(x)
ε

∑
y

e
−ψ(y)−c(x,y)

ε + µx

Therefore
∂Kε
∂ϕx

(ϕ,ψ) = 0⇔ u(x)
∑
y

K(x, y)v(y) = µx,

which allows to conclude. The second part is similar. The last point has already been
proved. �

Remark 20. Now, if we see u and v as vectors and K as a matrix, this reads u = µ/(Kv) and
v = ν/(Ktu), where the division is entry-wise. Furthermore, if (ϕ,ψ) is a maximizer, then
the optimal transport plan is given by

γ = diag(u)Kdiag(v).

Remark 21. At every step, Sinkorn algorithm amounts to project the current matrix P =
diag(u)Kdiag(v) iteratively onto the sets on constraints C1 = {P, P1m = µ} and C2 =
{P, P t1n = ν}. Indeed, given u and v, we consider P = diag(u)Kdiag(v) (Note that P is not
an optimal transport plan). Then

P ∈ C1 ⇔ P1m = µ⇔ diag(u)Kdiag(v)1m = diag(u)Kv = µ⇔ u = µ/(Kv)
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Similarly
P ∈ C2 ⇔ v = ν/(Ktu)

Algorithm 2 Sinkorn’s algorithm
Function: OT_EntropicRegularization(µ, ν, C, ε).

Initialization: v0 = 1n; K = eC/ε

Repeat:
: uk+1 = µ/(Kvk)
: vk+1 = ν/(Ktuk+1)

Until: stopping criteria
Return: γ = diag(uk+1)Kdiag(vk+1).

9.5. Convergence of the algorithm. The Hilbert projective metric is adapted to state
the convergence since we expect the outputs u and v are a solutions up to the multiplication
by a scalar. (To be more precise if we multiply u by λ and v by 1/λ, the solution remains
unchained.)
Definition 17. The Hilbert projective metric dH on the space Rn+∗ is defined by

dH(u, v) = ln max
i,j

uivj
ujvi

Theorem 42 (Birkhoff, 1967). Let K ∈ Rn×m+∗ be a matrix with positive entries, then for
every u and v in Rm+∗ one has

dH(Ku,Kv) 6 λ(K)dH(u, v) where

 λ(K) =
√
η(K)−1√
η(K)+1

< 1

η(K) = maxi,j,k,l
Ki,jKk,l
Ki,kKj,l

Theorem 43. Sinkorn algorithm has a linear convergence to the fixed point solution (u∗, v∗),
namely

dH(uk, u∗) 6 λ(K)2k−1dH(v0, v
∗) and dH(vk, v∗) 6 λ(K)2kdH(v0, v

∗)

Proof. First remark that for every u and v, one has
dH(u, v) = dH(u/v,1n) = dH(1/v, 1/u).

This implies that

dH(uk+1, u
∗) = dH

(
µ

Kvk
,
µ

Kv∗

)
= dH(Kvk,Kv∗) 6 λ(K)dH(vk, v∗)

Similarly dH(vk+1, v
∗) 6 λ(K)dH(uk, u∗), which allows to conclude. �

9.6. Numerics comments. Complexity. The main complexity is in the product matrix
Kv or Ktu.

• General cost function. The complexity is O(n2).
• Wasserstein cost on a regular grid. In that case, we have Kx,y = kx−y, therefore
each product u = Kv is a convolution u = k ? v. Note that the matrix has there-
fore a Toeplitz structure (constant coefficient on each 1st, 2nd, etc diagonals). The
complexity of the multiplication with such a matrix is O(n ln(n)).
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• Truncating the Gibbs Kernel make it almost diagonal and leads an approximation for
which the complexity of the matrix product is O(n).
• Cost dM (x, y)p on a manifold M . In that case, dM can be approximated by using
Varadhan’s formula (involving the Laplace-Beltrami operator) which leads to a nearly
linear multiplication.

Number of steps. When ε decreases, we numerically observe an increase of the number of
steps.
Stabilization techniques. When ε tends to zero, K tends to 0, which create some instabil-
ities (u and v might be infinite). Chizat et al 2006, as well as Schmitzer et al in 2006 propose
to stabilize by multiplying u and v accordingly at every step. However, this create a new
kernel K̃ which is not Toeplitz anymore.
Acceleration techniques. There are also some scaling techniques to accelerate (Schmitzer
et al 2006). The scaling technique is then combined with stabilization (papers from Schmitzer).
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