Improving methods based on spectrogram zeros using unsupervised classification

> Juan M. Miramont jmiramontt@univ-lille.fr



November 9, 2023

## 1 Introduction

- 2 Three Kinds of SZ
- 3 2D Histograms of SZ
- Unsupervised Classification

#### 5 Results



## 1 Introduction

- 2 Three Kinds of SZ
- 3 2D Histograms of SZ
- Unsupervised Classification
- 5 Results



#### Short-time Fourier transform (STFT)

Let x(t) be a real -or complex- signal and its STFT be defined as:

$$V_x^g(t,f) \coloneqq \int_{-\infty}^{+\infty} x(u) \ \overline{g(u-t)} \ e^{-i2\pi u f} \ du,$$

with  $g(t) = 2^{1/4}e^{-\pi t^2}$ . Then, its **spectrogram** is defined as:  $S_x^g(t, f) \coloneqq |V_x^g(t, f)|^2$ .

### Short-time Fourier transform (STFT)

Let x(t) be a real -or complex- signal and its STFT be defined as:

$$V_{x}^{g}(t,f) \coloneqq \int_{-\infty}^{+\infty} x(u) \ \overline{g(u-t)} \ e^{-i2\pi u f} \ du,$$

with  $g(t) = 2^{1/4}e^{-\pi t^2}$ . Then, its **spectrogram** is defined as:

 $S_x^g(t,f) := |V_x^g(t,f)|^2.$ 

•  $S_x^g(t, f)$  can be *interpreted* as a time-frequency distribution:

$$\iint_{\mathbb{R}^2} S^g_x(t,f) dt \ df = E_x$$

• Largest values of  $S_x^g(t, f)$  contain more information about x(t).

### Short-time Fourier transform (STFT)

Let x(t) be a real -or complex- signal and its STFT be defined as:

$$V_{x}^{g}(t,f) \coloneqq \int_{-\infty}^{+\infty} x(u) \ \overline{g(u-t)} \ e^{-i2\pi u f} \ du,$$

with  $g(t) = 2^{1/4}e^{-\pi t^2}$ . Then, its **spectrogram** is defined as:

$$S_{X}^{g}(t,f) \coloneqq |V_{X}^{g}(t,f)|^{2}.$$

•  $S_x^g(t, f)$  can be *interpreted* as a time-frequency distribution:

$$\iint_{\mathbb{R}^2} S^g_x(t,f) dt \ df = E_x$$

Largest values of S<sup>g</sup><sub>x</sub>(t, f) contain more information about x(t).
 → Classical TF paradigm.

In the following, we will consider signal and noise mixtures, in which:
ξ(t) is a zero-mean white Gaussian noise (WGN) satisfying:

$$\mathbb{E}\left\{\xi(t)\overline{\xi(t-\tau)}\right\} = \gamma_0^2\delta(\tau),$$

where  $\gamma_0^2$  is the noise variance.

• The Signal-to-Noise Ratio (SNR) between a signal x and  $\xi$  as:

$$\operatorname{SNR}(x,\xi) = 10 \log_{10} \left(\frac{P_x}{\gamma_0^2}\right) \ (dB),$$

where  $P_x$  is the power of the signal.

### The zeros of the spectrogram

Considering z = t + if, then the STFT can be written as<sup>1</sup>

$$V_x^g(t,f) = \mathcal{F}_x(z) \exp(-|z|^2) \exp(-i\pi t f),$$

where  $\mathcal{F}_{x}(z)$  is the Bargmann transform.

<sup>&</sup>lt;sup>1</sup>Karlheinz Gröchenig. *Foundations of time-frequency analysis*. Springer Science & Business Media, 2001.

<sup>&</sup>lt;sup>2</sup>Patrick Flandrin. "Time-frequency filtering based on spectrogram zeros". In: *IEEE Signal Processing Letters* 22.11 (2015), pp. 2137–2141.

## The zeros of the spectrogram

Considering z = t + if, then the STFT can be written as<sup>1</sup>

$$V_x^g(t,f) = \mathcal{F}_x(z) \exp(-|z|^2) \exp(-i\pi t f),$$

where  $\mathcal{F}_{x}(z)$  is the Bargmann transform.  $\mathcal{F}_{x}(z)$  admits a Haddamard-Weierstrass factorization<sup>2</sup>:

$$\mathcal{F}_{x}(z) = z^{m} e^{Q(z)} \prod_{n} \left(1 - \frac{z}{z_{n}}\right) \exp\left(\frac{z}{z_{n}} + \frac{z^{2}}{2z_{n}^{2}}\right),$$

where  $z_n$  are the zeros of  $\mathcal{F}_x(z)$ , *m* is the order of a (possible) zero at the origin, and Q(z) is a quadratic polynomial.

<sup>&</sup>lt;sup>1</sup>Gröchenig, *Foundations of time-frequency analysis*.

<sup>&</sup>lt;sup>2</sup>Flandrin, "Time-frequency filtering based on spectrogram zeros".

## The zeros of the spectrogram

Considering z = t + if, then the STFT can be written as<sup>1</sup>

$$V_x^g(t,f) = \mathcal{F}_x(z) \exp(-|z|^2) \exp(-i\pi t f),$$

where  $\mathcal{F}_{x}(z)$  is the Bargmann transform.  $\mathcal{F}_{x}(z)$  admits a Haddamard-Weierstrass factorization<sup>2</sup>:

$$\mathcal{F}_{x}(z) = z^{m} e^{Q(z)} \prod_{n} \left(1 - \frac{z}{z_{n}}\right) \exp\left(\frac{z}{z_{n}} + \frac{z^{2}}{2z_{n}^{2}}\right),$$

where  $z_n$  are the zeros of  $\mathcal{F}_x(z)$ , m is the order of a (possible) zero at the origin, and Q(z) is a quadratic polynomial.

 $\rightarrow S_x^g(t, f)$  is characterized by the distribution of its zeros.

<sup>&</sup>lt;sup>1</sup>Gröchenig, *Foundations of time-frequency analysis*.

<sup>&</sup>lt;sup>2</sup>Flandrin, "Time-frequency filtering based on spectrogram zeros".

# The zeros of the spectrogram of white noise

- The zeros of the spectrogram of complex white Gaussian noise (CWGN) are homogeneously distributed.
- Its distribution corresponds to that of the roots of a *planar Gaussian* Analytic Function (planar GAF)<sup>3</sup>.
- The expected number of zeros in the TF plane can be rigorously deduced from the properties of the planar GAF.
- For a discrete signal with N time samples, the expected number of zeros of the spectrogram is N.

<sup>&</sup>lt;sup>3</sup>Rémi Bardenet, Julien Flamant, and Pierre Chainais. "On the zeros of the spectrogram of white noise". In: *Applied and Computational Harmonic Analysis* 48.2 (2020), pp. 682–705.

# The zeros of the spectrogram of white noise

- The zeros of the spectrogram of complex white Gaussian noise (CWGN) are homogeneously distributed.
- Its distribution corresponds to that of the roots of a *planar Gaussian* Analytic Function (planar GAF)<sup>3</sup>.
- The expected number of zeros in the TF plane can be rigorously deduced from the properties of the planar GAF.
- For a discrete signal with N time samples, the expected number of zeros of the spectrogram is N.
- When a signal is present, the zeros *surround* the signal domain.

<sup>&</sup>lt;sup>3</sup>Bardenet, Flamant, and Chainais, "On the zeros of the spectrogram of white noise".

# The zeros of the spectrogram of white noise

- The zeros of the spectrogram of complex white Gaussian noise (CWGN) are homogeneously distributed.
- Its distribution corresponds to that of the roots of a *planar Gaussian* Analytic Function (planar GAF)<sup>3</sup>.
- The expected number of zeros in the TF plane can be rigorously deduced from the properties of the planar GAF.
- For a discrete signal with N time samples, the expected number of zeros of the spectrogram is N.
- When a signal is present, the zeros *surround* the signal domain.
   → Larger-than-expected regions without zeros are created.

<sup>&</sup>lt;sup>3</sup>Bardenet, Flamant, and Chainais, "On the zeros of the spectrogram of white noise".

### Signal estimation based on spectrogram zeros Using Delaunay Triangulation (Flandrin, 2015)



- Ompute the Delaunay triangulation on the SZ.
- 2 Find triangles with at least one edge length larger than  $\ell_{max}$ .
- Solution Approximate the signal's TF domain  $\mathcal{D}_{x}$ .
- Estimate x(t) using:

$$ilde{x}(t) = rac{1}{g(0)} \int_{-\infty}^{+\infty} V_y^g(t,f) \mathbbm{1}_{\mathcal{D}_x}(t,f) e^{i2\pi f t} df.$$

# Signal estimation based on spectrogram zeros

#### Limitations

frequency

- Low SNR makes more difficult to identify the triangles.
- $\ell_{max}$  depends on the Signal-to-Noise Ratio (SNR).



## Signal estimation based on spectrogram zeros

#### A pathological case

• Consider a signal given by:

$$x(t) = s_{f_1}(t) + s_{f_2}(t) + s_{f_3}(t),$$

where  $s_{f_i}(t) = \cos(2\pi f_i t)$ , and  $f_1 < f_2 < f_3$ .

• If  $\Delta f_{1,2} = \Delta f_{2,3} = \frac{3}{\sqrt{2\pi}}$ , the longest edge of the Delaunay triangles covering the middle tone is  $\ell \approx 1.46$ .



### Introduction

### 2 Three Kinds of SZ

- 3 2D Histograms of SZ
- 4 Unsupervised Classification

#### 5 Results



# Three Kinds of SZ

- Signal-Signal Zeros (SS): these zeros are generated by the interference between signal components.
- Signal-Noise Zeros (SN) : these are produced by the interference between signal components and noise, and surround the signal domain.
- Noise-Noise Zeros (NN): these zeros are generated by the noise only, and can be viewed as the result of interference between randomly located Gaussian *logons*.



time

# Three Kinds of SZ

#### Destructive Interference

$$\begin{aligned} |V_{x_1+x_2}^g(t,f)|^2 &= |V_{x_1}^g(t,f)|^2 + |V_{x_2}^g(t,f)|^2 + \\ & 2|V_{x_1}^g(t,f)V_{x_2}^g(t,f)|\cos\left(\Phi_{x_2}^g(t,f) - \Phi_{x_1}^g(t,f)\right), \end{aligned}$$

where  $\Phi_x^g(t, f)$  is the phase of the complex valued  $V_x^g(t, f)$ . Then,  $|V_{x_1+x_2}^g(t, f)|^2 = 0$  if and only if:

•  $\Phi_{x_1}(t, f)$  and  $\Phi_{x_2}(t, f)$  differ by an odd factor of  $\pi$ .

2 The modulus of  $V_{x_1}^g(t, f)$  and  $V_{x_2}^g(t, f)$  are equal.

#### Signal-Signal Spectrogram Zeros

Let  $x_1$  and  $x_2$  be deterministic signals. SS zeros appear where  $x_1$  and  $x_2$  fulfill the conditions of destructive interference.

#### Noise-Noise Spectrogram Zeros

The spectrogram of (complex) white Gaussian noise can be expressed as<sup>a</sup>:

$$S^{g}_{\xi}(t,f) pprox \left| \sum_{k} V^{g}_{h_{k}}(t,f) e^{i\varphi_{k}} \right|^{2}$$

where  $h_k(t) = a_k g(t - t_k) e^{i(2\pi f_k + \varphi_k)}$ , also called *logons*, with random amplitude  $a_k$ , position  $(t_k, f_k)$ , and phase  $\varphi_k$ .

<sup>a</sup>Patrick Flandrin. *Explorations in time-frequency analysis*. Cambridge University Press, 2018.

# Three Kinds of SZ

#### Signal-Noise Spectrogram Zeros

Let  $x_1$  be a deterministic signal, and  $x_2$  be a realization of noise. If  $x_2$  is real white Gaussian noise:

$$\mathbb{E}\left\{|V_{x_2}^{g}(t,f)|^2\right\} = \gamma_0^2.$$
 (1)

We can then define a level curve

$$\Gamma = \{(t, f): S_{x_1}^g(t, f) = \gamma_0^2\}.$$
 (2)

# Three Kinds of SZ

#### Signal-Noise Spectrogram Zeros

Let  $x_1$  be a deterministic signal, and  $x_2$  be a realization of noise. If  $x_2$  is real white Gaussian noise:

$$\mathbb{E}\left\{|V_{x_2}^g(t,f)|^2\right\} = \gamma_0^2.$$
 (1)

We can then define a level curve

$$\Gamma = \{(t, f) : S_{x_1}^{g}(t, f) = \gamma_0^2\}.$$
 (2)



time

## 1 Introduction

### 2 Three Kinds of SZ

### 3 2D Histograms of SZ

4 Unsupervised Classification

#### 5 Results

#### 6 Conclusion

## Stability to Noise Addition



• Get a new mixture  $y_j(t) = x(t) + \xi(t) + \eta_j(t)$ , where  $\eta_j(t)$  is white Gaussian noise with variance  $\gamma_j^2 = \beta \hat{\gamma}_0^2$ , and:  $\hat{\gamma}_0 = \frac{\sqrt{2}}{0.6745}$  median ( $|\Re \{ V_y^g(t, f) \}|$ ).

Repeat this procedure for j = 1, ..., J independent noise realizations.



time

Get a new mixture
 y<sub>j</sub>(t) = x(t) + ξ(t) + η<sub>j</sub>(t),
 where η<sub>j</sub>(t) is white Gaussian noise
 with variance γ<sub>j</sub><sup>2</sup> = βγ<sub>0</sub><sup>2</sup>, and:
 γ<sub>0</sub> = √2/0.6745 median (|ℜ {V<sub>y</sub><sup>g</sup>(t, f)}|).
 Repeat this procedure for j = 1,..., J

independent noise realizations.

A 2D histogram G[n, m] can then be obtained by counting the number of zeros that have fallen in each TF position (n, m).



 $\operatorname{time}$ 

(J = 64)

Get a new mixture
 y<sub>j</sub>(t) = x(t) + ξ(t) + η<sub>j</sub>(t),
 where η<sub>j</sub>(t) is white Gaussian noise
 with variance γ<sub>j</sub><sup>2</sup> = βγ<sub>0</sub><sup>2</sup>, and:
 γ<sub>0</sub> = √2/0.6745 median (|ℜ {V<sub>y</sub><sup>g</sup>(t, f)}|).
 Repeat this procedure for j = 1,..., J

independent noise realizations.

A 2D histogram G[n, m] can then be obtained by counting the number of zeros that have fallen in each TF position (n, m).



 $\operatorname{time}$ 

(J = 128)

Get a new mixture
 y<sub>j</sub>(t) = x(t) + ξ(t) + η<sub>j</sub>(t),
 where η<sub>j</sub>(t) is white Gaussian noise
 with variance γ<sub>j</sub><sup>2</sup> = βγ<sub>0</sub><sup>2</sup>, and:
 γ<sub>0</sub> = √2/0.6745 median (|ℜ {V<sub>y</sub><sup>g</sup>(t, f)}|).
 Repeat this procedure for j = 1,..., J

independent noise realizations.

A 2D histogram G[n, m] can then be obtained by counting the number of zeros that have fallen in each TF position (n, m).



time

$$(J = 256)$$

 Get a new mixture y<sub>j</sub>(t) = x(t) + ξ(t) + η<sub>j</sub>(t), where η<sub>j</sub>(t) is white Gaussian noise with variance γ<sub>j</sub><sup>2</sup> = βγ<sub>0</sub><sup>2</sup>, and: ŷ<sub>0</sub> = √2/0.6745 median (|ℜ {V<sub>y</sub><sup>g</sup>(t, f)}|).
 Repeat this procedure for j = 1, ..., J

independent noise realizations.

A 2D histogram G[n, m] can then be obtained by counting the number of zeros that have fallen in each TF position (n, m).



 $\operatorname{time}$ 

(J = 512)

independent noise realizations.

A 2D histogram G[n, m] can then be obtained by counting the number of zeros that have fallen in each TF position (n, m).



time

(J = 1024)

## 1 Introduction

- 2 Three Kinds of SZ
- 3 2D Histograms of SZ
- Unsupervised Classification

#### 5 Results



## Local features for SZ classification

• Extracting features describing the local distribution of G[n, m].





(a) Voronoi tessellation superimposed on the 2D histogram of spectrogram zeros.

#### Convex Hull & Voronoi Cell Area Ratio

For each  $\mathbf{z} = (n_z, m_z)$  compute the area ratio:

$$\mathsf{AR}(\mathsf{z}) = rac{A_{\mathsf{CH}}(\mathsf{z})}{A_{\mathcal{V}(\mathsf{z})}(\mathsf{z})},$$

where

**1**  $\mathcal{V}(\mathbf{z})$  is the Voronoi cell corresponding to  $\mathbf{z}$ .

2 CH is the convex hull of  $\{(n,m): (n,m) \in \mathcal{V}(\mathbf{z}) \land G[n,m] > 0\}$ .

#### Maximum in Voronoi Cell

For each z, compute the maximum of the histogram in  $\mathcal{V}(z)$ :

$$Max(\mathbf{z}) = \max_{(n,m)\in\mathcal{V}(\mathbf{z})} \frac{G[n,m]}{J}$$

- Based on first *clustering*, and then *labeling*.
- We use Gaussian Mixture Models (GMM) for clustering in the feature space spanned by AR(z) and Max(z).
- The number *K* of clusters to search must be determined. For example, using the GAP criterion<sup>4</sup>:

$$\mathcal{K} = \underset{k \in \{1,2,3\}}{\operatorname{arg\,max}} \mathbb{E}\{\log(W_k^{\star})\} - \log(W_k), \tag{3}$$

- $W_k = \sum_{r=1}^k \frac{1}{N_r} D_r$
- $D_r$  is the sum of all the pairwise distances for the points in the *r*-th cluster.
- $N_r$  the number of elements in the cluster.
- $W_k^*$  is computed using Monte-Carlo simulations.

<sup>4</sup>Robert Tibshirani, Guenther Walther, and Trevor Hastie. "Estimating the number of clusters in a data set via the gap statistic". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 63.2 (2001), pp. 411–423.

## Unsupervised Classification

• The clusters are then labeled according to the value of AR(z).



**Require:** A noisy signal y, J,  $\beta$ .

- 1: Compute  $V_y^g(t, f)$ , the set  $\mathcal{Z}_0$  of original SZs and Voronoi tessellation.
- 2: Compute  $\hat{\gamma}_0 = \frac{\sqrt{2}}{0.6745}$  median  $\left( \left| \Re \left\{ V_y^g(t, f) \right\} \right| \right)$ .
- 3: Compute the 2D histograms using J realizations and  $\gamma_i^2 = \beta \gamma_0^2$ .
- 4: Extract AR(z) and Max(z).
- 5: Apply GMM clustering, for  $K \in \{1, 2, 3\}$ .
- 6: Decide whether K = 1, 2 or 3.
- 7: Find the centroids  $C_i$ , i = 1, ..., K of the detected clusters.
- 8: Sort clusters  $C_{(i)}$  in ascending order of  $AR(\mathbf{z})$ .
- 9: If K = 1,  $C_{(1)} \rightarrow NN$ .
- 10: If K = 2,  $(C_{(1)}, C_{(2)}) \to (SN, NN)$ .
- 11: If K = 3,  $(C_{(1)}, C_{(2)}, C_{(3)}) \to (SS, SN, NN)$ .
- 12: **return** K and the labels of each SZ in  $\mathcal{Z}_0$

# Signal domain estimation based on classified zeros

#### Different criteria to select Delaunay triangles

- Based on the classification of the spectrogram zeros, one can select Delaunay triangles that satisfy any of the following criteria:
  - All its vertices are zeros of the SN kind (i.e. zeros located at the border of the signal domain).
  - At least one of its vertices is a zero of the SS kind.

# Signal domain estimation based on classified zeros

#### Different criteria to select Delaunay triangles

- Based on the classification of the spectrogram zeros, one can select Delaunay triangles that satisfy any of the following criteria:
  - All its vertices are zeros of the SN kind (i.e. zeros located at the border of the signal domain).
  - At least one of its vertices is a zero of the SS kind.



time



Selected Triangles



## 1 Introduction

- 2 Three Kinds of SZ
- 3 2D Histograms of SZ
- 4 Unsupervised Classification





# Results - Spectrogram Zeros

• Spectrogram zeros classification (using  $\beta = 1.0$  and J = N/4):



## Results - Signal estimation



# Results - Signal estimation



29 / 37

• Spectrogram zeros classification (using  $\beta = 1.0$  and J = N/4):



## Results - Audio signals



• Average execution time (in seconds):

| Method                                                                    | Execution Time |          |
|---------------------------------------------------------------------------|----------------|----------|
|                                                                           | <i>N</i> = 512 | N = 1024 |
| SZC-GMM-GAP- $J = 256$                                                    | 6.69           | 18.12    |
| $SZC\operatorname{-}GMM\operatorname{-}CaHa^\dagger\operatorname{-}J=256$ | 1.94           | 9.87     |
| SZC-KMEANS-GAP- $J = 256$                                                 | 2.54           | 10.76    |
| SZC-KMEANS-CaHa- $J = 256$                                                | 1.92           | 9.82     |
| DT - $\ell_{max} = 1.2$                                                   | 0.16           | 1.13     |

<sup>†</sup> CaHa stands for Calinsky-Harabasz criterion.

## 1 Introduction

- 2 Three Kinds of SZ
- 3 2D Histograms of SZ
- 4 Unsupervised Classification

#### 5 Results



• We proposed a study of the spectrogram zeros from the perspective of interference in the TF.

- We proposed a study of the spectrogram zeros from the perspective of interference in the TF.
- The classification of the spectrogram zeros provides different criteria to estimate the signal domain using the Delaunay triangulation.

- We proposed a study of the spectrogram zeros from the perspective of interference in the TF.
- The classification of the spectrogram zeros provides different criteria to estimate the signal domain using the Delaunay triangulation.
- The approach works better in low SNR scenarios and in the presence of interference.

- We proposed a study of the spectrogram zeros from the perspective of interference in the TF.
- The classification of the spectrogram zeros provides different criteria to estimate the signal domain using the Delaunay triangulation.
- The approach works better in low SNR scenarios and in the presence of interference.
- Improvement comes with the cost of an increased computation time, mainly due to the 2D histograms.
- The noise is assumed to be broadband.

### Future work

- Zeros of the SS kind implies strong interference between components.
  - Detecting *time-frequency bubbles*.
  - Improving window selection to reduce interference between signal components.

### Future work

- Zeros of the SS kind implies strong interference between components.
  - Detecting time-frequency bubbles.
  - Improving window selection to reduce interference between signal components.
- The introduced 2D histograms are interesting objects by themselves.
  - Describing/ modeling their underlying distribution.
  - Reducing the number of noise realizations needed for computation.

 $\rho_1(z)$  2D Solution of the second s

time

 $(\approx 0.01 \text{ s})$ 

2D Histogram (J=512)



time

$$(\approx 2 s)$$

### Thank you for your attention!

https://github.com/jmiramont/spectrogram-zeros-classification

Juan M. Miramont, François Auger, Marcelo A. Colominas, Nils Laurent, and Sylvain Meignen. *"Unsupervised classification of the spectrogram zeros with an application to signal detection and denoising"*, Signal Processing (2023).



 $\operatorname{time}$ 





time

## Setting parameters



## Variations of the proposed approach

