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Introduction

Short-time Fourier transform (STFT)

Let x(t) be a real -or complex- signal and its STFT be defined as:

V g
x (t, f ) :=

∫ +∞

−∞
x(u) g(u − t) e−i2πuf du,

with g(t) = 21/4e−πt2 . Then, its spectrogram is defined as:

Sg
x (t, f ) := |V g

x (t, f )|2.

Sg
x (t, f ) can be interpreted as a time-frequency distribution:∫∫

R2

Sg
x (t, f )dt df = Ex

Largest values of Sg
x (t, f ) contain more information about x(t).

→ Classical TF paradigm.
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Introduction

In the following, we will consider signal and noise mixtures, in which:

ξ(t) is a zero-mean white Gaussian noise (WGN) satisfying:

E
{
ξ(t)ξ(t − τ)

}
= γ20δ(τ),

where γ20 is the noise variance.

The Signal-to-Noise Ratio (SNR) between a signal x and ξ as:

SNR(x , ξ) = 10 log10

(
Px

γ20

)
(dB),

where Px is the power of the signal.
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The zeros of the spectrogram

Considering z = t + if , then the STFT can be written as1

V g
x (t, f ) = Fx(z) exp

(
−|z |2

)
exp(−iπtf ),

where Fx(z) is the Bargmann transform.

Fx(z) admits a Haddamard-Weierstrass factorization2:

Fx(z) = zmeQ(z)
∏
n

(
1− z

zn

)
exp

(
z

zn
+

z2

2z2n

)
,

where zn are the zeros of Fx(z), m is the order of a (possible) zero at the
origin, and Q(z) is a quadratic polynomial.
→ Sg

x (t, f ) is characterized by the distribution of its zeros.

1Karlheinz Gröchenig. Foundations of time-frequency analysis. Springer Science &
Business Media, 2001.

2Patrick Flandrin. “Time–frequency filtering based on spectrogram zeros”. In: IEEE
Signal Processing Letters 22.11 (2015), pp. 2137–2141.
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The zeros of the spectrogram of white noise

The zeros of the spectrogram of complex white Gaussian noise
(CWGN) are homogeneously distributed.

Its distribution corresponds to that of the roots of a planar Gaussian
Analytic Function (planar GAF)3.

The expected number of zeros in the TF plane can be rigorously
deduced from the properties of the planar GAF.

For a discrete signal with N time samples, the expected number of
zeros of the spectrogram is N.

When a signal is present, the zeros surround the signal domain.
→ Larger-than-expected regions without zeros are created.

3Rémi Bardenet, Julien Flamant, and Pierre Chainais. “On the zeros of the
spectrogram of white noise”. In: Applied and Computational Harmonic Analysis 48.2
(2020), pp. 682–705.
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Signal estimation based on spectrogram zeros
Using Delaunay Triangulation (Flandrin, 2015)

Noise + Signal (SNR = 30 dB)

time

fr
eq

ue
nc

y

Extraction Mask

time

fr
eq

ue
nc

y

1 Compute the Delaunay triangulation on the SZ.
2 Find triangles with at least one edge length larger than ℓmax.
3 Approximate the signal’s TF domain Dx .
4 Estimate x(t) using:

x̃(t) =
1

g(0)

∫ +∞

−∞
V g
y (t, f )1Dx (t, f )e

i2πftdf .
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Signal estimation based on spectrogram zeros

Limitations

Low SNR makes more difficult to identify the triangles.

ℓmax depends on the Signal-to-Noise Ratio (SNR).

Noise + Signal (SNR = 30 dB)

time
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Signal estimation based on spectrogram zeros

A pathological case

Consider a signal given by:

x(t) = sf1(t) + sf2(t) + sf3(t),

where sfi (t) = cos(2πfi t), and f1 < f2 < f3.

If ∆f1,2 = ∆f2,3 =
3√
2π
, the longest edge of the Delaunay triangles

covering the middle tone is ℓ ≈ 1.46.
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Three Kinds of SZ

1 Signal-Signal Zeros (SS): these zeros are generated by the
interference between signal components.

2 Signal-Noise Zeros (SN) : these are produced by the interference
between signal components and noise, and surround the signal
domain.

3 Noise-Noise Zeros (NN): these zeros are generated by the noise only,
and can be viewed as the result of interference between randomly
located Gaussian logons.
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Three Kinds of SZ

Destructive Interference

|V g
x1+x2(t, f )|

2 = |V g
x1(t, f )|

2 + |V g
x2(t, f )|

2+

2|V g
x1(t, f )V

g
x2(t, f )| cos

(
Φg
x2(t, f )− Φg

x1(t, f )
)
,

where Φg
x (t, f ) is the phase of the complex valued V g

x (t, f ).
Then, |V g

x1+x2(t, f )|
2 = 0 if and only if:

1 Φx1(t, f ) and Φx2(t, f ) differ by an odd factor of π.

2 The modulus of V g
x1(t, f ) and V g

x2(t, f ) are equal.

Signal-Signal Spectrogram Zeros

Let x1 and x2 be deterministic signals. SS zeros appear where x1 and x2
fulfill the conditions of destructive interference.
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Three Kinds of SZ

Noise-Noise Spectrogram Zeros

The spectrogram of (complex) white Gaussian noise can be expressed asa:

Sg
ξ (t, f ) ≈

∣∣∣∣∣∑
k

V g
hk
(t, f )e iφk

∣∣∣∣∣
2

.

where hk(t) = ak g(t − tk) e
i(2πfk+φk ), also called logons, with random

amplitude ak , position (tk , fk), and phase φk .

aPatrick Flandrin. Explorations in time-frequency analysis. Cambridge University
Press, 2018.
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Three Kinds of SZ

Signal-Noise Spectrogram Zeros

Let x1 be a deterministic signal, and x2 be a realization of noise.
If x2 is real white Gaussian noise:

E
{
|V g

x2(t, f )|
2
}
= γ20 . (1)

We can then define a level curve

Γ =
{
(t, f ) : Sg

x1(t, f ) = γ20
}
. (2)
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Stability to Noise Addition
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2D Histograms of the position of zeros

1 Get a new mixture
yj(t) = x(t) + ξ(t) + ηj(t),
where ηj(t) is white Gaussian noise
with variance γ2j = βγ̂20 , and:

γ̂0 =
√
2

0.6745 median
(∣∣ℜ{

V g
y (t, f )

}∣∣) .
2 Repeat this procedure for j = 1, ..., J

independent noise realizations.

3 A 2D histogram G [n,m] can then be
obtained by counting the number of
zeros that have fallen in each TF
position (n,m).
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Local features for SZ classification

Extracting features describing the local distribution of G [n,m].

NN

SS

SN

(a) Voronoi tessellation superimposed on the
2D histogram of spectrogram zeros.

SS SN
NN

(b) (c) (d)

SS SN
NN

(e) (f) (g)
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Local features for SZ classification

Convex Hull & Voronoi Cell Area Ratio

For each z = (nz ,mz) compute the area ratio:

AR(z) =
ACH(z)

AV(z)(z)
,

where

1 V(z) is the Voronoi cell corresponding to z.

2 CH is the convex hull of {(n,m) : (n,m) ∈ V(z) ∧ G [n,m] > 0}.

Maximum in Voronoi Cell

For each z, compute the maximum of the histogram in V(z):

Max(z) = max
(n,m)∈V(z)

G [n,m]

J
.
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Unsupervised Classification

Based on first clustering, and then labeling.

We use Gaussian Mixture Models (GMM) for clustering in the feature
space spanned by AR(z) and Max(z).

The number K of clusters to search must be determined. For
example, using the GAP criterion4:

K = argmax
k∈{1,2,3}

E{log(W ⋆
k )} − log(Wk), (3)

Wk =
∑k

r=1
1
Nr
Dr

Dr is the sum of all the pairwise distances for the points in the r -th
cluster.
Nr the number of elements in the cluster.
W ∗

k is computed using Monte-Carlo simulations.
4Robert Tibshirani, Guenther Walther, and Trevor Hastie. “Estimating the number

of clusters in a data set via the gap statistic”. In: Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63.2 (2001), pp. 411–423.
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Unsupervised Classification

The clusters are then labeled according to the value of AR(z).

SS kind
NN kind
SN kind
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Algorithm Summary

Require: A noisy signal y , J, β.
1: Compute V g

y (t, f ), the set Z0 of original SZs and Voronoi tessellation.

2: Compute γ̂0 =
√
2

0.6745 median
(∣∣ℜ{

V g
y (t, f )

}∣∣) .
3: Compute the 2D histograms using J realizations and γ2j = βγ20 .
4: Extract AR(z) and Max(z).
5: Apply GMM clustering, for K ∈ {1, 2, 3}.
6: Decide whether K = 1, 2 or 3.
7: Find the centroids Ci , i = 1, . . . ,K of the detected clusters.
8: Sort clusters C(i) in ascending order of AR(z).
9: If K = 1, C(1) → NN.

10: If K = 2, (C(1),C(2)) → (SN,NN).
11: If K = 3, (C(1),C(2),C(3)) → (SS, SN,NN).
12: return K and the labels of each SZ in Z0
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Signal domain estimation based on classified zeros

Different criteria to select Delaunay triangles

Based on the classification of the spectrogram zeros, one can select
Delaunay triangles that satisfy any of the following criteria:

1 All its vertices are zeros of the SN kind (i.e. zeros located at the border
of the signal domain).

2 At least one of its vertices is a zero of the SS kind.
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Results - Spectrogram Zeros

Spectrogram zeros classification (using β = 1.0 and J = N/4):

(a) (b)

(c)
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Results - Signal estimation

QRF := 10 log10

(
∥x∥22

∥x−x̃∥22

)
(dB) CC := ⟨x ,x̃⟩

∥x∥2∥x̃∥2
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Results - Signal estimation

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1
29 / 37



Results - Spectrogram Zeros

Spectrogram zeros classification (using β = 1.0 and J = N/4):

SST+RD Contours DT ES SZC T-Soft T-Hard

-5 0 10 20
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0

5
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Results - Audio signals

(a) (b) (c) (d)

(a) (b) (c) (d)
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Results

Average execution time (in seconds):

Method
Execution Time

N = 512 N = 1024

SZC-GMM-GAP-J = 256 6.69 18.12
SZC-GMM-CaHa†-J = 256 1.94 9.87
SZC-KMEANS-GAP-J = 256 2.54 10.76
SZC-KMEANS-CaHa-J = 256 1.92 9.82
DT - ℓmax = 1.2 0.16 1.13
† CaHa stands for Calinsky-Harabasz criterion.
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Conclusions

We proposed a study of the spectrogram zeros from the perspective
of interference in the TF.

The classification of the spectrogram zeros provides different criteria
to estimate the signal domain using the Delaunay triangulation.

The approach works better in low SNR scenarios and in the presence
of interference.

Improvement comes with the cost of an increased computation time,
mainly due to the 2D histograms.

The noise is assumed to be broadband.
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Future work

Zeros of the SS kind implies strong interference between components.

Detecting time-frequency bubbles.

Improving window selection to reduce interference between signal
components.

The introduced 2D histograms are interesting objects by themselves.

Describing/ modeling their underlying distribution.

Reducing the number of noise realizations needed for computation.
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Future work

(≈ 0.01 s) (≈ 2 s)
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Thank you for your attention!

https://github.com/jmiramont/spectrogram-zeros-classification

Juan M. Miramont, François Auger, Marcelo A. Colominas, Nils Laurent, and
Sylvain Meignen. “Unsupervised classification of the spectrogram zeros with
an application to signal detection and denoising”, Signal Processing (2023).

https://github.com/jmiramont/spectrogram-zeros-classification 
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Setting parameters
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Variations of the proposed approach
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