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Introduction

Short-time Fourier transform (STFT)

Let x(t) be a real -or complex- signal and its STFT be defined as:

+0oo - )
VE(t, f) = / x(u) g(u— 1) e 2" d,

—0o0
with g(t) = 21/4e=™_ Then, its spectrogram is defined as:

SE(t,f) = |VE(t, ).
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Short-time Fourier transform (STFT)
Let x(t) be a real -or complex- signal and its STFT be defined as:
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—00

with g(t) = 21/4e=™_ Then, its spectrogram is defined as:

SE(t,f) = |VE(t, ).

e SZ(t,f) can be interpreted as a time-frequency distribution:
/ SE(t,f)dt df = E,
R2
o Largest values of SZ(t,f) contain more information about x(t).

— Classical TF paradigm.
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Introduction

In the following, we will consider signal and noise mixtures, in which:

e £(t) is a zero-mean white Gaussian noise (WGN) satisfying:

E{€(0)E(t =)} =50().

where 'yg is the noise variance.

@ The Signal-to-Noise Ratio (SNR) between a signal x and ¢ as:

SNR(X,&) =10 IoglO <P)2<> (dB)a
7o

where P is the power of the signal.
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The zeros of the spectrogram

Considering z = t + if, then the STFT can be written as!
VE(t,f) = Fx(2) exp(—\z[z) exp(—imtf),

where Fy(z) is the Bargmann transform.

'Karlheinz Gréchenig. Foundations of time-frequency analysis. Springer Science &
Business Media, 2001.
2Patrick Flandrin. “Time—frequency filtering based on spectrogram zeros'. In: IEEE

Signal Processing Letters 22.11 (2015), pp. 2137-2141.
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F«(z) admits a Haddamard-Weierstrass factorization?:

p4 V4 22
Fx(z) = ZzMeQ(2) H <1 — Z) eXP<Z + 222>7

where z, are the zeros of Fy(z), m is the order of a (possible) zero at the
origin, and Q(z) is a quadratic polynomial.
— S£(t, f) is characterized by the distribution of its zeros.

LGrdchenig, Foundations of time-frequency analysis.
2Flandrin, “Time—frequency filtering based on spectrogram zeros’.
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The zeros of the spectrogram of white noise

@ The zeros of the spectrogram of complex white Gaussian noise
(CWGN) are homogeneously distributed.

@ lts distribution corresponds to that of the roots of a planar Gaussian
Analytic Function (planar GAF)3.

@ The expected number of zeros in the TF plane can be rigorously
deduced from the properties of the planar GAF.

@ For a discrete signal with N time samples, the expected number of
zeros of the spectrogram is N.

3Rémi Bardenet, Julien Flamant, and Pierre Chainais. “On the zeros of the

spectrogram of white noise”. In: Applied and Computational Harmonic Analysis 48.2
(2020), pp. 682-705.
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The zeros of the spectrogram of white noise

@ The zeros of the spectrogram of complex white Gaussian noise
(CWGN) are homogeneously distributed.

@ lts distribution corresponds to that of the roots of a planar Gaussian
Analytic Function (planar GAF)3.

@ The expected number of zeros in the TF plane can be rigorously
deduced from the properties of the planar GAF.

@ For a discrete signal with N time samples, the expected number of
zeros of the spectrogram is N.

@ When a signal is present, the zeros surround the signal domain.
— Larger-than-expected regions without zeros are created.

Bardenet, Flamant, and Chainais, “On the zeros of the spectrogram of white noise” .
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Signal estimation based on spectrogram zeros

Using Delaunay Triangulation (Flandrin, 2015)

Extraction Mask

Noise + Signal (SNR = 30 dB)
IO
SRR

ASRN

frequency

VISR
TODRAEK
DN

time time

© Compute the Delaunay triangulation on the SZ.

@ Find triangles with at least one edge length larger than £;ax.
© Approximate the signal's TF domain Dx.

@ Estimate x(t) using:

1 oo ;
() = —= / VE(t, F)lp, (t, F)e? " df
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Signal estimation based on spectrogram zeros

@ Low SNR makes more difficult to identify the triangles.
@ /max depends on the Signal-to-Noise Ratio (SNR).

Noise + Signal (SNR =30 dB)
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Signal estimation based on spectrogram zeros

A pathological case

o Consider a signal given by:

x(t) = s4(t) + 55, () + s5,(1),

where s¢(t) = cos(2rfit), and f; < f, < f.
o If Afip =Ahs = % the longest edge of the Delaunay triangles

covering the middle tone is £ ~ 1.46.

frequency
frequency
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© Three Kinds of SZ
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Three Kinds of SZ

© Signal-Signal Zeros (SS): these zeros are generated by the
interference between signal components.

@ Signal-Noise Zeros (SN) : these are produced by the interference
between signal components and noise, and surround the signal
domain.

© Noise-Noise Zeros (NN): these zeros are generated by the noise only,
and can be viewed as the result of interference between randomly

located Gaussian logons.

frequency

time
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Three Kinds of SZ

Destructive Interference

Va

X1+X2

2 2 2
(&, A7 = [VE(e, A7 + [VE(, )"+
2|VE(t, f)VE(t, f)| cos (BE (t, ) — € (t,f)),

where ®5(t, ) is the phase of the complex valued VE(t,f).
Then, [V (t,f)[> =0 if and only if:

Q o, (t,f) and ,,(t, ) differ by an odd factor of .

@ The modulus of V£ (¢, f) and VE(t,f) are equal.

Signal-Signal Spectrogram Zeros

Let x; and x> be deterministic signals. SS zeros appear where x; and x
fulfill the conditions of destructive interference.
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Three Kinds of SZ

Noise-Noise Spectrogram Zeros

The spectrogram of (complex) white Gaussian noise can be expressed as?:

2
Sgg(t, f) ~

Z Vfi(t, fe' ek
K

where hy(t) = a, g(t — t) /@™t also called logons, with random
amplitude ag, position (t, fx), and phase py.

?Patrick Flandrin. Explorations in time-frequency analysis. Cambridge University
Press, 2018.
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Three Kinds of SZ

Signal-Noise Spectrogram Zeros

Let x; be a deterministic signal, and x» be a realization of noise.
If x5 is real white Gaussian noise:

E{|VE(t, )’} =% (1)
We can then define a level curve
M={(t,f): S&(t,f)=15}. (2)
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Three Kinds of SZ

Signal-Noise Spectrogram Zeros
Let x; be a deterministic signal, and x» be a realization of noise.
If x5 is real white Gaussian noise:

E{|VE(t,F)*} = . (1)

We can then define a level curve

M={(t,f): S&(t,f)=15}. ()]
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© 2D Histograms of SZ
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Stability to Noise Addition

'S
(o)

frequency
frequency
©

time time
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2D Histograms of the position of zeros

© Get a new mixture
yj(t) = x(t) +&£(1) + n;(2),
where 7);(t) is white Gaussian noise
with variance fyjz = B33, and:
Ao = % median (|R { Vi (t,)}]) .
@ Repeat this procedure for j =1,....J
independent noise realizations.

frequency

time
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2D Histograms of the position of zeros

O Get a new mixture
yj(t) = x(t) +&£(1) + n;(2),
where 7);(t) is white Gaussian noise
with variance fyjz = 43, and:

Ao = 525 median (|R{VE(t,)}]).

@ Repeat this procedure for j =1,...,J
independent noise realizations.

@ A 2D histogram G[n, m] can then be
obtained by counting the number of
zeros that have fallen in each TF
position (n, m). (J =64)

frequency

time
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yj(t) = x(t) + &(¢) + n(t),
where 7);(t) is white Gaussian noise
with variance fyjz = 43, and:
Ao = 525 median (|R{VE(t,)}]).
@ Repeat this procedure for j =1, ..., J
independent noise realizations.
@ A 2D histogram G[n, m] can then be
obtained by counting the number of

zeros that have fallen in each TF
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2D Histograms of the position of zeros

© Get a new mixture
yj(t) = x(t) + &(¢) + n(t),
where 7);(t) is white Gaussian noise
with variance fyjz = 43, and:
Ao = 525 median (|R{VE(t,)}]).
@ Repeat this procedure for j =1, ..., J
independent noise realizations.
@ A 2D histogram G[n, m] can then be
obtained by counting the number of

zeros that have fallen in each TF
position (n, m). (J = 256)
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time
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2D Histograms of the position of zeros

@ Get a new mixture
yj(t) = x(t) + &(¢) + n(t),
where 7);(t) is white Gaussian noise
with variance fyjz = 43, and:
Ao = 525 median (|R{VE(t,)}]).
@ Repeat this procedure for j =1, ..., J
independent noise realizations.
@ A 2D histogram G[n, m] can then be
obtained by counting the number of

zeros that have fallen in each TF
position (n, m). (J =512)

frequency

time
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2D Histograms of the position of zeros

@ Get a new mixture
yj(t) = x(t) + () + n;(t),
where 7);(t) is white Gaussian noise
with variance fyjz = ﬁ’“yg, and:

Ao = 525 median (|R{VE(t,)}]).

@ Repeat this procedure for j =1,....J
independent noise realizations.

@ A 2D histogram G[n, m] can then be
obtained by counting the number of e
zeros that have fallen in each TF
position (n, m).

frequency

(J = 1024)
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@ Unsupervised Classification
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Local features for SZ classification

e Extracting features describing the local distribution of G[n, m].

(a) Voronoi tessellation superimposed on the
2D histogram of spectrogram zeros.
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Local features for SZ classification

Convex Hull & Voronoi Cell Area Ratio

For each z = (n;, m;) compute the area ratio:

. ACH(Z)
AR(z) = Avz)(2)’

where
@ V(z) is the Voronoi cell corresponding to z.

@ CH is the convex hull of {(n, m) : (n,m) € V(z) A G[n, m] > 0}.

Maximum in Voronoi Cell

For each z, compute the maximum of the histogram in V(2):
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Unsupervised Classification

@ Based on first clustering, and then labeling.

@ We use Gaussian Mixture Models (GMM) for clustering in the feature
space spanned by AR(z) and Max(z).

@ The number K of clusters to search must be determined. For

example, using the GAP criterion*:
K = argmax E{log(W})} — log(W), (3)
ke{1,2,3}

° Wk = Zf:l NL,D”
e D, is the sum of all the pairwise distances for the points in the r-th
cluster.
o N, the number of elements in the cluster.
o W} is computed using Monte-Carlo simulations.
“Robert Tibshirani, Guenther Walther, and Trevor Hastie. “Estimating the number

of clusters in a data set via the gap statistic”. In: Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63.2 (2001), pp. 411-423.
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Unsupervised Classification

@ The clusters are then labeled according to the value of AR(z).

SS kind
A NN kind
* SN kind
2 —~
= N
g N
: 2
<]
&
‘s
® Vo ooun)
time AR(z)
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Algorithm Summary

Require: A noisy signal y, J, 3.

[ O
N P2

© NN

: Compute VZ(t, ), the set Zg of original SZs and Voronoi tessellation.
Compute 4y = ﬁ median (|R { Vi (t,1)}]) .

Compute the 2D histograms using J realizations and 71-2 = ,B’yg.
Extract AR(z) and Max(z).

Apply GMM clustering, for K € {1,2,3}.

Decide whether K =1, 2 or 3.

Find the centroids C;, i = 1,..., K of the detected clusters.

Sort clusters C;) in ascending order of AR(z).

If K =2, (C(l), C(2)) — (SN, NN)

If K =3, (C(1)7 C(z), C(3)) — (SS,SN, NN).

. return K and the labels of each SZ in 2

24/37



Signal domain estimation based on classified zeros

Different criteria to select Delaunay triangles

@ Based on the classification of the spectrogram zeros, one can select
Delaunay triangles that satisfy any of the following criteria:
@ All its vertices are zeros of the SN kind (i.e. zeros located at the border
of the signal domain).
@ At least one of its vertices is a zero of the SS kind.

25/37



Signal domain estimation based on classified zeros

Different criteria to select Delaunay triangles
@ Based on the classification of the spectrogram zeros, one can select
Delaunay triangles that satisfy any of the following criteria:
@ All its vertices are zeros of the SN kind (i.e. zeros located at the border

of the signal domain).

@ At least one of its vertices is a zero of the SS kind.

Selected Triangles

frequency

time

Selected Triangles

frequency

time
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© Results
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Results - Spectrogram Zeros

@ Spectrogram zeros classification (using 5 = 1.0 and J = N/4):

frequency
frequency

frequency
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Results - Signal estimation

30 4 SZC-GMM-GAP 1 12} —4— sZC-GMM-GAP
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Results - Signal estimation
SST+RD

SZC-GMM-GAP

frequency

0

frequency
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time
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frequency

0 0.5 1
time
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Results - Spectrogram Zeros

@ Spectrogram zeros classification (using 5 = 1.0 and J = N/4):

. SST+RD . Contours == DT . ES mm sZC . T-Soft B T-Hard

M

0 4
—5
T T T T T T
-5 0 10 20 -5 0 10 20

SNRin (dB) SNRin (dB)

-5 0 10 20
SNRin (dB)

QRF—SNRin (dB)

10
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Results - Audio signals

Spectrogram SZC-GMM-GAP

frequ
frequency
frequency

time time time time

@) (b) (9) (d)

SZC-GMM-GAP

Spectrogram Linax = 1.70 Lnax = 1.80

»
'

frequency
frequency

i

frequency

time time time time

(@) (b) (c) (d)

31/37



@ Average execution time (in seconds):

Execution Time

Method N=512 | N=1024
SZC-GMM-GAP-J = 256 6.69 18.12
SZC-GMM-CaHaf-J = 256 1.94 9.87
SZC-KMEANS-GAP-J = 256 2.54 10.76
SZC-KMEANS-CaHa-J = 256 | 1.92 9.82
DT - lax = 1.2 0.16 1.13

T CaHa stands for Calinsky-Harabasz criterion.
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@ Conclusion
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Conclusions

@ We proposed a study of the spectrogram zeros from the perspective
of interference in the TF.
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Conclusions

@ We proposed a study of the spectrogram zeros from the perspective
of interference in the TF.

@ The classification of the spectrogram zeros provides different criteria
to estimate the signal domain using the Delaunay triangulation.

@ The approach works better in low SNR scenarios and in the presence
of interference.

@ Improvement comes with the cost of an increased computation time,
mainly due to the 2D histograms.

@ The noise is assumed to be broadband.
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@ Zeros of the SS kind implies strong interference between components.
o Detecting time-frequency bubbles.

e Improving window selection to reduce interference between signal
components.
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@ Zeros of the SS kind implies strong interference between components.
o Detecting time-frequency bubbles.
e Improving window selection to reduce interference between signal

components.

@ The introduced 2D histograms are interesting objects by themselves.
e Describing/ modeling their underlying distribution.

o Reducing the number of noise realizations needed for computation.
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p1(2) 2D Histogram (J=512)

frequency
frequency

time time

(=~ 0.01s) (~25s)
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Thank you for your attention!

https://github.com/jmiramont/spectrogram-zeros-classification

Juan M. Miramont, Fran¢ois Auger, Marcelo A. Colominas, Nils Laurent, and
Sylvain Meignen. “Unsupervised classification of the spectrogram zeros with
an application to signal detection and denoising”, Signal Processing (2023).


https://github.com/jmiramont/spectrogram-zeros-classification 

2D Histograms of the position
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Setting parameters

__ ESNR(#,§)=0dB_ M SNR(z,§)=10dB_m SNR(z,) =20 dB_ M SNR(z, ) =30 dB
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Variations of the proposed approach
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