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Stationarity

Definition (Stationarity)

A random process X is said to be second-order stationary if :
m E{X(t)} = mx, Vt,
m E{X(t)X(7)} = kx(t — 1), ¥(t,7) .

Spectrum :

m Gives the distribution over frequencies of the power of X.

m Many methods to estimate the spectrum from a single realization of
the stationary process X (e.g. Welch method).
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Nonstationarity

The stationarity assumption is often irrelevant to study real-life signals,
such as audio signals, or physiological signals.

= Questions :
Which classes of nonstationarity should we consider ?

How should we analyze nonstationarity ? In particular, how to extend
spectral estimation to nonstationary signals?
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Broken stationarity : a class of nonstationarity *

Two key ingredients :
A zero-mean stationary random process X.
A deformation operator that breaks stationarity 7.
We observe the “deformed” process Y given by :
Y=TX.

= We limit ourselves to some physically relevant forms of operators.

1. H. Omer. Modéles de déformation de processus stochastiques généralisés.
Application a I'estimation des non stationnarités dans les signaux audio.

PhD thesis, Aix-Marseille Université, 2015
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Deformation operators

m Amplitude modulation

Ay :

Aax(t) = a(t)x(t) ,

with @ € C! such that Vt, 0 < ¢, < a(t) < C, < .

, z(t) » y(t) = Aqz(t)
1 1
o . ;
N | |
2 0.5 1 2 05 1
Time (s) Time (s)

m Frequency modulation

6/31



|

| H

H

u

H

" j i

oooooooooooooooooooooooooooooooooooo

?§ I WW\\\\\\\\\WﬂuuﬁﬁﬂWWUW\‘\Wl{l”

||||||



Introduction

Goal : spectral estimation of nonstationary signals

From a single realization of the nonstationary random process Y, we aim
at estimating simultaneously :

m The spectrum .“x of the underlying stationary random process X,

m The deformation operator 7.
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onclusion and perspect

Locally deformed signals : an analysis-based approach
m Model
m Wavelet transform and approximation
m Estimation algorithm : JEFAS
m Applications to audio signals
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JEFAS
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Model and goal

= Model :
Y =@, D, X .

where X is a stationary process.

» Relevant to model physical phenomena, such as Doppler effect,
speed variations, or animal vocalizations.

m Goal : From a single realization of the process Y, estimate
simultaneously :
m the spectrum .“x of the underlying stationary process X,
m the deformation functions o and ~.
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Wavelet transform

Definition (Wavelet transform)

Wi(s,7) = (x,9sr)  avec s, (t) =272 275(t — 1)) ,

where 1) is the analysis wavelet.
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FIGURE — “Sharp wavelet” for two different values of s.
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Approximated behavior

7' (t) = 1+ Acos(2nt)
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Approximation theorem

The wavelet transforms of X and Y are approximately related by :
Wy (s,7) = Wy (s,7) = a(7)Wx (s + logo(+'(r)), (7)) -

The error term € = Wy — Wy is a zero-mean random process, whose
variance E {|¢(s,7)|?} depends on the regularity of a and 7/, and the
speed of decay of 9.
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JEFAS
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Estimation procedure

Fix 7 = Unknown parameters :
* Ix o 01 =a(r) o 0 = logy(7'(7))

Assumption : X is a zero-mean stationary Gaussian process.

= Each column of the wavelet transform of Y : wy , ~ CN (0, C(®)),
with covariance matrix :

() = ;20572012 /Ooo S (D) (250 €) de .

= The log-likelihood is given by

2(6) =~ In|det(C(O))] — 5C(©) wy. - w,
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Estimation algorithm : JEFAS

The JEFAS (Joint Estimation of Frequency, Amplitude and Spectrum)
algorithm consists in an alternating estimation.

Initializations :

e Initialize the power spectrum estimate.
e |nitialize the amplitude modulation by a constant.
o k+1

while stopping criterion = FALSE do
e Time warping : Estimate &%) by ML, V7.
e Amplitude modulation : Estimate 5(K) by ML, V7.
e Spectrum : Estimate j)(f) from the “rectified” wavelet transform.
e k+ k+1
end while
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Doppler effect

Assumptions :
m A source emits a stationary sound.
m The source follows a uniform linear motion, at speed V.
m From a fixed station, we record the sound emitted by the source.

Vv,
- ;
d

6

= Due to the Doppler effect, the sound we receive is time-warped, with :

e . V2t
~'(t) = 22\t Va2(2 = V2) ()2 ]

An example :‘ )))
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Doppler effect
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Comparison to the theoretical function with : d =5 m and V = 54 m/s. 1o/
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Spectral analysis of a broadband wind sound
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FIGURE — Top : Scalograms of the original signal (left) and the estimated
stationary signal (right). Bottom left : estimated time warping and amplitude
modulation. Bottom right : estimated spectrum. 17/31
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Locally deformed signals : a synthesis-based approach
m Motivations and model
m Estimation algorithm : JEFAS-S
m lllustrations
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Locally harmonic signal

Signal of the form :
y(t) = Ay cos(2m&17y(t)) + Az cos(2m&27(t))

where +' is the fast varying instantaneous frequency.
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m JEFAS : Interference patterns on the wavelet transform.
= Approximated behavior does not hold.
=- JEFAS diverges.
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Spectral estimation : Analysis vs. Synthesis

Analysis-based approach = JEFAS and JEFAS-BSS

Model of nonstationarity :
locally time-warped signals, of the form :

Y =2,X,

where X is an arbitrary stationary process.

20/31



JEFAS-Synthesis
(o] le}

Spectral estimation : Analysis vs. Synthesis

Analysis-based approach = JEFAS and JEFAS-BSS

Model of nonstationarity :
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Spectral estimation : Analysis vs. Synthesis

Synthesis-based approach = JEFAS-S
Synthesis model < Reconstruction formula :
y(t) = Re (Zws * Ws)(t)> +€(t)
S

where W;(t) are random time-scale coefficients, and €(t) is a noise.

» Discretization of the problem :

N
y = Re (ZW,,W,,) + €,

n=1

where w,, is the n-th column of the time-scale representation.
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Bayesian inference

m Likelihood : € ~ A(0, o2I)
N
plylw,) =N (Re (Z \Il,,w,,> ; O'2|>

m Prior : on the synthesis coefficients w,
» Uncorrelated vectors such that :
w, ~ CN(0,C,) .

» Covariance matrices C, are translated versions of reference
covariance function ¢ :

[Colmmr = [CO)mmr = (Sm + Oy Sy + 02)

where 0, € R is the shift parameter.
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Estimation strategy

» Expectation Maximization (EM) principle where :
m 0 is the parameter,
m w, is the latent variable.

The update at iteration k relies on the following two steps :

Time-scale representation update
=
Maximum a posteriori estimation :

W = 2c (1) whe, (64) "y
Nonstationarity parameter update :

6% = arg max Z(9,) — %Tr (C(Hn)_lI‘n (é(k_l))) )
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Algorithm : JEFAS-S

Initialization : estimate () and . using JEFAS.
o k+1
while stopping criterion = FALSE do
e Time-scale representation estimation : v"vf, .
e Time-warping parameter estimation : k).
e Spectrum estimation : LSZ)((’().
o k+ k+1.
end while

k)

m Alternating estimation = Similar to JEFAS.
m Convergence ensured by the EM principle.

m Additional estimation of the time-scale representation = JEFAS-S is
slower to converge than JEFAS.
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Broadband synthetic signal

Estimated adapted
Wavelet transform time-scale representation
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m Time-warping parameter estimation : not improved with respect to

JEFAS.
m Allows denoising : improvement of 7.06 dB of the Signal to Noise
Ratio between the measurements y and the reconstructed signal ¥,.
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Locally harmonic signal

Signal of the form :
y(t) = Ay cos(2m&1y(t)) + Az cos(2m&27(t))
where 7/ is the (normalized) fast varying instantaneous frequency.

JEFAS-S : Prior of uncorrelation between w, = No interference =
JEFAS-S converges.

—— JEFAS estimate
|—JEFAS-S estimate
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n and perspective

Wavelet-like prior Sharp prior
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Conclusion and perspectives
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Conclusion and perspectives
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Conclusion

Summary :
m Broken stationarities :
Y=TX

» Locally deformed signals
» Multivariate locally deformed signals
» Locally harmonic signals

m Spectral estimation : Simultaneous estimation of the spectrum .#x
and the deformation operator 7.

Two estimation strategies :
m Analysis-based approaches

m Synthesis-based approaches

29/31



Conclusion and perspectives
[e]e] le)

Advertising

GitHub
https://github.com/AdMeynard/JEFAS

Spectrum estimation of
() = ar(Oxan(®) = P O S

Cross synthesis :
yi-2(t) = da(t)%(92(t))

Deformation estimations/
y2(t) = ax(t)xe(12(t)) =

of ap and 7,

Deformation
Song | Wind | Formula 1

Song o ))) ‘ ))) o )))
Spectrum Wind | ))) | ))) o )))
Formula 1 ‘ ))) ‘ ))) ‘ )))
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