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Inverse problems in signal/image processing

Forward model of signal/image degradation :

y = Ax∗ + n, (1)

Inverse problem (variational formulation)

x̂ = arg min
x

1
2 ‖Ax− y‖2

2 + λϕ(x) (2)

Examples
I Denoising (A = I)
I Inpainting (A is a mask)
I Deblurring (A is a 2D convolution)
I Tomography (A computes radial projections)
I Compressed sensing (A satisfies conditions such as RIP)
I Super-resolution, pansharpening, dequantization, phase retrieval, etc
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Neural networks for inverse problems

1. Learn the inverse operator fθ such that, on a dataset (xi , yi),

yi ≈ fθ(xi).

I Lack of stability and robustness
I Black-box inversion, hard to interpret
I No explicit use of the degradation model A
I Not generic : need for retraining for any change in model A or noise

statistics
2. Learn the regularization only

I Implicit, with denoisers (plug-and-play)
I Explicit, with generative models

3. Learn the data-fitting divergence to use in place of ‖·‖2
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Unfolding/Unrolling

Unfolded neural networks
I Pick a splitting optimization scheme
I See it as a neural network
I Learn some parts of the scheme that become parameters of the

network

Pros and cons
(+) Easy way to optimize hyperparameters / bilevel learning
(+) Interpretable architecture
(-) Unstabilities caused by autodiff
(-) What parameters should we learn ? What initialization ?
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What parameters should we learn in unfolding ?

Most works focus on
I Hyper-parameters (eg, step size)
I Gradients or parts of them (linear operators, conv filters)
I Either free parameters or outputs of sub-networks

Proposal : learn the divergence
I Learn the proximal operator through parameterized activation

functions
I Amounts to learning the divergence D(y|Ax)
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Unfolding in the literature

I Seminal paper : Gregor and Lecun, Learning fast approximations of
sparse coding, ICML 2010

I A survey : Monga, Li and Eldar, Algorithm Unrolling, IEEE SP
Mag., 2021

I Source separation : Hershey, Le Roux and Weninger, Deep
unfolding : Model-based inspiration of novel deep architectures, 2014

I SISR : Wang et al., Deep networks for image super-resolution with
sparse prior, ICCV 2015

I Dictionary learning : Malézieux, Moreau et Kowalski, Understanding
approximate and unrolled dictionary learning for pattern recovery,
ICLR 2022

I Others : Chouzenoux, Repetti, Pustelnik...
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Phase retrieval in audio

min
x∈RL
‖|Ax|d − r‖2, (3)

I A ∈ CK×L is the measurement operator
I r ∈ RK

+ are the phaseless measurements
I ||.|| denotes the Euclidean norm

In audio, A is often the short-time Fourier transform (STFT), r are either
magnitude (d = 1) or power (d = 2) spectrograms

An ubiquitous problem
I Many audio processing pipelines operate on the spectrogram
I Need for the phase to go back to a waveform
I Examples : source separation, speech-to-speech, etc

But : why using `2
2 ?
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Phase retrieval with Bregman divergences

Bregman divergence :

Dψ(p | q) =
K∑

k=1
[ψ(pk)− ψ(qk)− ψ′(qk)(pk − qk)] , (4)

where p, q ∈ RK and ψ : R→ R is a strictly-convex,
continuously-differentiable generating function (with derivative ψ′).
Includes well-known divergences such as `2

2, Kullback-Leibler,
Itakura-Saito...

PR with Bregman divergences

min
x∈RL
Dψ(r | |Ax|d) right formulation, (5)

min
x∈RL
Dψ(|Ax|d | r) left formulation. (6)

(7)
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Special cases of Bregman divergences

Divergence dψ(y |z) ψ(z) Bruit
Quadratic loss 1

2 (y − z)2 1
2 z2 Gaussien

Kullback-Leibler y(log y − log z)− (y − z) z log z Poisson
Itakura-Saito y

z − log y
z − 1 − log z Gamma mult

beta-divergence
yβ

β − 1
−
βyzβ−1

β − 1
+ zβ

zβ

β(β − 1)
−

z
β − 1

+
1
β
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Gradient descent

Gradient computation

∇J(x) = d
2 AH [|Ax|d−2 � (Ax)� gψ

]
. (8)

with gψ = ψ′′(|Ax|d)� (|Ax|d − r) for “right” PR, (9)
gψ = ψ′(|Ax|d)− ψ′(r) for “left” PR. (10)

Gradient descent
I Standard :

xt+1 = xt − µ∇J(xt). (11)
I With Nesterov-like acceleration :

qt+1 = xt − µ∇J(xt),
xt+1 = qt+1 + η(qt+1 − qt),

(12)

Special cases for `2
2 : Griffin-Lim algorithms GLA [Griffin and Lim, 1984]

and FGLA [Perraudin et al., 2013] ; Wirtinger flow [Candès et al. 2013]
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ADMM

Constrained formulation

min
x∈RL,u∈RK

+ ,θ∈[0;2π[K
Dψ(u | r) s.t. (Ax)d = u� e iθ, (13)

ADMM

ht+1 = (Axt)d + λt
ρ

(14)

ut+1 = proxρ−1Dψ(· | r)(|ht+1|) (15)
θt+1 = ∠ht+1 (16)

xt+1 = AH(ut+1 � e iθt+1 − λt
ρ

)1/d (17)

λt+1 = λt + ρ(Axt+1 − ut+1 � e iθt+1), (18)
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Unfolding ADMM phase retrieval

One layer of the proposed unfolded architecture
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Unfolding ADMM phase retrieval

1 iteration = 1 layer of a neural net :

(xT , λT ) = U(x0, λ0) = U1 ◦ · · · ◦ UT (x0, λ0), (19)

where t-th layer Ut can be decomposed into two linear parts denoted by
L(1)

t and L(2)
t , and a nonlinear part NLt as follows :

L(1)
t : (xt−1, λt−1) 7→ ht (20)

NLt : ht 7→ (ut , θt) = (Ft(|ht |, r), ∠ht) (21)

L(2)
t : (xt−1, λt−1, ut , θt) 7→ (xt , λt). (22)

In ADMM, Ft is defined as

Ft(y , r) = proxρ−1Dψ(· | r)(y) = proxρ−1ψ̃(y + ρ−1ψ′(r)). (23)

where ψ̃(z) =
∑

k ψ(zk).
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Learning the proximal operator

I Recall that in the ADMM scheme,

Ft(y, r) = proxρ−1ψ̃(y + ρ−1ψ′(r)). (24)

I Proposal : replace the prox by a learnable activation function defined
by :

APL(y) := max(y, 0) +
C∑

c=1
wc max(−y + bc , 0), (25)

I Reparameterization to account for r

Ft(y, r) = APLt

(
γ

(1)
t y + γ

(2)
t

rβt−1

βt − 1

)
, (26)

with learnable parameters wc,t , bc,t , γ(1)
t , γ(2)

t , and βt .
I Two variants, tied and untied
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From APL to divergence learning

Proposition
Under mild conditions, there exists a function fr,t : RK → R ∪ {+∞}
such that Ft(y, r) = proxfr,t (y)

In the tied variant, we know exactly what we optimize

Closed-form expression :

fr(y) = 1
γ(1)

〈
APL−1(y)− γ(2) rβ−1

β − 1 , y
〉

− 1
2‖y‖

2 − 1
γ(1) ÃPL(APL−1(y)). (27)
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Experimental setting

I Data : 2-second signals from TIMIT dataset. 1000 for Train, 10 for
val, 50 for test

I STFT with 1024 samples-long (46 ms) self-dual sine window
I Parameters : T = 15 layers and C = 3 pieces in APLs
I Training : Adam optimizer, neg-STOI loss
I Metric : STOI ∈ [0, 1], the higher the better
I Two versions : tied and untied
I Baselines : GLA, ADMM `2

2
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GLA vs ADMM

Comparisons between GD and ADMM for several divergences, exact
spectrograms
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GLA vs ADMM

Comparisons between GD and ADMM for several divergences, modified
spectrograms
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Impact of divergence learning
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Iterating the network
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Learned divergences
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Learned metrics fr ,t(y) with r = 1. The quadratic loss and
Kullback-Leibler divergence DKL(y | r) are also displayed for the sake of
comparison. In the “tied" case, fr in equal to Dψ(· | r) involved in the PR
optimization problem. For clarity, only 3 of the 15 trained layers fr ,t are

displayed for the “untied" case.
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Conclusion

Summary
I Unfolding allows to easily learn a divergence
I It can improve the results compared to a fixed loss such as `2

I Illustration for phase retrieval with unfolded ADMM

Perspectives
I Convergence in case untied ?
I Non-separable divergence
I Other inverse problems and settings
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Thank you for listening

Any question ?
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