# Model Fitting on the TF Plane and Noise on Synchrosqueezing Operators

#### Marcelo A. Colominas

macolominas@conicet.gov.ar

Lab. Señales y Dinámicas no Lineales – Facultad de Ingeniería, UNER Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB), CONICET, Argentina

ASCETE Meeting, Grenoble







・ロト ・個ト ・ヨト ・ヨト



Noise on Synchrosqueezing Operators



#### 2 Noise on Synchrosqueezing Operators

Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble





2 Noise on Synchrosqueezing Operators

Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

#### • There is a need for mode separation on the TF plane.

Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

- There is a need for mode separation on the TF plane.
- This is useful for both decomposition and denoising tasks.

- There is a need for mode separation on the TF plane.
- This is useful for both decomposition and denoising tasks.
- Traditional ridge-based methods suffers from resolution issues (so-called staircase effect).

- There is a need for mode separation on the TF plane.
- This is useful for both decomposition and denoising tasks.
- Traditional ridge-based methods suffers from resolution issues (so-called staircase effect).
- Indeed, the ridge c(n) is a mapping from  $\{1,\ldots,N\}$  to  $\{0,\ldots,K-1\}$  because of frequency quantization.

Noise on Synchrosqueezing Operators

## Linear Chirp Approximation

Let us define

$$F_x^g(t, f) = \int_{-\infty}^{+\infty} x(u)g(u-t)e^{-i2\pi f(u-t)}du.$$

(日)

э

## Linear Chirp Approximation

Let us define

$$F_x^g(t, f) = \int_{-\infty}^{+\infty} x(u)g(u-t)e^{-i2\pi f(u-t)}du.$$

 $\bullet\,$  For a linear chirp of the form  $x(t)=e^{i2\pi(at+bt^2)}$  we have

$$F_x^g(t,f) = x(t) \int_{-\infty}^{+\infty} g(u)e^{i2\pi bu^2} e^{-i2\pi (f-(a+2bt))u} du$$
$$= x(t)\widehat{g_{\phi''}}(f-\phi'(t))$$

with 
$$g_{\phi^{\prime\prime}}(t)=g(t)e^{i2\pi\frac{\phi^{\prime\prime}}{2}t^2}$$

## Linear Chirp Approximation

• For a Gaussian window  $g(t) = e^{-\sigma t^2}$ , with  $\sigma > 0$ , we have

$$F_x^g(t,f) = x(t) \sqrt{\frac{\pi}{\sigma - i\pi\phi''}} e^{\frac{-\sigma\pi^2(f - \phi'(t))^2}{\sigma^2 + \pi^2\phi''^2}} e^{\frac{-i\phi''\pi^3(f - \phi'(t))^2}{\sigma^2 + \pi^2\phi''^2}}$$

## Linear Chirp Approximation

• For a Gaussian window  $g(t) = e^{-\sigma t^2}$ , with  $\sigma > 0$ , we have

$$F_x^g(t,f) = x(t) \sqrt{\frac{\pi}{\sigma - i\pi\phi''}} e^{\frac{-\sigma\pi^2(f - \phi'(t))^2}{\sigma^2 + \pi^2\phi''^2}} e^{\frac{-i\phi''\pi^3(f - \phi'(t))^2}{\sigma^2 + \pi^2\phi''^2}}$$

• For a given fixed time  $t = t_0$ , the modulus reads

$$|F_x^g(t_0, f)| = |x(t_0)| \sqrt{\frac{\pi}{\sqrt{\sigma^2 + \pi^2 \phi''^2}}} e^{\frac{-\sigma \pi^2 (f - \phi'(t_0))^2}{\sigma^2 + \pi^2 \phi''^2}}$$

Noise on Synchrosqueezing Operators

### Traditional Ridge Estimation

• Traditional ridge estimation aims to solve

$$\max_{\mathcal{C}} \sum_{l=1}^{L} \int_{-\infty}^{+\infty} (|F_x^g(t, c_l(t))|^2 - \alpha c_l'(t)^2 - \beta c_l''(t)^2) dt,$$

with  $C = \{c_1(t), \ldots, c_L(t)\}$  the set of ridges and  $\alpha$  and  $\beta$  regularization parameters.

Noise on Synchrosqueezing Operators

## Traditional Ridge Estimation

Traditional ridge estimation aims to solve

$$\max_{\mathcal{C}} \sum_{l=1}^{L} \int_{-\infty}^{+\infty} (|F_x^g(t, c_l(t))|^2 - \alpha c_l'(t)^2 - \beta c_l''(t)^2) dt,$$

with  $C = \{c_1(t), \dots, c_L(t)\}$  the set of ridges and  $\alpha$  and  $\beta$  regularization parameters.

• A heuristic approach simplifies the problem by solving it *time by time*. For a single mode, and setting  $\alpha = \beta = 0$ , we have

$$c(n\Delta t) = \arg \max \int_{-\infty}^{+\infty} |F_x^g(t, f)| \delta(f - c(n\Delta t)) df,$$

with  $\delta(\cdot)$  the Dirac distribution. This makes  $c(n\Delta t) \in \{0, \dots, K-1\}$  in practice.

Marcelo A. Colominas

Noise on Synchrosqueezing Operators

### Model Fitting on the TF Plane

 $\bullet$  Based on the modulus of a linear chirp, we build the model for every t

$$\rho(f, \tilde{\phi}'(t), \tilde{\phi}''(t)) = \sqrt{\frac{\pi}{\sqrt{\sigma^2 + \pi^2 \tilde{\phi}''(t)^2}}} e^{\frac{-\sigma \pi^2 (f - \tilde{\phi}'(t))^2}{\sigma^2 + \pi^2 \tilde{\phi}''(t)^2}}.$$

Noise on Synchrosqueezing Operators

### Model Fitting on the TF Plane

ullet Based on the modulus of a linear chirp, we build the model for every t

$$\rho(f, \tilde{\phi}'(t), \tilde{\phi}''(t)) = \sqrt{\frac{\pi}{\sqrt{\sigma^2 + \pi^2 \tilde{\phi}''(t)^2}}} e^{\frac{-\sigma \pi^2 (f - \tilde{\phi}'(t))^2}{\sigma^2 + \pi^2 \tilde{\phi}''(t)^2}}.$$

• Then, we solve the following problem looking for real parameters  $\Phi:=(\tilde{\phi}',\tilde{\phi}'')_{l=1,\dots,L}$ 

$$\max_{\Phi} \sum_{l=1}^{L} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |F_x^g(t,f)| \rho(f,\tilde{\phi}_l'(t),\tilde{\phi}_l''(t)) df dt.$$
(1)

### Model Fitting on the TF Plane

• For noiseless situation, problem (1) is convex.

- For noiseless situation, problem (1) is convex.
- It can be easily solved without using derivatives (e.g. golden-section search).

- For noiseless situation, problem (1) is convex.
- It can be easily solved without using derivatives (e.g. golden-section search).
- For noisy situations, we adopt a pre-step of hard-thresholding.

- For noiseless situation, problem (1) is convex.
- It can be easily solved without using derivatives (e.g. golden-section search).
- For noisy situations, we adopt a pre-step of hard-thresholding.
- The results proved to be robust under noisy situations.

00000000000000

#### Noise on Synchrosqueezing Operators

## Examples



ASCETE Meeting, Grenoble

< 口 > < 四

00000000000000

#### Noise on Synchrosqueezing Operators

### Examples



00000000000000

#### Noise on Synchrosqueezing Operators

### Examples



Reconstruction error (linear chirp): HT = 14.6211 dB; MF = 15.0425 dB. •

0000000000000

#### Noise on Synchrosqueezing Operators

### Examples



- Reconstruction error (linear chirp): HT = 14.6211 dB; MF = 15.0425 dB. •
- Reconstruction error (exp. chirp): HT = 15.5234 dB; MF = 16.2492 dB. •

0000000000000

#### Noise on Synchrosqueezing Operators

### Examples



- Reconstruction error (linear chirp): HT = 14.6211 dB; MF = 15.0425 dB. ۲
- Reconstruction error (exp. chirp): HT = 15.5234 dB; MF = 16.2492 dB. ۲
- Reconstruction error (sin. chirp): HT = 14.5288 dB; MF = 15.4312 dB. •

Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

#### Noise on Synchrosqueezing Operators

### Results



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

### Noise on Synchrosqueezing Operators

### Results



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

### Noise on Synchrosqueezing Operators

### Results



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

Noise on Synchrosqueezing Operators

### Room for Improvement

• Under noisy situations, we tried a hard-thresholding strategy.

### Room for Improvement

- Under noisy situations, we tried a hard-thresholding strategy.
- Is this the best choice?

## Room for Improvement

- Under noisy situations, we tried a hard-thresholding strategy.
- Is this the best choice?
- Let  $S_x^g(t,f) = |F_x^g(t,f)|^2$ . For a noisy signal  $\tilde{x} = x + n$ , with n zero-mean and with variance  $\sigma_n^2$ , we have

$$\mathbb{E}\{S^g_{\tilde{x}}(t,f)\} = S^g_x(t,f) + \mathbb{E}\{S^g_n(t,f)\}$$

.

## Room for Improvement

- Under noisy situations, we tried a hard-thresholding strategy.
- Is this the best choice?
- Let  $S^g_x(t,f)=|F^g_x(t,f)|^2$ . For a noisy signal  $\tilde{x}=x+n$ , with n zero-mean and with variance  $\sigma^2_n$ , we have

$$\mathbb{E}\{S^g_{\tilde{x}}(t,f)\} = S^g_x(t,f) + \mathbb{E}\{S^g_n(t,f)\}$$

• For a fixed time  $t = t_0$ , we can fit the following model

$$\min_{\overrightarrow{\alpha},\overrightarrow{\beta},\overrightarrow{\gamma},\mu} \left\| S^g_{\widetilde{x}}(t_0,f) - \mu - \sum_{\ell=1}^{L} \alpha_{\ell} e^{\frac{-2\sigma\pi^2 (f-\beta_{\ell})^2}{\sigma^2 + \pi^2 \gamma_{\ell}^2}} \right\|^2 \tag{2}$$

Marcelo A. Colominas

.



Noise on Synchrosqueezing Operators





• Synchrosqueezing is widely used in many applications.

- Synchrosqueezing is widely used in many applications.
- However, noise affects the operators in different ways.

- Synchrosqueezing is widely used in many applications.
- However, noise affects the operators in different ways.
- The impact of noise should be carefully studied.

• 
$$\omega^{[1]}(t,f) = f + \Re\{\frac{1}{i2\pi} \frac{F_x^{g'}(t,f)}{F_x^{g}(t,f)}\}$$
, for  $F_x^g(t,f) \neq 0$ .

Marcelo A. Colominas

(日)

э

э

• 
$$\omega^{[1]}(t,f) = f + \Re\{\frac{1}{i2\pi}\frac{F_x^{g'}(t,f)}{F_x^g(t,f)}\}$$
, for  $F_x^g(t,f) \neq 0$ .

• In practice, it is applied when  $|F_x^g(t, f)| > T_1$ .

• 
$$\omega^{[1]}(t,f) = f + \Re\{\frac{1}{i2\pi}\frac{F_x^{g'}(t,f)}{F_x^g(t,f)}\}$$
, for  $F_x^g(t,f) \neq 0$ .

• In practice, it is applied when  $|F_x^g(t, f)| > T_1$ .

• We now that  $|F_n^g(t,f)| \sim \chi_2$ , for  $n \sim \mathcal{N}(0,\sigma_n^2)$  and we can estimate  $\sigma_n$  from our data.

• 
$$\omega^{[1]}(t,f) = f + \Re\{\frac{1}{i2\pi} \frac{F_x^{g'}(t,f)}{F_x^g(t,f)}\}$$
, for  $F_x^g(t,f) \neq 0$ .

- In practice, it is applied when  $|F_x^g(t, f)| > T_1$ .
- We now that  $|F_n^g(t,f)| \sim \chi_2$ , for  $n \sim \mathcal{N}(0,\sigma_n^2)$  and we can estimate  $\sigma_n$  from our data.
- So the determination of  $T_1$  is possible.

Noise on Synchrosqueezing Operators

### First Order Synchrosqueezing



Marcelo A. Colominas

Noise on Synchrosqueezing Operators

### First Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

enoble 18 / 22

Noise on Synchrosqueezing Operators

# Second Order Synchrosqueezing

• 
$$\omega^{[2]}(t,f) = \omega^{[1]}(t,f) + \Re\{\frac{1}{i2\pi} \frac{(F_x^g)^2}{F_x^g F_x^{t^2g} - (F_x^{tg})^2} \frac{-F_x^{tg}}{F_g}\},$$
 for  $F_x^g F_x^{t^2g} - (F_x^{tg})^2 \neq 0.$ 

э

## Second Order Synchrosqueezing

• 
$$\omega^{[2]}(t,f) = \omega^{[1]}(t,f) + \Re\{\frac{1}{i2\pi} \frac{(F_x^g)^2}{F_x^g F_x^{t^2g} - (F_x^{tg})^2} \frac{-F_x^{tg}}{F_g}\}, \text{ for }$$
  
 $F_x^g F_x^{t^2g} - (F_x^{tg})^2 \neq 0.$ 

• How to determine  $T_2$  in order to apply  $|F_x^g F_x^{t^2g} - (F_x^{tg})^2| > T_2$ ?

## Second Order Synchrosqueezing

• 
$$\omega^{[2]}(t,f) = \omega^{[1]}(t,f) + \Re\{\frac{1}{i2\pi} \frac{(F_x^g)^2}{F_x^g F_x^{t^2g} - (F_x^{tg})^2} - \frac{F_x^{tg}}{F_g}\},$$
 for  $F_x^g F_x^{t^2g} - (F_x^{tg})^2 \neq 0.$ 

- How to determine  $T_2$  in order to apply  $|F_x^g F_x^{t^2g} (F_x^{tg})^2| > T_2$ ?
- Let us define  $D = F_n^g F_n^{t^2g} (F_n^{tg})^2$  with  $n \sim \mathcal{N}(0, \sigma_n^2)$ .

19 / 22

## Second Order Synchrosqueezing

• 
$$\omega^{[2]}(t,f) = \omega^{[1]}(t,f) + \Re\{\frac{1}{i2\pi} \frac{(F_x^g)^2}{F_x^g F_x^{t^2g} - (F_x^{tg})^2} - \frac{F_x^{tg}}{F_g}\},$$
 for  $F_x^g F_x^{t^2g} - (F_x^{tg})^2 \neq 0.$ 

- How to determine  $T_2$  in order to apply  $|F_x^g F_x^{t^2g} (F_x^{tg})^2| > T_2$ ?
- Let us define  $D = F_n^g F_n^{t^2g} (F_n^{tg})^2$  with  $n \sim \mathcal{N}(0, \sigma_n^2)$ .
- We can prove that  $\mathrm{var}\{D\}=\sigma_n^2\|g\|^2\sigma_n^2\|t^2g\|^2+3\sigma_n^4\|tg\|^4.$

### Second Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

### Second Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

## Second Order Synchrosqueezing



Marcelo A. Colominas

Noise on Synchrosqueezing Operators

### Second Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

e 21/22

Noise on Synchrosqueezing Operators

### Second Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

Noise on Synchrosqueezing Operators

### Second Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

10 ble 21 / 22

Noise on Synchrosqueezing Operators

### Second Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

e 21/22

Noise on Synchrosqueezing Operators

### Second Order Synchrosqueezing



Marcelo A. Colominas

LSyDnL - FIUNER - IBB CONICET

ASCETE Meeting, Grenoble

ble 21 / 22

# Thank you.

Lab. Señales y Dinámicas no Lineales – Facultad de Ingeniería, UNER Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB), CONICET, Argentina







Marcelo A. Colominas

ASCETE Meeting, Grenoble