
ANR ASCETE : Partenaire Grenoble

J. Fontecave ⊥, N. Le Bihan ‡, S. Meignen�, B. Rivet ‡, T. Oberlin†

⊥ TIMC, UGA, ‡ Gipsa-Lab, UGA, � LJK, UGA, † Supaero, Univ. Toulouse
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PhD thesis work: Nils Laurent (Oct 2019- Sep 2022)

I New ridge extraction technique

I Improvement of chirp rate estimators (in collaboration with M.
Colominas)



New ridge extraction technique

When f contains 3 modes:

signal + noise
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Robust ridge detection and reconstruction
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[1] N. Laurent and S. Meignen,” A Novel Ridge Detector for Non Stationary Multicomponent Signals: Development and Application to
Robust Mode Retrieval”, IEEE TSP, vol. 69, pp. 3325-3336, 2021.



Discrete setting: n ∈ {1, · · · , L}, f [n] = f ( n
L )

Noise : usually ε[n] is an i.i.d. complex white Gaussian noise.

I <{ε} ∼ N (0, σ2
ε)

I ={ε} ∼ N (0, σ2
ε)

1. Detection of P ridges: Γp=1,··· ,P [n] on a grid of M × L coefficients

2. Retrieval of fp based on Γp



I Signal + white Gaussian noise : f̃ = f + ε

γ̂ =

median

∣∣∣∣<{V g

f̃
[n, k]

}
n,k

∣∣∣∣
0.6745

≈ σε‖g‖2

I We consider coefficients above βγ̂

S(β) =
{

[n, k], |V g

f̃
[n, k]| ≥ βγ̂

}
.

I Approach based on LMMF: [n,m[n]] such that

|V g

f̃
[n,m[n]]| > |V g

f̃
[n,m[n]−1]| and |V g

f̃
[n,m[n]]| > |V g

f̃
[n,m[n]+1]|



I To construct the ridges, we need the definition of reassignment
operators.

t̃f (t, η) := t +
V tg

f (t, η)

V g
f (t, η)

and ω̃f (t, η) := η − 1

2iπ

V g ′

f (t, η)

V g
f (t, η)

one sets ω̂f (t, η) = <{ω̃f (t, η)} and t̂f (t, η) = <{t̃f (t, η)}.
f (t) = A(t)e2iπφ(t), if A ∈ R0[X ], φ ∈ R1[X ], then ω̂f (t, η) = φ′(t).

I We also need an estimation of the chirp rate,

q̃f (t, η) :=
∂t ω̃f (t, η)

∂t t̃f (t, η)
,

If log(A) ∈ R1[X ], φ ∈ R2[X ], q̂f (t, η) := <{q̃f } = φ′′(t).



I Add constraints to relations between LMMF:

[n,m[n]] ∼ [n+ 1,m[n+ 1]]
q̂f̃ [n,m[n]]

q̂f̃ [n+ 1,m[n+ 1]]

[n0,m[n0]]↔ [n,m[n]]

n0 n0 + 1 n0 + 2 n

∼

∼

∼

I Then ! is defined like ↔, but in S(β)

I A RRP Ri is the finite set of LMMF sharing relation !.



I Connect ridges: basins of attraction

Bi :=

{
[n, k]; argmin

[x,y ]∈RRP

∥∥(t̂f̃ [n, k], ω̂f̃ [n, k]
)
− [x , y ]

∥∥ ∈ Ri

}
.

It is a set of coefficients pointing to the Ri .

I Definition of relevant basins:

BHT
i =

{
Bi

⋂
S(2) if Ri

⋂
S(3) 6= ∅

∅ otherwise
.

S(2) =⇒ probability of false alarm: 10%.
S(3) =⇒ probability of false alarm: 1%.

I Connected basins define larger time frequency regions denoted CHT
j .



Ranking P-tuples of {(CHT
j )j} by coexistence: ({Cκp=1,··· ,P})κ=0,··· ,κmax .

Illustration of Cκ1 , Cκ2 , Cκ3

e.g. P = 3

Mode ridges : Aκp = (C0p ∪ C1p ∪ · · · ∪ Cκp ) ∩ S(3)



For κ = 0, · · · , κmax , we define Aκp = (C0p ∪ C1p ∪ · · · ∪ Cκp ) ∩ S(3)
and then ridges as splines with smoothness λ:

sκp︸︷︷︸
cubic spline

= argmin
s

[
(1 − λ)

∑
[n,m[n]]∈Aκp

(
m[n]

L

M
− s(

n

L
)

)2
|V g

f̃
[n,m[n]]|

︸ ︷︷ ︸
data

+λ

∫ 1

0
(s′′(t))2dt︸ ︷︷ ︸

regularity

]
.

The index of the solution is denoted by κfin and satisfies,

κfin = arg max
κ s.t. (sκp )pnot crossing

P∑
p=1

Eκp ,

where Eκp is an energy related to the spline sκp .
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Robust chirp rate estimation
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[2] N. Laurent, S. Meignen and M. A. Colominas ,” On Local Chirp Rate Estimation in Noisy Multicomponent Signals: With an

Application to Mode Reconstruction”, IEEE Transactions on Signal Processing, vol. 70, pp. 3429-3440, 2022.



I 2nd order estimation of the chirp rate

q̂f +ε = − 1

2π
=

{
(V g

f +ε)
2

V g
f +εV

t2g
f +ε − (V tg

f +ε)
2

}

I Assuming f is a linear chirp, we simplify q̂f +ε

q̂f +ε ≈ q̂f +
1

2π
=

{
V g

f V
t2g
ε

(V t2g
f )2

− V g
ε

V t2g
f

}
︸ ︷︷ ︸

G

I G (t) has the expression

G (t) = −2πφ′′(t)<

{
V t2g
ε

V t2g
f

− V g
ε

V g
f

}
+

2π

σ2
=

{
V t2g
ε

V t2g
f

− V g
ε

V g
f

}



I To define a low pass filter, we study the power spectral density of G ,
with f a linear chirp with rate b,

PG (η) =
σ2
εσ

64π2η4

(1 + b2σ4)2
e
− 2πσ2η2

1+b2σ4 .

It has its maximum at ηm =
√
1+b2σ4

σ
√
π

.

I We set the cut-off frequency ηc,b to a proportion of PG (ηm) and
define a filtered estimate F (q̂f +ε), assuming b = 0.
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Study of reassignment operators

Four different objectives

I To introduce a novel matricial form for the derivation of IF
estimators used in FSSTs.

I To characterize the zeros of the reassignment vectors associated
with different types of FSSTs.

I To investigate reassignment vectors in the case of interfering pure
harmonic modes and of noisy linear chirps.

I To propose a new IF estimator based on the determination of
relevant points extracted from FSSTs ridges.

[3] S. Meignen and N. Singh, ”Analysis of Reassignment Operators Used in Synchrosqueezing Transforms: with an Application to

Instantaneous Frequency Estimation”, IEEE Transactions on Signal Processing, vol. 70, pp.216-227, 2021.



We consider f (τ) = A(τ)e i2πφ(τ) with log(A(τ)) (resp. φ(τ)) a
polynomial of order S (resp. N) for τ close to t, with S ≤ N, namely:

f (τ) = exp

 N∑
j=0

(
[log(A)](j)(t) + i2πφ(j)(t)

)
(τ − t)j

j!

 . (1)

From (1), and the definition of STFT we may write:

∂tV
h
f (t, η) = r

[N]
1 (t)V h

f (t, η) +
N∑

j=2

r
[N]
j (t)V t j−1h

f (t, η) (2)

where r
[N]
j (t) = [log(A)](j)(t)+2iπφ(j)(t)

(j−1)! .



I When f is a MCS, the equality (2) turns into an approximation,
namely for (t, η) in the vicinity of (t, φ′k (t)) for some k, one may
write:

∂tV
h
f (t, η) = r

[N]
1 (t, η)V h

f (t, η) +
N∑

j=2

r
[N]
j (t, η)V t j−1h

f (t, η), (3)

where r
[N]
j (t, η) ≈ [log(Ak )]

(j)(t)+2iπφ
(j)
k (t)

(j−1)! .

I In that context, ω̂
[N]
f (t, η) := <

{
r
[N]
1 (t,η)
2iπ

}
is the Nth order LIF

estimator of fk .



A simple way to compute r
[N]
1 is to consider Eq. (3) and to remark that

∂ηV
h
f (t, η) = −2iπV th

f (t, η), can be written under the matrix form:
∂tV

h
f

i
2π∂η∂tV

h
f

...
iN−1

(2π)N−1 ∂
N−1
η ∂tV

h
f

 =


V h

f V th
f · · · V tN−1h

f

V th
f V t2h

f · · · V tN h
f

...
...

. . .
...

V tN−1h
f V tN h

f · · · V t2(N−1)h
f



r
[N]
1

r
[N]
2
...

r
[N]
N

 = DR. (4)



Based on simple properties of the determinant of matrices, one obtains
that:

r
[N]
1 =

det(M1)

det(D)
, (5)

with

M1 =


∂tV

h
f V th

f · · · V tN−1h
f

i
2π∂η∂tV

h
f V t2h

f · · · V tN h
f

...
...

. . .
...

iN−1

(2π)N−1 ∂
N−1
η ∂tV

h
f V tN h

f · · · V t2(N−1)h
f

 . (6)

Then, as ∂tV
h
f = i2πηV h

f − V h′

f , one gets, for any l ≥ 1:

∂ l
η∂tV

h
f = (−2iπ)l

(
−kV t l−1h

f − V t l h′

f + 2iπηV t l h
f

)
, (7)



I This leads to: det(M1) = i2πηdet(D)− det(U1)− det(V1) with:

U1 =


0 V th

f · · · V tN−1h
f

V h
f V t2h

f · · · V tN h
f

...
...

. . .
...

(N − 1)V tN−2h
f V tN h

f · · · V t2(N−1)h
f



V1 =


V h′

f V th
f · · · V tN−1h

f

V th′

f V t2h
f · · · V tN h

f
...

...
. . .

...

V tN−1h′

f V tN h
f · · · V t2(N−1)h

f


, (8)

and thus

ω̂
[N]
f =

=
{
r
[N]
1

}
2π

= η − 1

2π
=
{
det(U1) + det(V1)

det(D)

}
. (9)

I Gaussian window : h′(t) = − 2π
σ2 th(t), the first two columns of V1

are colinear and its determinant is null. In that context, one may
thus write:

ω̂
[N]
f =

1

2π
=
{
r
[N]
1

}
= η − 1

2π
=
{
det(U1)

det(D)

}
. (10)



Characterization of the Zeros of Reassignment Vectors

I When N = 1:

ω̂f − η = =
{

1

σ2

V th
f

V h
f

}
= −=

{
∂ηV

h
f

2iπσ2V h
f

}
=

1

4πσ2

∂η|V h
f |2

|V h
f |2

, (11)

zeros are points (t, η) such that ∂η|V h
f (t, η)|2 = 0.

I When N = 2:

ω̂
[2]
f − η = =

{
1

2π

V h
f V

th
f

V h
f V

t2h
f − (V th

f )2

}
(12)

that is to say

0 = =
{
V h

f V
th
f (V h

f V
t2h
f − (V th

f )2)∗
}

= |V h
f |2∂η|V th

f |2 − |V th
f |2∂η|V h

f |2.

which can also be viewed as

det

[
|V h

f |2 ∂η|V h
f |2

|V th
f |2 ∂η|V th

f |2
]

= 0.



The reassignment vector when N = 2 thus reads:

ω̂
[2]
f − η =

|V h
f |2∂η|V th

f |2 − |V th
f |2∂η|V h

f |2

|V h
f V

t2h
f − (V th

f )2|2
. (13)



Approximating reassignment vectors in the vicinity of their
zeros

I We first approximate second order reassignment vector, i.e. N = 2,
considering that, in the vicinity of its zeros, V th

f is small (for a linear
chirp it is null on the ridge).

I It is then natural to consider the following approximation of

ω̂
[2]
f (t, η)− η in the vicinity of its zeros:

ω̂
[2]
f (t, η)− η = =

{
1

2π

V h
f V

th
f

V h
f V

t2h
f − (V th

f )2

}
= =

 1

2π

V th
f

V t2h
f

1

1− (V th
f )2

V h
f V t2h

f


≈ =

{
1

2π

V th
f

V t2h
f

}
+ =

{
1

2π

(V th
f )3

V h
f (V t2h

f )2

}
.

I When
(V th

f )2

V h
f V t2h

f

<< 1, one can approximate ω̂
[2]
f only including the first

order term in V th
f , it is denoted by ω̂

[2]
f ,1. When one considers two

terms in the approximation, we denote it by ω̂
[2]
f ,2.



Study of the reassignment vector on interfering modes

I Let us consider that f (t) = f1(t) + f2(t) with f1(t) = Ae i2πξ1t and
f2(t) = e i2πξ2t , where ξ1 < ξ2.

I When h is the Gaussian window:

V h
f1(t, η) = ĥ(η − ξ1)Ae i2πξ1t = σAe i2πξ1te−π(η−ξ1)

2σ2

V h
f2(t, η) = σe i2πξ2te−π(η−ξ2)

2σ2

|V h
f (t, η)|2 = σ2(A2e−2πσ

2(η−ξ1)2 + e−2πσ
2(η−ξ2)2

+2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t))

tk and t̃k correspond to minima of the spectrogram with respect to η



Illustration of different behaviors

STFT
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(a): STFT of two interfering modes, with the two ridges associated with
local maxima superimposed; (b): FSST of the signal in (a); (c): FSST2
of the signal in (a)
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(a): ω̂f and ω̂
[2]
f in the vicinity of the lower spectrogram ridge at time tk ;

(b): same as (a) but at time t̃k ; (c): ω̂
[2]
f , ω̂

[2]
f ,1, and ω̂

[2]
f ,2 in the vicinity of

the lower spectrogram ridge at time tk ; (d): same as (c) but at time t̃k .



Mathematical analysis

Proposition
On the upper (resp. lower) spectrogram ridge the second order
reassignment vector is oriented towards higher (resp. lower) frequencies
except at time instants tk and t̃k .

I The TF coefficients are not reassigned onto the spectrogram ridges
with FSST2: the point on the upper (resp. lower) spectrogram ridge
(except those at time tk and t̃k ) are reassigned at a higher (resp.
lower) frequency.

I The spectrogram ridges are the zeros of the first order reassignment
vector but are very different from FSST ridges.



Inter-partners work

I Work on the zeros of the spectrogram (joint work with Nantes
partner)

I Work on phase retrieval comparison of PGHI and Griffin-Lim
algorithms (joint work with Paris, internship in 2022)

I Potential common interest in Deep Learning approach (with Paris
and university of Lund, Sweden)



Thanks for you attention!
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