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PhD thesis work: Nils Laurent (Oct 2019- Sep 2022)

> New ridge extraction technique

» Improvement of chirp rate estimators (in collaboration with M.
Colominas)



New ridge extraction technique

When f contains 3 modes:

ridge detection
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Robust ridge detection and reconstruction

[1] N. Laurent and S. Meignen,” A Novel Ridge Detector for Non Stationary Multi
Robust Mode Retrieval”, IEEE TSP, vol. 69, pp. 3325-3336, 2021.

Signals:

and Application to



Discrete setting: n€ {1,---,L}, f[n] = f({)

Noise : usually [n] is an i.i.d. complex white Gaussian noise.
> Rie} ~ N(0,02)
> S{e} ~ N(ngg)

1. Detection of P ridges: Ip—1.... p[n] on a grid of M x L coefficients

2. Retrieval of f, based on T,



» Signal + white Gaussian noise : f=f+e

median

R { VEn, k]}
0.6745

n,k

~ ocllgll2

2
I

> We consider coefficients above 5%

5(8) = {In. K. |VE[n. k)| = B}

> Approach based on LMMF: [n, m[n]] such that

|VE[n, m[n]]| > [VE[n, m[n]-1]| and  |VE[n, m[n]]| > [VE[n, m[n]+1]|



» To construct the ridges, we need the definition of reassignment
operators.

V/E(t,m)

te(t,n) =t+ W and  @(t,n) =n— 5=~z

one sets Wr(t,n) = R{@r(t,n)} and T (t,n) = R{E(t,n)}.
f(t) = A(t)e* ™) if A€ Ro[X], ¢ € Ry[X], then Gr(t,n) = ¢'(t).

» We also need an estimation of the chirp rate,

~ 3t@f(t777)
t,n) = =
Gr(t,n) 25 (e )

If log(A) € Ry[X], ¢ € Ro[X], Gr(t,n) := R{dr} = ¢"(1).



» Add constraints to relations between LMMF:

[n, m{n]] ~ [n+1, m[n+1]]

qgln, mn]

{jf'[n +1,m[n+1]|

|

Pas

[0, m{no]] < [n, m[n]]

ngy ng+1 ny+2

> Then «~ is defined like <, but in S(3)

n

» A RRP R, is the finite set of LMMF sharing relation «~.



» Connect ridges: basins of attraction

B; = {[n, kl;  argmin ||(t;[n, k], ¢[n, k]) — [x, y]|| € R,} .
[x,y]ERRP
It is a set of coefficients pointing to the R;.
» Definition of relevant basins:

B_HT_{ BiNS(2) if RiNS(3)#0
o 0 otherwise

S§(2) = probability of false alarm: 10%.
8(3) = probability of false alarm: 1%.

» Connected basins define larger time frequency regions denoted CJ!"’T.



Ranking P-tuples of {(C/'T);} by coexistence: ({C5_; .. p})r=0, sma-

Illustration of Cf,C5,C§

Mode ridges : A% = (COUCLU---UCE) N S(3)



For k=0, , Kmax, we define A% = (CSUCLU---UCR)NS(3)
and then ridges as splines with smoothness A:

) L n\2 1
s = argmin [(1 -y (m[n]f - s(—)) |V o, mlal]| + A / (5//(t))zdt]
-~ s [n,minll€ AL mMooL N
cubic spline regularity

data

The index of the solution is denoted by %1 and satisfies,

P
kfin = arg max E E,
K s.t. (s5)pnot crossing p—1

where EJ is an energy related to the spline s;.
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Robust chirp rate estimation
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[2] N. Laurent, S. Meignen and M. A. Colominas ,” On Local Chirp Rate Estimation in Noisy Multicomponent Signals: With an

Application to Mode Reconstruction”, IEEE Transactions on Signal Processing, vol. 70, pp. 3429-3440, 2022.



» 2nd order estimation of the chirp rate

af+ _ _1%{ (Vfg+e)2 }
e = 2
2m Vfg—ka Vftﬁ-ge - (Vf?-gka)2

» Assuming f is a linear chirp, we simplify Gr
1, [vEvis  ys
i~ ~ A T e f e _ €
gf+e = gf + 27T\y{ (Vftzg)2 V;Zg}

G

> G(t) has the expression

vie vel 2n  [vie e
— " € _ e M € _ e
G(t) = —2m¢ (t)%{ Vftzg Vfg} + 2 ‘y{ Vftzg Vfg}




» To define a low pass filter, we study the power spectral density of G,
with f a linear chirp with rate b,

2 6424 ro2n?
Pe(n) = 227700 RUBUMPEE
(1+ b20%)?

It has its maximum at 7, = —V?\;’;"A.

» We set the cut-off frequency 1 p to a proportion of Pg(7,) and
define a filtered estimate F(gr..), assuming b = 0.
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Study of reassignment operators

Four different objectives

» To introduce a novel matricial form for the derivation of IF
estimators used in FSSTs.

» To characterize the zeros of the reassignment vectors associated
with different types of FSSTs.

» To investigate reassignment vectors in the case of interfering pure
harmonic modes and of noisy linear chirps.

» To propose a new IF estimator based on the determination of
relevant points extracted from FSSTs ridges.

[3] S. Meignen and N. Singh, " Analysis of Reassignment Operators Used in Synchrosqueezing Transforms: with an Application to

Instantaneous Frequency Estimation”, IEEE Transactions on Signal Processing, vol. 70, pp.216-227, 2021.



We consider f(7) = A(7)e’2(7) with log(A(7)) (resp. ¢(7)) a
polynomial of order S (resp. N) for 7 close to t, with S < N, namely:

(2"’0: [log(A )—I—i.27rqb ) (1 — t) )

J!

From (1), and the definition of STFT we may write:

N
oviEm) = ANV ) + S MV () 2)

j=2

where r1M(¢) = L8O (0 2in0()



» When f is a MCS, the equality (2) turns into an approximation,
namely for (t,7) in the vicinity of (t, ¢} (t)) for some k, one may
write:

N

o Vit n) = e Ve ) + 3 M v (), (3)
j=2

[log(AOI” (1) +2im g ()

G-1)!
~[N] e |
> In that context, @ '(t,n) := RN 25 ¢ is the Nth order LIF

where r[ ](t n) ~

estimator of f.



A simple way to compute rl[N] is to consider Eq. (3) and to remark that

o VE(t,n) = —2imVh(t,n), can be written under the matrix form:

,- AV ) 7 v;: . v;N;lh riM
57 0n0: V¢ Vf”’ %4 hoL.. Vi h rz[N]
. = . . _ ) | =DR. (4)

V-1 8N_18 \/h /\.1—1 .N . 2(/.v71) !
i tN=1p tVh t h [N]
@mN-t%n  Zt7f 2 Vi eV 'n



Based on simple properties of the determinant of matrices, one obtains
that:

7= ife:f(l\gl))’ )
with
K% Ve v;”;”’
My = ia".atvfh Vf.th V’%h (6)
ooy v v

Then, as 0, th = i27r7]th — th/, one gets, for any / > 1:

81/78t Vi = (=2ir) (—katHh - V,f,h/ + 21'7r77V;/h) , (M)



» This leads to: det(M;) = i2nndet(D) — det(U;) — det( V1) with:

0 vih Ly
Vh Vt2h . VtNh
U = ' T '
(N _ 1) V;N*Zh V;Nh L Vft_Z(Nfl)h_ (8)
Vh’ vih L. Vthlh 1’
Vih/ thZh L \f/tNh
w=| T '
Vftm'_lh/ Vf;/vh o V},Z(l.\l—l)h
and thus
& J IV
oM _ ”{’1 } _ Lo [det(Ur) + det(V1) (9)
f or 1 2r det(D) '
> Gaussian window : H'(t) = —25th(t), the first two columns of V4

are colinear and its determinant is null. In that context, one may
thus write:

v Lo 1 [ det(Ur)
r _27r”‘{r1 } =1 2wd{det(D) ' (10)



Characterization of the Zeros of Reassignment Vectors

» When N = 1:
1 v 9, VP 1 9,|Vh]2
N —d —f L nyf — nvs 11
weeh \Y{OQ 74 } J{Qiﬂ'aQth} 4ro? VP27 (11)
zeros are points (t,n) such that 9,|V}(t,n)|* = 0.
» When N = 2:
hy\/th
52 — 1 Ve Vs
o —n= o{ gyt iy (12

that is to say
0= {VPVI(VEVE R — (Vi) ) = VRO, VAR — Ve oy V.

which can also be viewed as

VP an|vfh|2} %

det
Lv;hﬁ on VP



The reassignment vector when N = 2 thus reads:

SBI ) LVEPO VIR = ViR, Ve
" VIV = (VPP

(13)



Approximating reassignment vectors in the vicinity of their
zeros

» We first approximate second order reassignment vector, i.e. N = 2,
considering that, in the vicinity of its zeros, Vf”’ is small (for a linear
chirp it is null on the ridge).

» It is then natural to consider the following approximation of
A[Z](t n) — 1 in the vicinity of its zeros:

1 Vvhvg 1V 1
@[le(t,n)nzg{ — }23 :

2m VEVER — (VE)? 2w Ve Wy
frf

1 Vth 1 Vth 3
A ——L_ 4+ 3 —7( f 2 .
2m VEh 2w Vh(VE)?

~[2]

th
> When % i << 1, one can approximate Wy

VAVED only including the first
[2]

. When one considers two
[2]

order term in V , it is denoted by @& Wy

terms in the approximation, we denote it by &



Study of the reassignment vector on interfering modes

» Let us consider that f(t) = f1(t) + f(t) with f(t) = Ae>™%1t and
f(t) = 276t where & < &.

» When h is the Gaussian window:

Vftll(t7 77) = E("? - 51)Aei2”51t = O'Aeizﬂ‘flte_”(n—fl)zoz
Vi(tn) = oePméterin-er
p3 b)
Vi )2 = o3(A2e 2o (1=8)" | g 2mo’(n—&)’

12ae~ ™ -6+ (-2 cos(2r (e, — £1)1))

tx and f, correspond to minima of the spectrogram with respect to n



[llustration of different behaviors
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(a): STFT of two interfering modes, with the two ridges associated with
local maxima superimposed; (b): FSST of the signal in (a); (c): FSST2
of the signal in (a)
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(a): @r and w[ l'in the vicinity of the lower spectrogram ridge at time tx;
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Mathematical analysis

Proposition

On the upper (resp. lower) spectrogram ridge the second order
reassignment vector is oriented towards higher (resp. lower) frequencies
except at time instants t, and .

» The TF coefficients are not reassigned onto the spectrogram ridges
with FSST2: the point on the upper (resp. lower) spectrogram ridge
(except those at time t, and x) are reassigned at a higher (resp.
lower) frequency.

» The spectrogram ridges are the zeros of the first order reassignment
vector but are very different from FSST ridges.



Inter-partners work

» Work on the zeros of the spectrogram (joint work with Nantes
partner)

» Work on phase retrieval comparison of PGHI and Griffin-Lim
algorithms (joint work with Paris, internship in 2022)

» Potential common interest in Deep Learning approach (with Paris
and university of Lund, Sweden)



Thanks for you attention!
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