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© Objective 1 : New approaches for the study of MCSs
@ Contribution 1 : Second-order time-reassigned synchrosqueezing
@ Contribution 2 : New mode extraction methods
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o References

© Objective 4 : Applications and Software developments
@ Contribution 1 : EEG Signal Analysis
@ Contribution 2 : Radar Signal Processing
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Objective 2 : Improving signal repr i using data-driven
Future work with Quentin Legros

ANR ASCETE project

Goals : Combining deterministic and stochastic approaches to extend the

proposed techniques to more complex signals

@ Deterministic models combined with machine learning (e.g. deep neural networks)
Difficult cases for mode recovery (e.g. overlapping components, noisy signals, etc.)
Combining synchrosqueezing with Non-negative Matrix Factorization (NMF)

Generalization to high dimension signals (images, tensors, etc.)

New practical applications (perception, biomedicine, astronomy, etc.)

Project objectives :

@ Objective 1 : New approaches for the study of MCSs with synchrosqueezing transforms

Objective 2 : Improving signal representations using data-driven and machine learning approaches

(]
@ Objective 3 : Combining non negative matrix factorization and SST, Phase retrieval
(]

Objective 4 : Applications and Software developments
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Harmonic/Percussive separation using AM-FM

© Objective 1 : New approaches for the study of MCSs
@ Contribution 1 : Second-order time-reassigned synchrosqueezing

@ Contribution 2 : New mode extraction methods

@ Contribution 3 : Harmonic/Percussive separation using AM-FM

@ References
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Objectlve 4 : Applications and Software developments
Objective 2 : Improving signal representations using data-driven
Future work with Quentin Legros

References

Second-order time-reassigned synchrosqueezing

Contribution 3 : Harmonic/Percussive separation using AM-FM

o Partners : Nantes, Paris
o Involved Tasks : T1.1 : combining stochastic and deterministic approaches
to improve SST

Contributions

@ A new second-order group-delay estimator for horizontal synchosqueezing
[Fourer, Auger 2019],

@ Application to the S-transform and continuous wavelet transform [Fourer,
Auger 2020]

o First analysis of the Draupner Wave signal analysis

<

o Computing enhanced TFR designed for impulsive signal and strongly
modulated modes

o Generalization of the time-reassigned synchosqueezed STFT first proposed
by [He et al, 2019]
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Main Idea
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References

rch

Definitions

STFT :

Fh(t,w) :/Rx(r)h(t—r)*e_j‘” . )

with j2 = —1

Marginalization over time of F//(t,w) leads to :

/Fx”(r,w) dt:/ h(t — 7)*x(r) e 7*7 dedr )
R

= Jlane

Y x() e T dudr 3)

- /R h(u)* du /R x(r) eI dr 4)
= Fp(0)" Fx(w) (5)

with Fy(w)= f; x(t) e™/** dt the Fourier transform of signal x.
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Objective 4 : Applications and Software devel
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Time-reassigned synchrosqueezing

Contribution1: S d-ord.

Contribution 2 : New mode extraction methods

h
synchr

Contribution 3 : Harmonic/Percussive separation using AM-FM

References

Horizontal synchrosqueezing

sh(e,w)

h
Fe(r,
S

w)d (t — 2')((2)(7‘, w)) dr

where tx(t, w) corresponds to the time reassignment operator (group-delay).

Reconstruction :

x(t)

- 27 F(0)* Wr2

Si'(T, w) 9t drdw.

(6)

(7)

| A\

Second-order group-delay estimator

W —Ox(t,w)+HIm(gx (t,w) Ex(t,w))

if G (t,w) #0

8@ (e,0)={ Gx(£,0) (8)
tx(t, w) otherwise
v
with :

e (t,w) = Re (Ex(t,w)) , with  Ex(t,w) =t th(t"w) 9)

x(t,w) = Re (tx(t,w)) , wi x(t,w) =t — —/—

Fh(e,w)

hie,w)
Ox(t,w) = Im (Ox(t,w)) , with  Ox(t,w)=jw + —"— (10)

Fh(e.w)

FD"hph _ pD"~1hpDh

ax(t,w) = Im(@x), with  &x(t, w) XX 3 (11)

= n—1 n—1
FThEPTth — FTD" ke
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Numerical results (comparison)

References
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syn

New mode extraction methods

n 3 : Harmonic/Percussive separation using AM-FM
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Fig. 1. Comparison of the resulting TFRs with Rényi Entroy (at order e« = 3) of a synthetic multicomponent signal. The TFRs of the synchrosqueezing

methods (b),(c), (¢) and (f) correpond to their squared modulus.
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Future work with Quentin Legros

Possible extensions

Contribution1: S d-order time-r i d synchr
Contribution 2 : New mode extraction methods

Contribution 3 : Harmonic/Percussive separation using AM-FM

References

@ Theoretical analysis of time-reassigned synchrosqueezing wavelet transform

[Li, Zhang, Auger et al. 2022]

Auger, et al. 2022]

@ etc.

Robust to noise estimators using regularization

High-order group-delay estimators (Pham, Meignen et al.)

Self-matched extracting wavelet transform and signal reconstruction [Li,
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Objective 1
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Pseudo-Bayesian approach for mode extraction

o Partners : Paris

o Involved Tasks : T1.1 + T1.2 : New ridge extraction technique

Contributions

@ A new noise-robust mode extraction method based on the STFT [Legros,
Fourer, 2021],

o Extension using alpha-beta divergence and a new signal detector
(submitted [Legros, Fourer, 2022])

o Application on both synthesized and real-world signals

@ Robust mode extraction method usable to any time-frequency
representation

@ Robust Instantaneous Frequency estimator and Ridge detection method

<
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@ Given a discrete-time spectrogram s, m (n the time index and m the frequency
bin), model each spectrogram slice as :

2y/mL e_(Z?\'AlA'nL )2 (12)

Sn,m|ﬁ7n Ng(m—an), with g(m): M

@ Compute the joint likelihood (assuming independence between successive frames)

M-1

p(snlmn) = T p(sn.mlmn). (13)

m=0

n)p(Mn)
p(sn
equivalent to minimize the KL divergence between p(s,) and p(sn|mn), we
replace the KL-divergence by a robust o — 3-divergence leading to the following
pseudo-posterior :

@ Instead of maximizing posterior given by p(Mn|sn) = p(s"l'ﬁi) which is

@ Use the pseudo-posterior expressed in terms of alpha-beta cross-entropy :

MCESf

p(Mn|sn) < ™ AB (ﬁ")p(an)' (14)
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Main Idea

e Bl

Outlier highlighting

1 a

Mode seeking | g—|

Arcorrram 1

: Input: TFR §;. GRW mean my, and variance o, K, g.

1

2 fork=1.....Kdo

3 forn=0,....N-1do

4 Compute p(m,,) by matching moments from Eq. (18).
5: Compute the pseudo-posterior pism,|s,) from Eq. (16).
[ Perform MMSE estimation of #,.

7 end for

8 Repeat steps 4 to 6 iterating fromn = N - 1,....0

9:  Update the TFR by subtracting the kth ridge (TFR support set to 0).
10: end for
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Fig. 13. Estimation of K = 3 signal components of the real bat record
signal using the proposed ABD method with o« = 0.4, 8 = 0.7 with (right)
and without (left) performing detection.
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Numerical results and codes

Table 1. RQF of each reconstructed components (averaged over 100 realizations of noise) for the different competing approaches for a SNR =
10dB. In second rows isplayed, for each case, the std of the estimators.

C1 C2 C3 Average
1586 | 16.60 | 6.52 1270
+0.84 | +0.84 | £2.12 [ =14
17.12 | 16.63 | 11.04 | 1431
+1.81 | +0.81 | 0.81 | £0.63
1707 | 16.64 | 10.89 | 14.26
+0.79 | +0.78 | +0.62 [ =0.74
1693 | 16.52 | 10.90 | 1428
+0.89 | +0.76 | £0.57 | +0.75
1496 | 16.78 | 9.33 13.35
+6.74 | +0.80 | +0.64 | +3.93
1162 | 1637 | 9.51 12.20
+4.84 | £0.72 | £0.33 | £8.03
552 1628 | 8.64 [9.85
+8.90 | +2.43 | £0.24 | +2.83
1622 | 12.28 | 5.05 1118
+7.26 | £7.14 | £7.92 | £745

Brevdo [5]

ABD.a=04.8=04

ABD.a=02,8=04

ABD,a=04,8=02

ABD.a=02,8=12

ABD.a=07.8=12

ABD,a=024=15

RD [24]

Matlab Codes

https://fourer.fr/eusipco21
https://codeocean.com/capsule/8693890/tree/vl
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EM approach for mode extraction and IF estimation

o Partners : Paris, Grenoble

@ Involved Tasks : T1.1 + T1.2 : New ridge extraction technique

Contributions

@ A new noise-robust mode extraction method based on the STFT [Legros,
Fourer, 2021]

o Application on synthesized signals

@ Noise-robust mode extraction method

@ Deal with overlapping components

A\
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Harmonic/Percussive separation using AM-FM

o Given a spectrogram s, m, a ssume a mixture model :

p(sn,m|Wn, fit)

@ Compute the joint-likelihood :

p(SIW, A1) = [T T] p(snml Wi 1n).

@ Consider two distinct prior :
o Total Variation :

P oxp | -3

o Laplacian :

N A R
p(MIX) o exp { 5 Z ||La'"k ||2} )

K
=> wag(m—
k=1

K

k=1

1 K
A k
mn)+ﬁ l_kZ;Wn )

(15)

(16)

(17)

|TV] )

(18)
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References

@ Approximate joint posterior as :

p(W, M|S) o p(S|W, M)p(M)p(W). (19)

o (modified) Expectation-Maximization at iteration (i) :

QW|W) = log p(S|W, M) + log [p(A)p(W)] ,

Wit — argmax a(W|W(i)).
w

(20)
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Finite Rate of Innovation (FRI) approach for mode extraction

o Partners : Paris

@ Involved Tasks : T1.2 : New ridge extraction technique

Contributions

@ FRI-based approach for mode extraction and IF estimation (submitted to
SPL [Legros, Fourer, 2022])

@ Possibly combined with synchrosqueezing

o Application on both synthesized and real-world signals

@ Robust IF estimation and Ridge detection method
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Main Idea
@ Observation model :
K—-1
~ /
snm Y ak(n)g(m — ¢ (n)) (21)

k=0

where ay(n) = a2(n) and g(m) = e (25t)?
@ Assumes the signal to retrieve as a stream of Dirac Pulses :
K-1
fa(m) = > ax(n)d(m — ¢ (n)) (22)

k=0

o Estimation of , = Dg’IV’ls,, where [V],\ = &2 (i) is a (M x 2Mp + 1)
matrix and Dg is a diagonal matrix gathering the discrete time Fourier series
coefficients of g.
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o Estimation of the mode location by estimating the annihilating filter h
such as :

(Fa s h)(1) =D h(i)fa(l — i) =

i€EZ
K-1 —szrl¢k(n 12m¢k( n)
= Z ak(n)e M Z h =0 (23)
k=0 i€
( —jzwj((n))
H| e M
—i2m ey (n)

with H(z) the Z-transform of h, whose roots are e ™
o In presence of noise, h minimizes ||f, * h||? (Total Least Squares method)

@ The FRI-TLS method can be combined with vertical synchrosqueezing
(FRI-SST)
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Numerical results
800
700
(b) SNR=0dB boo
CT [ 3 Average
T06 [ 431 | —022 | 271 -0

Brevdo [10] 4082 | £094 | £051

3.45 3.60 117
+5.54 | £3.77 | £1.84

PB, 8 = 0.7 []

frequency [Hz]
g
g
i

PB. o — 0.5 (0] 3.66 1.18 0.59 300
N " +3.78 +1.36 +1.87
RD [4] 500 LN G50 200 .- —
+1.04 | 2141
0.13 o0
R +0.76
737 0
FRI TLS (proposed) 1098 0 0.02 004 0.706 008 01 012 014
T .03 time [s]

FRI SST (proposed)

£2.09 | £0.87 | £1.87

. Estimation of the first K = 2 signal components of the speech signal
using the proposed TLS method

Malab Codes

https://codeocean.com/capsule/7022037/tree/vl

23/62


https://codeocean.com/capsule/7022037/tree/v1

Introduction

Contribution 1 : Second-order time-reassigned synchrosqueezing

Obiecti . h
plostiv ol o WNEy o !°5 the “J"dy .°F LNt Contribution 2 : New mode extraction methods
Obj 4: A and i : h : .
Objective 2 : | o . 1 - ing d dri Contribution 3 : Harmonic/Percussive separation using AM-FM
ji : Impi g signal repr using data-driven References

Future work with Quentin Legros

Harmonic/Percussive Source Separation

o Partners : Paris

o Involved Tasks : T1.2 : New ridge extraction technique, T4.2 : application
of SST to audio signals

Contributions

@ Computes AM-FM estimator in the TF plane for separating harmonic /
percussive sources [Fourer, 22]

o Combines Machine-learning with time-frequency analysis

@ Application to music audio signals

<

o Disentangling the harmonic deterministic part from the percussive and
noisy part

@ Enhancing audio signal for MIR applications
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@ Assumes an instantaneous mixture
x(t) = sp(t) + sp(t) (24)
with
x(t) = eMOHEx() iy P=—1, (25)
@ Uses previously proposed estimators in [Fourer, Auger et al.
Uses pi ly proposed estimat F Auger et al. 2018
1
_(¢n) B F’D"hFh F’D" h F’Dh o6
G (tw) = FThFD"=*h _ FTD"1hFh (26)
1 n
R FDhFT’D" h_ FThpD"h )
wg(tn)(t7 w) _ x x x X T jw (27)

FT™hFh () — FTRFD"

Dy(t,w) = Re(f{x(t,w)>, &X(t,w)zlm(&x(t,w)> (28)
Ax(t,w) = Re (\Tlx(t,w)) . ox(t,w) =Im (@X(t,w)) (29)

© AM-FM Parameters (after discretization) :

o AM : )?\X[k,m]
o FM : Gx[k, m]

o AMFM : Culk, m] = \/Axlk, m]2 + du [k, m]2
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Main Idea

Contribution 2 : New mode extraction methods

References

Contribution 1 : Second-order time-reassigned synchrosqueezing

Contribution 3 : Harmonic/Percussive separation using AM-FM

Training based on Linear Discriminant Analysis

@ Reference Separation Mask using ground truth :

: h 2 h 2
ey G AR Gl AR o
0 otherwise
MMk, m] =1 — M (true) e m] (31)
@ Compute the centroid of each source (i.e. pp, ou pp) in the discriminant space.
= The trained model corresponds to eigenvectors and p, et pp.
o

@ For each TF point, Compute the descriptors Qx[k, m]

@ Compute the linear projection Po

@ Separation masks :

M [k, m] — {; ®11Polk,ml — upl| < 1Ptk m) = pall -yt )1~ mylkoml. (32)
@ Reconstruction :
8, = TFCT X (FP [k, mIMmy [k, m]) (33)
8 = TFCT X (Ff [k, mMp[k, m)) (34)
.
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Objective 2 : Improving signal repr i using data-driven
Future work with Quentin Legros

HVS detection from EEG signals using recursive synchrosqueezing transform

@ Partners : Paris, Tsing Hua University (Taiwan)

o Involved Tasks : T1.3 and T4.1 : multivariate SST and application to the
study of ECG and EEG signals

Contributions

A new HVS method designed to ECG signals

Combines recursive synchrosqueezing with a detector

Application on real-world signals

Fast Prediction of Parkinson high voltage spindles (HVS)
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Numerical results
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(a) spectrogram (b) synchrosqueezed STFT (c) reassigned spectrogram

FIGURE 1 — Comparisons of the different recursive TFRs computed for an EEG signal with a HVS.
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(a) saliency function (b) histogram (c) beta law distribution

FIGURE 2 - Resulting saliency function (a) and its histogram (b) computed from the recursive synchrosqueezed STFT of an EEG
signal. Its probability density function can be compared to a beta distribution (c) with parameter a € {0.1,0.5,1}.
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Application of the recursive and fft-based reassignment method to radar
signal analysis

References

Contribution 3 : Audio Signal combined with Deep Learning

@ Partners : Paris, Warsaw Univ. (Poland)

o Involved Tasks : T4.3 : software development

Contributions

@ A complexity comparison between classical and recursive reassignment

o Application to radar signals

o Future application to radar signal processing
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Fig. 3: Results for the classical FFT-based method.
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Objective 2 : Improving signal repr i using data-driven
Future work with Quentin Legros

Smart Beekeeping based on TF analysis and deep learning

o Partners : Paris

@ Involved Tasks : T4.2 : application of SST to audio signals

Contributions

o Combine TF analysis and deep neural networks for audio classification

@ Application to beehive signal analysis for bee queen detection [Orlowska,
Fourer, 21]

@ Analysis of piping signals [Fourer, Orlowska, 22]

o Predicting the health state of a beehive (smart Beekeeping)
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References
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Future work with Quentin Legros

Numerical results : piping signals analysis

Table 4: Experiment 3: Simultaneously Detection and classification
classification comparative results.

[ Method | Feat. dimension | Label [ Recall | Precision | F-score | Accuracy |
Tooting 0.88 0.78 0.83
TTB+SVM 164 Quacking 0.03 0.12 0.05 0.82
Non-piping | 0.99 0.89 0.94
Tooting 0.93 0.84 0.88
ID-CRN 11,025 Quacking 0.10 0.54 0.16 0.85
Non-piping | 0.99 0.86 0.92
Tooting 0.88 0.81 0.84
MFCC+CNN 17 %47 Quacking 0.18 045 0.26 0.84
Non-piping | 0,99 0.90 0.95
Tooting 0.94 0.97 0.95
STFT+CNN 512x42 Quacking 0.50 0.76 0.60 0.91
Non-piping | 0.99 0.89 0.94
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References

Table 4 Comparison of the classification results in Expeniment 2 (4-fold hive-independent cross-

validation).
Method Features| Label |Precision|Recall|F - score| Accuracy
MFCCs+CNN [11] | 20x44 Ngt'l‘il‘:'e'n g:gg 224[2 g:fg 031
STFT+CNN |si3xtd| 0o | 033 | 020 | oaa | O
cqreenN - |sicad SO0 0% | ot | 036 | 025
mean CQTACNN | 274 |\ 30 | 00 | 065 | aso | 038
mean-STFT+CNN | 27x44 Nglcl:u.::.n g;: g:zi g;f 075
mean-STFT+CNN+DA | 2744 Ng:i‘l’;" g:g gﬁ 3:£ 096

Python codes

https://github.com/agniorlowska/beequeen_prediction

https://fourer.fr/dcase22
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Future work with Quentin Legros

Speech Emotion Recognition using TF Analysis

References

Contribution 3 : Audio Signal combined with Deep Learning

o Partners : Paris

o Involved Tasks : T4.2 : application of SST to audio signals

Contributions

o Combine TF analysis and deep neural networks for audio classification
o Efficient data augmentation technique for audio classification

@ Investigation of several deep CNN architectures originally designed for
image classification

@ Application to speech signal for emotion recognition [Xia, Fourer, 21]

@ Speech Emotion Recognition
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References
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Gaussian noise =
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Audio signal
x[n]

Random
= Circular Shift 1

Figure 1: Overview of the proposed approach.

Python codes

https://github.com/llnanis/SER-RCS
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DTPM [12].
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posed method STFT-Alexnet + RCS19 (a) and DCNN-DTPM
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Future work with Quentin Legros

Objective 4 : Applications and Software developments

@ Souriau, R., Fourer, D., Chen, H., Lerbet, J., Maaref, H., & Vigneron, V. (2019, August).
High-Voltage Spindles detection from EEG signals using recursive synchrosqueezing transform. In
GRETSI.

@ Abratkiewicz, K., Samczynski, P., & Fourer, D. (2020, September). A Comparison of the
Recursive and FFT-based Reassighment Methods in micro-Doppler Analysis. In 2020 IEEE Radar
Conference (RadarConf20) (pp. 1-6). IEEE.

@ Orlowska, A., Fourer, D., Gavini, J. P., & Cassou-Ribehart, D. (2022). Honey Bee Queen
Presence Detection from Audio Field Recordings using Summarized Spectrogram and
Convolutional Neural Networks. In International Conference on Intelligent Systems Design and
Applications (pp. 83-92). Springer, Cham.

@ Xia, S., Fourer, D., Audin, L., Rouas, J. L., & Shochi, T. (2022, May). Speech Emotion
Recognition using Time-frequency Random Circular Shift and Deep Neural Networks. In Speech
Prosody 2022.

To appear :

@ D. Fourer and A. Orlowska, Detection and ldentification of Beehive Piping Audio Signals. Proc.
DCASE 2022. Nancy, France. (accepted for publication)
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o References

@ Objective 2 : Improving signal representations using data-driven
o Contribution 1 : Combining SST with deep learning
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Future work with Quentin Legros

On the use of concentrated TFR with DNN

@ Partners : Paris, Nantes

@ Involved Tasks : T4.3 and T2.2 : development of original DNN-based
signal processing tools

Contributions

o First study on the relevance of concentrated TFR applied to DNN-based
signal classification

@ Combination of 2D-CNN architecture with reassigned spectrogram and
synchrosqueezed STFT

@ Application to non-intrusive load monitoring (NILM)

@ Improving the accuracy of existing NILM methods

@ Investigating the relevance of concentrated TFR for signal classification
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Future work with Quentin Legros

Numerical results

ion 1 : Combining SST with deep learning
Contribution 2 : Deep Learning-Based Reassignment

Table 1. Comparative results (in percentage) of the different HEA recognition methods applied to the

PLAID dataset. The window parameter L is empirically chosen to provide the best results.

Acc Fm Rec Pre
P, Q + Random Forest [15,19] 978 97.7 976 979
STFT (L = 60, single-input CNN) 871 872 873 884
STFT (L = 600, CNN with two channels) 977 975 975 979
STFT (L = 600, CNN concatenated) 956 957 955 96.1
Synchrosqueezing (L = 600, single-input CNN) 919 921 924 931
Synchrosqueezing (L = 60, CNN with two channels) 854 850 854 861
Synchrosqueezing (L = 60, CNN concatenated) 872 873 874 879
Time-reassigned synchrosqueezing (L = 60, single-input CNN) 858 861 864 859
Time-reassigned synchrosqueezing (L = 60, CNN with two channels) 914 91.2 909 921
Time-reassigned synchrosqueezing (L = 60, CNN concatenated) 923 923 924 919
Reassigned spectrogram (L = 600, single-input CNN) 744 750 741 773
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DNN-based reassignment

o Partners : Paris

@ Involved Tasks : T2.2 : development of original DNN-based signal
processing tools

Contributions

@ Improving the readability of a TFR

@ Comparison of classical and DNN-based reassignment methods

@ Improving the robustness to noise with a data-driven approach

@ Reassignment can be viewed as an image post-processing operation
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Deep Learning-Based Reassignment
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Main Idea
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signal STFT CNN-based L ’ g‘
x Xh reassignment >|spectrogram
D b h
operator R}
Figure : Proposed DNN-based reassignment method
input TFR conv2D reassigned TFR
M x N 5x5 M x N
I
‘ dropout ‘
[
‘ batch norm.

Figure :

@ Uses 2D convolutional neurons with a 5 x 5 kernel

@ Activation function :

REctified Linear Unit (RELU)

Proposed architecture based on 2D CNN.

@ Dropout : Randomly discard 10% of the computed coefficients

@ Optimizer : RMSProp !

1. Bengio, Yoshua. "Rmsprop and equilibrated adaptive learning rates for nonconvex optimi-
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Figure : Comparison between |Xh|, ITFR, DNN1 estimation and classical reassigned

spectrogram.
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Unitary test on a sinusoidal signal 2/2
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Figure : Comparison between |X"|, ITFR, DNN1 estimation and classical reassigned
spectrogram at a given time instant n = 50.
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Figure : Comparison between |X/|, ITFR, DNN2 estimation and classical reassigned
spectrogram at a given normalized frequency A\ = 0.3.

52/62



Contribution 1 : Combining SST w“:h deep |=arn|ng
Contribution 2 : Deep L i
References

48, L+10.00 L=10.00
oJr W
L — L
HY Zus
H H
£ iw
o) a
H H
2u Zu
£ £
g Cu
onl w
I —— T woa @ w @A w
e sampies time samples
Predicted dB, L1=10.00 a8, L+10.00
st o f
!
] 2"
g
§
@ oy §015 -
8 o He T
Sz FE
8 5 -
5 S
2 £
i R
14 H
5. EN i
o0y .
EEEREEEEEE NN
time samples time samples

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned

spectrogram.

53/62



Introduction
Objective 1 : New app hes for the study of MCSs Contribution 1 : Combining SST with deep learning
Objective 4 : Applicati and Soff devel, Contribution 2 : Deep Learning-Based Reassignment
Objective 2 : ing signal repr i using data-driven References
Future work with Quentin Legros

Noisy signal (SNR=5dB)

P!

1 n
X: 29
X: 29
09 Y: 0.9528
0.8
o)
o 0.7
3
= |
B.06 |
€ |
o |
5 05
]
N
= X: 29
g 04 ¥: 03503
5 h
Qo3 \
1B
]
0.2 1
1
i
01 X
i
1
L
10 20 30 40 50 60 70 80 90 100
time samples

Figure : Comparison between \Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram at a given normalized frequency A = 0.3.
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Multi-component noisy

Figure : Comparison between |X"|, ITFR, DNN2 estimation and classical reassigned
spectrogram.
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Overlapping compon

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned

spectrogram.
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Objective 2 : Improving signal representations using data-driven

@ Houidi, S., Fourer, D., & Auger, F. (2020). On the use of concentrated
time-frequency representations as input to a deep convolutional neural
network : Application to non intrusive load monitoring. Entropy, 22(9),
911.

In preparation :

@ D.Fourer, Q. Legros and F. Auger. Improving the readability of
Time-frequency and Time-Scale Representations using Deep Convolutional
Neural Networks
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Objective 1 : New approaches for the study of MCSs
Objective 4 : Applications and Software developments
Objective 2 : Improving signal representations using data-driven

Future work with Quentin Legros
Outlook

2022

@ oct (1 month) : EM-based IF and CR estimation methods

@ nov-dec (2 months) : Finalizing and submitting work on DNN-based
reassignment

With extension for Quentin (6 extra months)

@ jan-mar (3 months) :

o Mode-extraction DNN-based methods (image-based segmentation using
advanced neural network architectures)
e TFR information estimation with F. Auger (Nantes)

@ apr-jun (3 months) : Adaptive representations learning (investigation based
on recurrent CNN with constraint)

Other ideas :
@ spectrogram/scalogram phase reconstruction
@ spectrogram/scalogram zeros/peaks statistical analysis
@ overlapping modes reconstruction
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Introduction
Objective 1 : New approaches for the study of MCSs
O £ ¢ A nd Sofi devel

Objective 2 : Improving signal repr i using data-driven
Future work with Quentin Legros

Future work directions / Ideas for future projects and collaborations

@ A public Benchmarking for mode extraction, denoising and IF/CR
estimations methods (with Juan)

TFR structure information extraction from a machine learning point of
view (with Francois)

o New academic project proposal on signal processing for smart beekeeping
(with all bees friends)

Green IA : using TF analysis for computing low-dimension signal models
for efficient computation, embedded systems and energy saving
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